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Abstract
Autism Spectrum Disorder is a developmental dis-
order often characterized by limited social skills,
repetitive behaviors, obsessions, and/or routines.
Using the small humanoid robot NAO, we designed
an interactive program to elicit common social
cues from toddlers while in the presence of trained
psychologists during standard toddler assessments.
Our experimental design captures four different
videos of the child-robot interaction, and we in-
tend to use captured video data to create a software
package that helps clinicians diagnose autism spec-
trum disorder earlier than the current average age
of 5 years. As part of our plan for automated video
analysis to flag autistic behavior, we built and tested
semi-automated software that logs proxemics infor-
mation, and tested it on a large group of typically
developing children with the robot program.

1 Introduction
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder defined by behavioral symptoms that include social
communication deficits, and restricted and repetitive behav-
ior patterns. Trained therapists use the Autism Diagnostic
Observation Schedule to assess individuals, which is a semi-
structured, time-intensive assessment that includes imagina-
tive play, social cues, and communication. Early identifica-
tion of children with autism allows intensive intervention be-
fore atypical patterns of behavior and brain function become
firmly established. In 2014, the Center for Disease Control
and Prevention released its latest estimate that one in 68 chil-
dren has an ASD. Early intervention significantly improves
long-term outcomes for toddlers identified in the second year
of life [Dawson et al., 2012] and is the best approach for af-
fecting lasting positive change for children with ASD. The
cause of ASD is unknown, and interventions are primarily de-
signed to treat exceptionally complex, established behaviors,
such as learning to interpret social situations.

Robotics research in autism is over a decade old, yet
does not currently meet standards of psychology and child
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development researchers [Diehl et al., 2012; Scassellati et
al., 2012], Robotics research in so-called Socially Assistive
Robotics stems from the fact that children with autism espe-
cially enjoy robots [Dautenhahn and Werry, 2004].While the
reason for this is unknown, researchers clearly have the po-
tential to leverage robotics for autism diagnosis or treatment
[Scassellati, 2005]. Problems with existing research include
lack of robot integration to established treatments, lack of
study participant followup, small sample sizes, little scrutiny
on the actual therapeutic protocol, and little detailed charac-
terization of participants [2012].

In [Manner, 2015] we asked two questions: First, can we
use a small humanoid robot with toddlers to reveal symptoms
of autism? Second, can we create video processing soft-
ware to help clinicians diagnose toddlers with autism? To
explore the first question, we designed a protocol in which a
humanoid robot interacts with very young children to elicit
joint attention, a highly important pro-social behavior, and
began testing with children aged 2-3 years old enrolled in a
longitudinal study looking at early affect, behavior, attention,
and reciprocal relationships. We adhere to Diehl’s sugges-
tions by using participants in our study that will be followed
over three years, using large sample sizes (with an N of 28
in our ground-truth, typically developing sample), subjecting
our protocol to the review and feedback of clinicians and psy-
chologists, and collecting complete participant information
from multiple surveys and standard assessments, including
the Mullen Scales of Early Learning and the Vineland Adap-
tive Behavior Scales. Since we are seeking to help diagnose,
rather than treat, autism spectrum disorder, we will try to es-
tablish our protocol in diagnostic sequences.

To explore the second question, we built configurable soft-
ware to perform semi-automated location tracking of per-
sons (or robots) of interest in overhead video footage, provid-
ing the first quantitative metric for our typically developing
group. The software tracks the location of the child, robot,
caregiver, and experimenter, allowing us to log distances be-
tween the child and the others, showing clear differences in
comfort-seeking behavior (seeking out the caregiver), avoid-
ance behavior (hiding from the robot or experimenter), or in-
difference (ignoring or otherwise not engaging with the robot)
on the part of the child. Diehl also noted in [Diehl et al.,
2014] the lack of research in using robots for diagnosis, where
robots have the potential to control for human differences in



illiciting behaviors and providing quantitative measurements
of important diagnostic information like eye contact and ges-
tures. Our work aims to help fill this gap.

Thus far our novel contributions are quantitative proxemics
information as well as the distance-metric generating soft-
ware, tested on a large number of subjects, with a reproduce-
able and portable robotic program. This is part of our larger
goal to produce automated software that can flag suspicious
markers of autism or other developmental disorders.

2 Related Work
We began our video processing by tracking proxemics, the
study of the amount of space individuals need. Studies
like [Asada et al., 2016] have shown atypical distance re-
quirements for individuals with ASD, generally that indi-
viduals with ASD require less personal space than typi-
cally developing individuals. [Feil-Seifer and Matarić, 2011;
Feil-Seifer and Mataric, 2012] studied automated classifica-
tion of negative and positive reactions of children with autism
towards a large robot using distance features. This free-play
scenario allowed the child to interact with or hide from the
robot. [Mead et al., 2013] studied automatic annotation of
dyadic interactions of two people with a non-responsive robot
as a social cue, using individual, physical, and psychophysi-
cal features (e.g. torso pose, distance, and ‘social’ distance).

