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Abstract. The exploration time for a swarm of robots doing object
gathering depends on the specific task, environment, number of objects,
and number of robots. Hence, it is important to understand how dif-
ferent properties affect the exploration time. To address this practical
challenge, we present a theoretical analysis of the expected exploration
time for a swarm of robots that are searching for objects in an arena and
present experimental results obtained with different swarm sizes. The
experimental results are consistent with the theoretical analysis.

1 Introduction

Swarm robotics is the study of decentralized multi-robot systems consisting of
robots with limited individual capabilities, such as local sensing, low processing
power, and limited or no inter-agent communications. In swarm robotics, large
groups of simple robots coordinate implicitly to collectively perform tasks such
as pattern formation, foraging, or collective mapping [17].

In a foraging task, robots search for goal locations where target objects (e.g.,
food, humans, etc) reside, and bring them back to a centralized collection loca-
tion called the nest. Applications of foraging include hazardous waste clean up
[4], search and rescue [6, 5], demining and terrain sample collections [15].

Since object locations are initially unknown, exploring the environment is
important for completing a foraging task. Due to limited individual capabilities,
random walk (or variants) is frequently used for exploration, because of its lim-
ited processing requirements and scalability [20, 14, 8]. We expect random walks
of a swarm to speedup the exploration process compared to a single robot.

Random walk is a discrete time stochastic process where a path is established
by successive random steps. When the random steps are time-independent, the
process can be described by a discrete-time Markov chain [13]. If the next step
is correlated to the orientation of the previous step, the walk is categorized as
correlated random walk (CRW). In contrast to uncorrelated random walk, in a
CRW the probability of the next steps depends on the direction at which the
robot has moved previously [10, 21, 20]. While most theoretical results in the
literature are for strictly random walks, parallel CRWs in robot swarms share
many of the same properties and are more feasible with real robots (e.g., most
wheeled robots are non-holonomic and not able to move perpendicularly to their
orientation, as is required for strictly random walks).
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An important property of random walks that has been studied extensively
is the “first passage time”, which is the first time when a random walk reaches
a specific location, described formally as a random variable. Many papers have
studied how to compute the mean first passage time of a more general stochastic
process [18, 15]. In particular, Hunter [12] focused on numerical algorithms for
computing the mean first passage time of a Markov chain. Other works focus on
computing a first passage time distribution of Markov chains [1, 9].

Increasing the swarm size tends to decrease the exploration time te(n,N),
i.e., the time it takes for n robots to reach the goal location G when there
are N robots, where n ≤ N , with linear decreases proportional to increasing
N . However, beyond a certain swarm size in a fixed size arena, adding more
robots would result in a negligible decrease in the te(n,N), as suggested by
the experimental results from [11, 20]. Increasing N even further may increase
te(n,N) due to high levels of inter-robot interference.

For different foraging problems, the desired te(n,N) may differ. Consider a
search and rescue mission as an example, in which te(n,N) may be determined
by how long a missing person can stay alive [2]. To save as many as possible, it is
important to determine the appropriate N to minimize te(n,N) without having
to run a large number of experiments. To solve such problem, we seek to answer
the following research question: For swarms of N robots doing correlated
random walks (CRWs), can we compute a priori an estimate of the
time by which n robots will have reached the goal locations?

This paper is focused on swarm exploration in foraging tasks. In Section 4,
we model robots that perform a CRW by Markov chains. Using the model, we
compute the probability that n robots have reached G when there are N robots
in total. To solve this problem, we first consider a simpler problem in Section 5.1,
where the first passage time of a single robot is computed. In Section 5.2, under
the assumption that random walks of robots are independent and identically
distributed (i.i.d.), we extend our results to n robots. Finally, in Section 7, we
validate the effectiveness of our model by comparing the experimental results we
obtained in simulation with the theoretical predictions of the model.

2 Related Work

Pang et al. [19] model the random walk of a swarm of robots using models
from biology research. The mean squared displacement (MSD) is proposed as
a performance measure to quantify the effectiveness of random walk methods,
where MSD is proportional to the performance of the random walk method. The
authors derived that the MSD of an uncorrelated random walk in two dimensions
is equal to m × D(L) + m × (E(L))

2
, where m is the number of steps taken,

L is the step length, E(L) the expected value of step lengths L, and D(L) the
variance of step lengths.

