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Abstract. We address the problem of emergence of cooperation be-
tween agents that operate in a simulated environment, where they need
to accomplish a complex task, moving a heavy load, that is decomposed
into sub-tasks and that can be completed only with cooperation. A deep
reinforcement learning approach using a multi-layered neural network is
used by the agents. The goal of this work is to empirically show that co-
operation can emerge without explicit instructions, whereby agents learn
to cooperate to perform complex tasks, and to analyze the correlation
between task complexity and training time. The series of experiments we
conducted helps establish that cooperation can emerge but becomes un-
likely in partially observable environments as the environment size scales
up. Another series of experiments shows that communication makes the
cooperative behavior more likely, even as environments scale up, when
the environment is only partially observable. However, communication is
not a necessary condition for cooperation to emerge, since agents with
knowledge of the environment can also learn to cooperate, as demon-
strated in the fully observable environment.

Keywords: cooperation · reinforcement learning · multiagent system.

1 Introduction

Multi-agent systems are increasingly popular and are often tasked with accom-
plishing complex tasks that require cooperation. People experience the reality of
their physical limitations as individuals when trying to move a bulky or irregular
sized object which requires them to coordinate with others to accomplish the
task. The need to work cooperatively arises from trying to interact in the environ-
ment with artifacts that are larger and more complex than what a single person
can reasonably manipulate. Given the complexity and multitude of tasks that
have to be performed all around us, cooperative team work is inevitable for suc-
cessful functioning in organizations, sports, warehouses and almost every facets
of society. In an ever increasing pace of automation we see that autonomous
agents need to work cooperatively, where they operate in an environment with
objects that are bigger than themselves and hence cannot be manipulated by a
single agent.
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Let us consider a team of warehouse robots that are tasked with cooperatively
moving objects to a specific location. The robots have to learn the optimal path
to the object itself and then synchronously move the object to the goal location.
Robots can be easily programmed to do this but if a robot were to be made
truly adaptive it needs to have the ability to learn the optimal set of actions in
any environment. The robot will explore the space and, given the correct set of
rewards, will learn to navigate to the location of the object and then possibly
learn to cooperatively move the object to the target location. The purpose of this
work is to investigate how robots learn to cooperate in a simulated environment
that has been broadly inspired by a factory warehouse. The series of experiments
have been completed in three phases with different conditions of the environment:
(1) fully observable, (2) partially observable, and (3) partially observable with
communication.

The focus and main contribution of this paper is to comprehensively study
how properties of the environment affect learning in a new problem scenario
and how communication affects the overall learning in a partially observable
environment when compared to a fully observable environment. To the best of
our knowledge, the use of neural networks with reinforcement learning for the
purpose of studying the emergence of cooperation in the three categories listed
above, based on observability and communication, is a first. This work also shows
that the availability of complete information in a fully observable environment
does not guarantee cooperation but can be rather detrimental to the learning
effort in a large environment whereas communication provides a more efficient
way to make the relevant information available to agents. The work described
in this paper is largely based on [6].

2 Related Work

Multi-agent cooperation has seen significant progress in the past two decades.
Recent application of deep learning in fields of computer vision and natural
language processing has contributed to its application in multi-agent task envi-
ronments. One of the earlier papers by Mahadevan et al. [10] explores behavior-
based robots using reinforcement learning from a single agent perspective. A
real robot called OBELIX combined with a simulator for gathering data is used
for tasks that involve pushing boxes. Q-learning is used as the reinforcement
learning algorithm. An emphasis on the learning of actions via reinforcement
learning is made in the paper because it removes the burden of programming
the behavior into the agents.

In further development, Tan [14] studied cooperative agents with independent
agents as a benchmark. Agents can be cooperative by communicating different
types of information such as perception, rewards, action, episodes. The paper
presents three case studies each with three different types of information, instan-
taneous information, sequential information, learned decision policies. In the first
case study the information shared is the perception of another agent. The second
case study shares learned policies and episodes. The third case study involves
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joint tasks where more than one agent is needed to accomplish the task. Tan’s
paper makes the claim that cooperative agents outperform independent agents
although learning might take longer. The experiments are setup to measure suc-
cess in terms of the discounted reward per action. The extension of reinforcement
learning from single agents in prior work to multiple agents is defined by Tan
as the comparison between n independent agents and n cooperative agents. The
main thesis of the paper is that agents can benefit from the information shared
between them.

Kasai et al. [5] further extended the work in [14] by enabling the learning
of communication codes. The pursuit problem where agents are tasked with co-
operatively capturing a prey is used for the purpose of learning communication
codes. Learning of communication code is called Signal Learning in the paper
and it is accomplished by encoding key features of the state space such as loca-
tion of prey as a sequence of bits of fixed length. The paper examines the effect
on performance when the signal length is varied between experiments. Kasai et
al. claims that learning relevant information to share between agents is crucial
because irrelevant information can have a detrimental effect on the overall learn-
ing process. The work in this paper essentially automates the information that
is shared between agents whereas communication code was predefined in [14].

In [1] agents learn communication protocols to solve switch riddle and games
in a fully cooperative, partially observable environment. Two approaches are
used Reinforced Inter-Agent Learning (RIAL) and Differentiable Inter-Agent
Learning (DIAL). Since agent behavior has to be coordinated, agents have to dis-
cover a communication protocol. During learning the communication bandwidth
is not restricted, that is learning is centralized and execution is decentralized.
RIAL uses Q-learning with a recurrent network and two different approaches
are used within this method. The first approach is independent Q-learning where
agents learn their own network parameters. The second approach of independent
Q-learning parameters are shared. In DIAL gradients are passed between agents
as real valued messages. During execution, since only limited bandwidth chan-
nels are available, the real valued messages are discretized. Experimental results
show that DIAL outperforms both RIAL methods. Parameter sharing is also
found to be crucial for learning the optimal protocol. The baseline also shows
that no learning takes place without any communication. The paper establishes
that differential communication is essential to utilize the full potential of central-
ized learning. The paper claims to be a first attempt at learning communication
and language with deep learning approaches.

Gupta et al. [4] consider cooperation in partially observable environments
without communication. The problem of cooperation can be formulated as a de-
centralized partially observable Markov decision process as seen before. Gupta
et al. claim that policy gradient methods outperform both temporal difference
and actor-critic methods. However, since exact solutions are intractable, approxi-
mates have to be applied. It is worth considering that since approximate methods
are limited to discrete action spaces applying them to real-world problems re-
quire careful design considerations. Further, the combination of deep learning
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and approximate methods has given rise to deep reinforcement learning and has
seen considerable success in complex tasks such as robotic locomotion.

Lan et al. [8] show that discrete language appears even when using a continu-
ous space. Their work uses signaling games where an agent perceives some infor-
mation and produces a message for a receiver that takes an action. Discreteness,
which is clustering of words in acoustic space and displacement, which occurs
with communication beyond the immediate context are the focus here. Besides
the emergence of discrete language, using a continuous communication protocol
means that standard back-propagation can be used for end-to-end training.

Communication has been shown to be important in ad-hoc teamwork [13]
to get the agents to learn how to work together [11]. Stone [13] discusses coor-
dination without preconditions where an ad-hoc team of agents with different
capabilities coordinate on a set of tasks with perfectly aligned goals. Robot
soccer with the variation of a pickup game is an example of such an ad-hoc
cooperative strategy that can be studied within the framework of game theory.
The paper elaborates on the collaborative multi-arm bandit with a teacher and
a learner and challenges the community to develop other approaches. Multiple
papers have been written since that initial paper on ad-hoc team.

A relevant related research topic is for agents to learn how to communicate.
Multiple methods have been proposed, such as using deep reinforcement learning
[1] or learning from perceptual data and by following instructions [3]. In this
work, when we use communication the agents use messages to share information
with other agents. Learning how to communicate is a topic we will address in
future work.