In more general settings, Alon et al. [3] studied speed ups of cover times
for different classes of graphs when there are k random walks. The cover time
of a graph is the maximum expected time it takes to explore the whole graph
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starting from an arbitrary initial node. The speed up of the cover time is simply
the ratio between the cover time of a single random walk and the cover time of k
random walks. The authors relate other quantities, such as the hitting time and
the mixing time, with the cover time. While the work gives results with formal
justifications, some results, in particular speed up of 2-dimensional grid graph,
are limited to k < O(log1−ε n) for any ε > 0, where n is the number of nodes in
the graph. In the context of swarm exploration, it is important to consider the
case when there are many robots, i.e., when k � O(log1−ε n).

Dong et al. [7] derived an explicit formula for the first hitting time distribu-
tions of the standard Brownian motion with piece-wise linear boundaries, which
can be used to further deduce formulas for rectangular, triangle, and quadrilat-
eral boundaries. For general nonlinear boundaries, approximate solutions were
obtained.

3 Problem Statement

Suppose there areN robots, and their states are random variables,X
(1)
t , . . . , X

(N)
t ,

which are discrete time Markov processes with the transition matrix, Pi,j , where
i, j are states. The probability that the robot is in state j after t steps is denoted
as Pi,j(t) = (P t)i,j .

In the context of swarm exploration, each state encodes the position of the
robot in the arena, A = [0, H]×[0,W ], where H is the heigth and W is the width
of the arena. We allow states to include other information besides position. Let
G denote the goal location, which is a proper subset of A. G contains objects
that the robots need to collect. For simplicity, we assume that G is rectangular,
i.e. G = [a′, b′]×[c′, d′] where a′, b′ are X-coordinates, and c′, d′ are Y -coordinates
of the arena.

In addition, assume that the random variables X1
t , . . . , X

N
t are independent

and identically distributed (i.i.d.) for each t ≥ 0. Their initial states are all the
same, i.e. X1

0 = · · · = XN
0 .

With the given assumptions, we want to find the probability mass function,
P (n, t), which is the probability that n robots out of the total N robots have
reached the goal G by time t.

4 Proposed State Representation

To represent the states, we describe first how to represent the arena and then
we describe the transition probability.

Arena Representation: A naive way to model a continuous arena as a discrete
time Markov chain is to place a node at each square grid element (see Fig. 1) [16].
Edges are placed between neighboring nodes, including the ones diagonal to each
other. With this representation, if the side length of a square grid is L�, then
there are R� := b HL�

c rows and C� := b WL�
c columns of R� × C� nodes. The
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Fig. 1. R� = C� = 3, where R�, C�

are the numbers of rows and columns,
respectively, for a square grid represen-
tation.

Fig. 2. R4 = C4 = 3, where R4, C4
are the numbers of rows and columns,
respectively, for a triangular grid rep-
resentation.

disadvantage of the square grid representation is that the distance between a
node and the neighboring node in the diagonal direction is different from the
distance between the given node and the neighboring node in the horizontal or
vertical direction.

To address this issue, a triangular grid, as shown in Fig. 2, can be constructed
from a square grid by moving every n-th row to the right and every m-th row
to the left by some amount, where n is odd and m is even. With this model, one
benefit is that the distance between each node is the same, which corresponds
to a more accurate representation of a robot moving at constant velocity. Given
the side length of a triangular grid, L4, there are R4 := b 2H√

3L4
c rows and

C4 := b WL4
c columns of R4×C4 nodes. Here, the number of rows is computed

by dividing the height of the arena by the height of a triangle.

Fig. 3. States representation in
a one-dimensional grid encoding
only robot positions, with no di-
rection of motion encoded.

Fig. 4. States in a one-dimensional grid
encoding position and direction of mo-
tion. A right arrow encodes a robot mov-
ing rightward, a left arrow encodes a robot
moving leftward.

In addition to modeling robot position, we also need to incorporate the direc-
tion of robot motion for CRW exploration strategies in order to build our hitting



Analysis of Exploration in Swarm Robotic Systems 5

time model (this is not needed for strictly random walk exploration strategies).
One way to obtain a direction at each time step is to consider a process where
the next position depends on the previous two positions (see Fig. 3). However,
this is undesirable, since we loose the Markov property, which is essential for
deriving the hitting time distribution, which we show in the next section.

Instead, we let each node to express not only the position, but also the
direction of a robot’s motion [16] (see Fig. 4). With this representation, we have
D×R×C nodes, where D is the number of directions that can be encoded in the
given representation, while R and C are the number of rows and columns in the
arena, respectively. For the square grid, we use D = 8, and for the triangular grid,
D = 6. By convention, we express the direction as an integer, ξ ∈ {0, 1, . . . , D−
1}, which represents a motion in the direction 2π

D ξ from the global reference line.

Fig. 5. Reduction of multiple goal nodes to a single node in a square grid representa-
tion. Green represents a goal state and goal region, blue a goal neighboring state.