Gerkey [2] presents a formal study of multi-agent task allocation which es-
sentially determines which robot should execute which task. Task independence
is assumed and order constraints are not permitted. Two type of cooperative be-
havior are identified, intentional and emergent. Intentional cooperation occurs
through communication and negotiation. In an emergent approach agents co-
operate through interaction and with no explicit communication or negotiation.
The paper only considers intentional cooperation and does not propagate to the
level of task execution. Korsah [7] deals with intentional cooperation where tasks
are explicitly assigned to agents as a follow up to the taxonomy provided by [2]
and provides a more complete taxonomy involving interrelated utilities. The new
taxonomy, called iTax, addresses different levels of dependencies between tasks
for different problems and breaks it down into four categories – no dependency,
in-schedule dependency, cross schedule dependency, and complex dependency.
In cross-schedule dependency the utility of a robot depends not only on its own
schedule but also on the schedule of other robots and is relevant to the simula-
tion experiments performed for this paper, although task execution is our main
focus. The more recent paper by Nunes et al. [12] focuses on task allocation with
an emphasis on temporal and ordering constraints, and extends the taxonomy
to include different types of temporal and ordering constraints.
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3 Experimental setup

3.1 Problem environment

Given the different approaches outlined in the related work section, the problem
of cooperation can be broadly split into three categories of the environment
which affects how much relevant information is available to the agents.

FOE which is the fully observable environment has all state information avail-
able to the agents, however, some of this information may not be relevant
for learning the cooperative task.

PONOCOM is the partially observable environment with no communication
between agents. Agents may not have all the relevant information available
at their disposal for learning the cooperative task at hand.

POCOM is the partially observable environment with communication where
state information may not be available but agents have the ability to send
and receive discrete messages consisting of their location coordinates which
is relevant to the task at hand. We want to investigate if agents under each
of these conditions tasked with a novel problem will learn to cooperate.

The specific problem created to investigate these conditions is the “ware-
housing problem” which is a simulated environment motivated by a real-world
warehouse where robots might be tasked to find an object and then coopera-
tively move it using the help of another agent. Fully observable environments by
definition make all the state information available to the agents, but the system
is not expected to be scalable. In a large environment the additional informa-
tion that is not relevant to the learning task would potentially have a negative
impact on learning because the state space would grow exponentially. Hence,
given a large observation space we also want to investigate the scalability of
the learning schemes in a fully observable model. We use neural networks with
reinforcement learning for scalability. We also want to investigate the feasibility
of training a neural network, since learning with a large state space requires
additional parameters.

The second problem we wanted to explore is whether cooperation will emerge
in a partially observable environment using the same warehouse problem. In
this case the visibility of the agent is limited only to its current location, which
ensures a very small observation space regardless of the size of the environment.
The agent is also given information about the location of the load and that of
the goal. No information about the location of the other agents is available in the
partially observable version of the warehouse problem. We want to investigate
if a partially observable environment with no communication is conducive to
learning. Moreover, the same question of scalability concerning the environment
and the neural network still hold in this scenario.

The third problem we wanted to address also involves a partially observable
environment but where communication between the agents is enabled. Commu-
nication involves placing discrete messages into the environment that is then
perceived by other agents. In a partially observable environment, agents may
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not have all the information needed to learn the optimal action for each given
state. Communication gives the agents the ability to share information that the
other agents may not possess. Besides the question of whether communication
will emerge, we also investigated if communication will allow the agents to learn
more efficiently, specifically using a neural network.

3.2 Artificial Neural Network Architecture

The artificial neural network architecture used for the training assumes an input
from the agent percepts at each time step, including the rewards received in
the given state. There are two hidden layers in the network that are densely
connected to each other with 30 nodes. The output of the neural network are
the Q-values for each action and the action corresponding to the maximum
Q-value is chosen as the learned optimal action. Two separate but identical
neural networks were used for each of the learning phases, search where agents
have to find the object and haul where agents have to cooperatively move the
object. However, the search phase has one fewer output since the lift action
is not required in the search phase. Figure 1 shows the reinforcement learning
approach where the agents take actions in the environment impacting the state
which is fed as input into the neural network which produces the Q-values as
output.

Fig. 1. Artificial Neural Network based reinforcement learning

3.3 Formal Specification of the Problem

More formally, we define our environment as a n ×m grid with discrete space
identifiable by an x and y coordinate. Agents ri, ri+1, ..ri+j ∈ R are randomly
placed in this discrete space. Loads li, li+1, li+k are also available in the discrete
space in a fixed location, along with a fixed goal location g. Loads are allocated
to one or more agents. The task to be completed by agent ri is to first learn
the sequence of actions, ai ∈ A to move to the location of the load, li that the
agent is assigned to. Loads can have a minimum threshold number of agents to
be moved, typically 2, so assigned agents have to cooperatively move the load to
target g. The action space A includes the four directional movements and lift. At
each time step t, agents take an action. Moving the load requires a synchronous
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series of actions by different robots, including the lift action. If agents move in
different directions after lifting an object, they lose hold of the object and the
object has to be lifted again for moving. The robots will likely learn an optimal,
i.e., shortest, path from the load location to the goal, but optimality of the path
is not a requirement, unlike what happens often in robot motion planning [9].

4 Experimental results

We conducted a number of experiments in the simulation environment. In the
experiments, a varying number of agents are trained in a grid world to perform
tasks in two phases: (1) search phase where agents find the load assigned to
them and (2) haul phase where agents move the load to their destination with
the help of another agent. The agents use an emergent approach to learn the
behavior, since there is no direct communication or negotiation to induce coop-
eration. Reinforcement learning, more specifically Q-learning, was chosen to see
if cooperative behavior would emerge. A multi-layered neural network was used
to see if cooperative behavior would emerge.

The agents can execute an action a ∈ up, down, left, right, lift. The loads
that are already on the grid have to be picked up using the lift action and
synchronously moved to the target location. The loads are not allowed to move
without the aid of agents and may require multiple agents for the lift to produce
the intended effect on the object. Learning to cooperate between agents involves
performing the lift operation and also learning to synchronize the move actions
after picking up the load to cause the object to move in a specific direction.

At each step, the agents are either penalized or rewarded following the com-
pletion of an action. A collision with the wall does not change the state of the
agent but penalizes more heavily (penalty is −5 for collision) compared to a
non-rewarding step (penalty is −1). Agents can simultaneously occupy the same
location in space so there is no penalty for agent collision. Successfully finding
a load rewards the agents significantly (+50 reward) and moving the load to
the target location results in the maximum possible reward (+100 reward). All
motion are deterministic and the environment is fully observable in the first
set of experiments. The series of experiments are then repeated in a partially
observable environment with and without communication.

5 Experiments and Results for Fully Observable
Environments

5.1 Results for 4 × 3 grid with a single agent and a single load

The first set of experiments with a single agent and a single load is a relaxed
version of the problem, where the load is allowed to be lifted by a single agent.
All subsequent experiments involve more than one agent and require more than
one agent to move the load. Figure 2 shows the initial and final state.
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Fig. 2. Initial state and final state for a 4 × 3 grid, a single agent, and a single load

Fig. 3. Training on a 4 × 3 grid with a single agent and a single load, showing the loss
over time steps. The left figure is for the search part and the right for the haul part

Figure 3 shows convergence within 200,000 epochs for the agent to learn
the task. The agent successfully completes the task following the training and
achieves the maximum possible reward, as seen in Figure 2, where the plus
sign indicates the target location. We ran the experiments 10 times, each with
different initial locations for the agents. This prevents the neural network to
memorize the path of the agent from the initial location to the load.

The results were used to establish baseline numbers for the training time
and to prove that a single agent can successfully learn to find the load, pick it
up, and move it to the target location. The constraint for the load to require
multiple agents was relaxed only for this experiment. Even for this relatively
straightforward task involving a single agent, two separate neural networks were
necessary, the first for the search task, where the agents find the load, and the
second for the haul task, where the load is moved to the target location.

5.2 Results for 4 × 3 grid with two agents and a single load

Multi-agent cooperation was established in this phase where two agents were
trained simultaneously, following an exploration phase of the grid. Similar to the
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single agent training, the task of search and haul were separately handled using
two distinct neural networks. The constraint for requiring at least two agents
to handle the load was applied in this phase. The convergence was expected
to be slower, because the probability of hitting the target is greatly reduced
with two agents, so a larger training set was used. Training between a single
agent and multi-agents differs essentially in the way data points are generated
during the training session. Every step which occurs simultaneously generates
two intermediary states that are fed into the agent percepts, and appear as
a training data point within the neural network. An alternate solution might
have been to simply train a single agent longer. However, the synchronization
required for cooperation may not occur if agents are trained separately. The
agents successfully completed the task following the training and achieved the
maximum possible cumulative rewards.