To include a goal node in the representation, we first remove any nodes which
are inside G. Then, we create a single node which connects all the neighboring
nodes (see Fig. 5). We denote nodes that are adjacent to the goal node as goal-
neighboring nodes. Instead of considering multiple nodes as a goal, reducing the
goal to a single node simplifies the overall model and the computation of the
hitting time. There could be multiple disconnected goal regions, but here we
make the simplifying assumption that there is only one goal region.

Transition Probability: Let pθ denote the probability that a robot turns
left or right by θ radians, where θ ∈ [0, π]. For an interior node i, we let the
probability of moving from node i to node j to be Pi,j = p|θj−θi| where θi = 2π

D ξi
and θj = 2π

D ξj (see Fig. 6).
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Fig. 6. Interior node transition probability. The arrow represents the direction of the
robot, pθ on the nodes denotes the probability of going there from the green node.

Due to physical restrictions, the robot’s motion is persistent, which means
that a robot tends to move smoothly without making sharp turns [21]. To capture
this persistence, we add the following constraint: pθ > pφ whenever θ < φ. In
other words, a robot is more biased toward moving in the forward direction.

(a) Parallel (b) Angled (c) Perpendicular

Fig. 7. Transition probabilities for different cases when a robot is on a boundary node
depending on the direction of motion.

For a boundary node i, there are three different cases. When the robot is
moving along the boundary, the probability is assigned similarly to an interior
node, except that the probability of turning is doubled so that the total prob-
ability adds up to 1 (see Fig. 7(a)). When the robot is heading toward π/4 or
π/2, we add a constraint where the reflecting node has a higher probability to
be the next state (see Fig. 7(b) and Fig. 7(c)).

Finally, goal neighboring nodes have a relatively higher probability of reach-
ing the goal node. This is to capture the robot’s local sensing capability, where
the robot is more likely to move toward a goal when it is nearby. To make this
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precise, let p be the probability of moving towards the goal node when the robot
is on the goal neighboring node. Then p is assigned so that p > 1−p is satisfied.
The precise value of p depends on the local sensing capability.

5 Derivation of Hitting Time Distributions

We are now ready to use the arena representation to compute the distributions of
hitting time. We start with the distribution for a single robot and then compute
the distribution for multiple robots.

5.1 Hitting Time Distribution: Single Robot

Suppose that the model has M states. We wish to compute fi,j(t), which is the
hitting time density distribution for moving from state i to j in t steps.

From [1], the following equality holds

Pi,j(t) = fi,j(t) ∗ Pj,j(t) =

t∑
t′=0

fi,j(t
′)Pj,j(t− t′) (1)

where ∗ denotes a convolution operator.
By applying the Z-Transform and the convolution theorem for Z-Transform

[23], it follows that

f̂i,j(z) =
P̂i,j(z)

P̂j,j(z)
(2)

where

f̂i,j(z) = Z {fi,j(t)} (z) =

∞∑
t=0

fi,j(t)z
−t

P̂i,j(z) = Z {Pi,j(t)} (z) =

∞∑
t=0

Pi,j(t)z
−t

(3)

Similar equations hold for P̂i,j(z) and P̂j,j(z). Finally, we obtain fi,j(t) by ap-
plying the inverse Z-Transform to Eq. (2):

fi,j(t) = Z−1
{
P̂i,j(z)

P̂j,j(z)

}
(t) (4)

While it is possible to compute P̂i,j(z) directly by using a symbolic algebra
system, doing so may take a significant amount of time. To reduce the computa-
tional time cost, we consider the case where Pi,j is diagonalizable. The transition
matrices derived from Section 4 (both for the square and triangular representa-
tions) are indeed diagonalizable.
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From the assumption that Pi,j is diagonalizable, we derive:

Pi,j(t) = (P t)i,j = (P̃DtP̃−1)i,j =

M∑
k=1

P̃i,k(P̃−1)k.jd
t
k (5)

where D is a diagonal matrix and dk = Dk,k. By the linearity of the Z-Transform,

P̂i,j(z) = Z {Pi,j(t)} (z) = Z

{
M∑
k=1

P̃i,k(P̃−1)k.jd
t
k

}
(z)

=

M∑
k=1

P̃i,k(P̃−1)k.jZ{dtk}(z)

=

M∑
k=1

P̃i,k(P̃−1)k.j
z

z − dk

(6)

Therefore, Eq. (4) can be written as

fi,j(t) = Z−1
{∑M

k=1 P̃i,k(P̃−1)k.j
z

z−dk∑M
k=1 P̃j,k(P̃−1)k.j

z
z−dk

}
(t). (7)

5.2 Hitting Time Distribution: Multiple Robots

From the assumption that the states of robots are i.i.d., at each time, it is
clear that all robots have the same cumulative first passage time distribution,
φi,j(t) =

∑t
τ=0 fi,j(τ).