Fig. 4. Initial and final state for a 4 × 3 grid with two agents and a single load

!ht

Fig. 5. Training for the experiment with a 4 × 3 grid, two agents and a single load
showing loss over time steps. The left figure is for the search part and the right figure
is for the haul part
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5.3 Results for 8 × 6 grid with 8 agents with multiple loads in pairs

Training for the 8 × 6 grid with 8 agents required the pre-allocation of loads to
agents. This allocation remained fixed through the learning process. The agents
find the loads they are assigned and move them to the target location indicated
in Figure 6 by a green plus symbol.

With the expanded search space and more agents training had to be per-
formed on a large amount of data to achieve convergence. However, in one case
one of the agents failed to reach its target location in all the test runs. All the
other agents successfully completed the task after the training and achieved the
maximum possible cumulative rewards.

Fig. 6. Initial and final state for a 8 × 6 grid world with 8 agents and 4 loads

Fig. 7. Training for the experiment with a 8 × 6 grid, with 8 agents and 4 loads. The
left figure is for the search part and the right for the haul part
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6 Experiments for Partially Observable Environments

6.1 Results for 4 × 3 partially observable grid with 2 agents and a
single load

The same experiment was repeated in a 4 × 3 grid in a partially observable
environment, where agent perception was limited to its own location, the goal
location and the load location. No information about other agents was made
available in the percept sequence.

The neural network architecture used was similar to the one for the previous
experiments, with one network for the search and a second one for the haul task.
However, fewer layers were needed to achieve learning. Since, the number of input
parameters were reduced, the neural network had fewer overall parameters and
hence could be trained more efficiently compared to the fully observable model.
After 100, 000 iterations the agents learned to do the task of finding the object
and cooperatively moving it to the goal location. In Figure 8, the initial state
and final state are shown in the test run following training. Figure 9 shows that
training was achieved within just 100,000 iterations.

Fig. 8. Initial and final state for a 4 × 3 grid with two agents and a single load in a
partially observable environment with no communication

6.2 Results for 5 × 5 partially observable grid with 2 agents and a
single load

In a 5× 5 grid with a partially observable environment, the agents also learned
to find the object and cooperatively move it to the goal location. However, the
training time doubled compared to the 4× 3 case for the learning to take place.
This is expected because the environment size is about twice as large in terms
of the number of discrete locations compared to the 4× 3 case. Figure 10 shows
the initial and final states from the test run following the training of 200, 000
epochs shown in Figure 11.
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Fig. 9. Training for a 4 × 3 grid, two agents, and a single load showing loss over time
steps. The left figure is for the search part and the right for the haul part

Fig. 10. Initial and final state for a 5 × 5 grid with two agents and a single load in a
partially observable environment with no communication

Fig. 11. Training on a 5 × 5 grid, two agents, and a single load showing loss over time
steps. The left figure is for the search part and the right for the haul part

6.3 Results for 8 × 6 partially observable grid with 2 agents and a
single load

Cooperation was not achieved in the partially observable case of the 8× 6 grid
as seen in Figure 12. The training time was increased to 1, 000, 000 epochs which
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is shown in Figure 13. Despite a 5-fold increase over the 4 × 3 case the agents
failed to complete the tasks in the test runs. The rewards achieved were also
much smaller than in the optimal case but still better than a random test run.

Fig. 12. Initial and final state for a 8 × 6 grid with two agents with a single load in a
partially observable environment with no communication

Fig. 13. Training for 8 × 6 grid, two agents, and a single load showing loss over time
steps. The left figure is for the search part and the right for the haul part

7 Experiments and Results for Partially Observable
Environments with communication

7.1 Results for 4 × 3 partially observable grid with 2 agents and a
single load and with communication

The series of experiments from the partially observable model were repeated
using communication. In the first experiment with the 4 × 3 grid the agent
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perception was just limited to the goal location and obstacle location. However,
agents were allowed to send and receive messages from other agents. The neural
network architecture used was the same as the partially observable case with two
separate networks for the search and for the haul phase. The number of input
parameters was increased since the communication messages were also included
in the training. Despite the increase in the overall training parameters, after
200, 000 epoch, as seen in Figure 15, the agents learned to accomplish the task
of finding the object and cooperatively moving it to the goal location. The initial
and final location are seen in Figure 14.

Fig. 14. Initial and final state for a 4 × 3 grid with two agents and a single load in a
partially observable environment with communication

Fig. 15. Training for the experiment with a 4 × 3 grid, two agents, and a single load
showing loss over time steps. The left figure is for the search part and the right figure
is for the haul part
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7.2 Results for 5 × 5 partially observable grid with 2 agents and a
single load and with communication

In a 5×5 grid with a partially observable environment and with communication,
the agents also learned to find the object and cooperatively move it to the goal
location, as seen in Figure 16. However, the training time shown in Figure 17
was significantly greater than for the partially observable case with no commu-
nication. This was likely due to the increase in the number of input parameters
to the neural network.

Fig. 16. Initial state and final state for a 5 × 5 grid with two agents that have to move
a single load for the partial observable environment with communication

Fig. 17. Training for the experiment with a 5 × 5 grid, two agents, and a single load
showing loss over time steps. The left figure is for the search part and the right figure
is for the haul part
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7.3 Results for 8 × 6 partially observable with 2 agents and a single
load and with communication

Learning was successfully achieved in the partially observable case with commu-
nication with the larger grid size of 8× 6. However, the training time increased
to about 1, 000, 000 epochs. The rewards achieved were smaller compared to the
previous cases but still close to the expected maximum reward achievable. This
is because since even the optimal policy would take more steps in a larger grid
space. Figure 18 shows the initial and final state of the test runs for the 8×6 case.
The increased training time as seen in Figure 19 is comparable to the training
time seen for the partially observable case with no communication.

Fig. 18. Initial state and final state for a 8× 6 grid with two agents that have to move
a single load for the partially observable environment with communication

Fig. 19. Training for the experiment with a 8 × 6 grid, two agents, and a single load.
The left figure is for the search part and the right figure is for the haul part
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8 Analysis

The series of experiments in the three different cases of fully observable, partially
observable with no communication, and partially observable with communica-
tion, show that cooperation is achieved in the case of the 8×6 partially observable
environment. In all the other cases the agents learned the optimal set of actions
in both the search phase and the haul phase. Of particular importance is that
the agents learned to synchronize their actions to haul the object at each step
exhibiting cooperation. In the specific case of the 8× 6 fully observable environ-
ment, one set of agents consistently failed to move the load to the goal location
whereas the other set of agents succeeded in all the test runs. Cooperation did
not emerge in the two cases with no communication between agents but with
communication we see that it is possible for cooperation to emerge even in a
large environment. This seems to indicate that communication is necessary for
cooperation in large partially observable environments. The training time across
all the experiments were consistently kept below 1, 000, 000 time steps. It ap-
pears that the slightly better performance with the larger grid in the partially
observable environment with communication can be attributed to the agent’s
ability to share information. However, more experiments would be needed to es-
tablish this conclusively, in particular with even larger environments. Although
the series of experiments we performed does not provide conclusive evidence, it
motivates further work in this area, particularly on the observation space and
information that is shared between agents.

9 Conclusions and Future Work

We have shown that the agents successfully achieved the desired cooperative
behavior by working as a team to accomplish a complex task which included two
subtasks. Although two separate neural networks were needed to learn each phase
of the task, we have shown that complex tasks that can be broken down into
simpler subtasks and there is potential for emergent cooperation, that is, without
explicitly teaching the agents to cooperate, agents can learn to cooperate.

The Q-learning algorithm that was used proved to be effective and maxi-
mized the utility values in all the experiments performed in the fully observable
environment. In all cases, the learning agents outperformed a random agent, in-
cluding the case where a set of agents failed to learn the overall task. Similarly,
in the partially observable cases all agents succeeded in learning the task, except
in the case of the larger grid. However, this was remedied by allowing the agents
to communicate which made the necessary information available for learning to
occur. Given the limitation of learning in a fully observable environment and a
partially observable environment we can conclude that agents with the ability to
communicate will generally outperform those with no means of communication.

The work presented in this paper provides several avenues to investigate the
role of communication in a partially observable environment. Exploring even
larger grid sizes could conclusively determine the limitation of discrete environ-
ments and provide insight on the feasibility of training in such an environment
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using neural networks. Additional experiments with more variations on the infor-
mation available to the agents can further clarify the role of relevant information
when it comes to learning. As an example, during the simulation runs, agents
never learned when critical pieces of information were suppressed, such as the lo-
cation of the goal. Investigating further into these variations would provide more
insight on the impact on cooperation when critical pieces of relevant information
is not available as part of the agent percept.
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