We can interpret φi,j(t) as the success probability of a robot reaching state
j when starting from state i from time t. Hence, the probability that n robots
have reached the goal, G, by time t follows the binomial distribution with N
‘trials’ with the bias factor equal to φi,j(t):

P (n, t) =

(
N

n

)
(φi,j(t))

n(1− φi,j(t))N−n. (8)

When t is small, φi,j(t) is close to zero. As a result, P (n, t) will be small. This
corresponds to having robots that just started exploring, and so the probability
of reaching the goal is small for any number of robots. In contrast, when t is
large, φi,j(t) is close to one, and so P (n, t) is close to one when n = N . This
happens when robots explored for a long time and so all robots have reached
the goal.

6 Experimental Setup

To assess the validity of the proposed method, we ran simulations using AR-
GoS [22] to obtain experimental data. We experimented with N = 50, 100, and
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for each N we averaged 2,000 simulations to derive the empirical hitting time
distributions.

To derive the theoretical distributions, we used the triangular grid model
with L4 = 50, 100. Instead of computing the exact values for fi,j(t), we used
the standard Monte Carlo sampling method [24] to estimate fi,j(t). We could
not compute the exact values for fi,j(t) since it required inverting large matrices.

Fig. 8. ARGoS foraging simulation with 50 robots. The grey area is the collection
location (nest), where robots return the objects, which are represented as black squares.

7 Results

The shapes of the experimental graphs in Fig. 9 suggest that the binomial distri-
bution is suitable for approximating the actual hitting time distribution. There is
a strong agreement between experimental and theoretical results for P (15, t) and
P (25, t) with R4 = 50, C4 = 100. From these observations, it can be inferred
that the i.i.d. assumption is appropriate. Specifically, the interactions between
robots are negligible for computing the hitting time distribution.

By comparing the first and second row in Fig. 9, it is clear that the represen-
tation with more nodes gives better predictions. The improvement is most obvi-
ous for P (25, t). This observation is more clear when looking at Fig. 10, where
the errors between the theoretical and experimental results with 100 robots were
computed using the L2 norm. When there are more nodes (R4 = 50, C4 = 100),
the errors grow slower than when there are fewer nodes (R4 = 25, C4 = 50).
Also, the maximum error for R4 = 25, C4 = 50 is 30, while the maximum error
for R4 = 50, C4 = 100 is 120. From these results, we can infer that the number
of nodes has a big impact on the accuracy of the predictions.

8 Conclusions and Future Work

In this work, we modelled swarm exploration using a Markov chain. To express
the persistence of robot motions in correlated random walks, we added states
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Fig. 9. Experiments with N = 50 robots using the triangular space representation.
Graphs on the first row used R4 = 25, C4 = 50 for the theoretical model, on the
second row R4 = 50, C4 = 100. Each column shows P (n, t) for n ∈ {1, 15, 25}. The
x-axis represents the hitting time normalized by the maximum hitting time, the y-axis
represents the probability density. Experimental graphs have 95% confidence intervals.

Fig. 10. Errors between theoretical and experimental results for two different model
sizes up to 50 robots. The errors are computed using the L2 norm.
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which encode the direction of the robot motion. Using our model, we obtained a
single robot hitting time distribution, and we used it to further derive a hitting
time distribution for multiple robots. Finally, we experimentally verified using
the ARGoS simulator that our model is predictive.

To extend our work we will consider practical applications. As an example,
one can use our model and hitting time distributions as a performance measure
for an exploration strategy. Moreover, computing the exact value of fi,j(t) has
the potential to increase the accuracy of the theoretical results more than using
the standard Monte Carlo sampling method to approximate them. To do this,
it is important to derive a tractable numerical method for computing fi,j(t).

Currently, our work is limited to an environment with no obstacles and a
single goal area. Also the robots are assumed to work without any failure (e.g.,
no wheels or hardware failures, no battery depletion). In more real settings, those
are important factors to consider, and hence one way to expand our work is to
build a more realistic model of the robots and the arena.

Finally, the i.i.d. assumption may not be valid when the interactions between
robots are significant, which is the case when the ratios of the arena to robot
size and of the arena size to the number of robots are small. Likewise, if robots
are close to each others at the beginning and the goal location is nearby, the
prediction will not be accurate as there may not be enough time for the robots
to spread out so that the interaction becomes negligible. One direction of study
is to identify when the assumptions fail both theoretically and experimentally.
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Undergraduate Research Opportunities Program at the University of Minnesota
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