For the larger goal of automated flagging software, we
look to research on classifying symptoms and behaviors.
[Hashemi et al., 2012] successfully classified symptoms of
arm asymmetry, visual tracking, and attention disengage-
ment. [Hashemi et al., 2014] more closely studied disengage-
ment of attention and visual tracking abilities of infants, and
showed their system agrees with experts in most trials. More
recently, [Fasching et al., 2015] has successfully classified
repetitive body movements like hand flapping, shrugging, and
ear-covering from video footage.

3 Experimental Setup
Robot

We use the small humanoid robot NAO from Aldebaran
Robotics; the NAO is about two feet tall, has 25 degrees of
freedom, and many sensors and colored LEDs (see Fig. 1).
Each participant session includes at least one trained psychol-
ogist, a toddler and at least one caregiver, a NAO robot, and
a data collector controlling the NAO. The robot is controlled
wirelessly from a laptop in the same room, running a static
program, and the experimenter is always next to the robot to
prevent the child from getting too close to the robot and in-
juring himself or damaging the robot.
Participants

Subjects are drawn from a larger study, in which parents
fill out four behavioral assessments for their children; ran-
dom parents who have filled out all four surveys are asked to
come in with their child for two more standard developmental
assessements as well as the robot interaction.

We collected data on 28 typically developing (TD) children
in all, ranging from 125 - 144 weeks old (2.40 to 2.76 years)
at the time of the assessment, with an average of 136 weeks

Figure 1: NAO in mid-dance.

Figure 2: Overhead perspective of child dancing with NAO.

(2.61 years). These childen averaged 120 for Non-Verbal (In-
telligence) Quotient, 121 for Verbal (Intelligence) Quotient,
and 123 for Early Learning Composite (a combination of as-
sessments over visual reception, fine motor skills, receptive
language, and expressive language). Each value is similar to
the intelligence quotient in adults, with 100 being average and
a standard deviation of 30, meaning this group of toddlers are
in the higher end of the average population (possibly due to
parental self-selection of finishing all initial surveys).
Study Protocol

The child and caregiver are brought in to the study room
by a psychologist to take a behavioral assessment, the Mullen
Scales of Early Learning (MSEL). The robot is already in the
room, off but visible to the child, and the psychologist tells
the child the robot is also interested in how children play,
and that after the ‘games’ (the MSEL assessment) the child
will play with the robot. After the MSEL assessment is com-
plete, in roughly 40-50 minutes, another experimenter enters
the room to introduce the robot, turn it on, and after an initial
warm-up period, play the robot interaction program with the
child. The program takes 9-16 minutes, depending on if the
child is focused and interested in playing with or watching
the robot, or is easily distracted and takes frequent breaks;
the experiment time is the duration of the robot program.

During the robot interation, four video perspectives are
taken: from two cameras at the north and south end of the
room, from a camera mounted on the ceiling, and from the
robot’s point of view (see Fig. 2 for the overhead view).

The robot runs a structured play series consisting of simpli-
fied versions of children’s games “I spy,” “Simon Says,” and
various dances. After introducing itself, the robot performs
two games of “Simon Says,” two games of “I spy,” and three
song and dance routines in a static order. In each “Simon
Says” round, the NAO demonstrates actions that can be done



Figure 3: Child initially used the experimenter for comfort.
Participant face blurred for privacy.

Figure 4: Child that complied with almost all of NAO’s re-
quests in looking for objects, simulating actions, and dancing.

with gross motor skills, like arm flapping or hand clapping.
In each “I spy” round, NAO looks around and states “I see
a...” before stating an object. Before each dance, NAO in-
vites the child to dance with it, and plays a different song and
dance. The NAO sequences do not depend on the child inter-
acting with it, but waits for 90 seconds or for the experimenter
to start the next sequence, which allows the experimenter to
draw the child’s attention back to the robot or the child to take
a brief break. Each sequence begins with encouragement or
ends with positive words like “that was fun!”
Results

We have finished collecting data on 28 typically developing
children. We plan to schedule children at high risk for autism
to come in for robot assessments in the next two months;
many high risk children are already scheduled for an Autism
Diagnostic Observation Schedule (ADOS) assessment, and
we are working to include or subsequently schedule the robot
interaction with these children. We used our software to log
the distances between the child and caregiver, robot, and ex-
perimenter, which gives us more information about social dis-
tance required with a stranger (the experimenter) for TD chil-
dren vs. children with ASD. See e.g. Fig. 3, in which a child
used the experimenter, rather than caregiver, for reassurance.

Some exceptional proxemics examples from TD partici-
pants may be found in Fig. 4 and Fig. 5. Fig. 4 shows a
child who did not request his caregiver throughout the in-
teraction; he played every “I Spy” and “Simon Says” game

Figure 5: Child that sat with caregiver throughout most of
robot interaction, with several instances of approaching robot
to deposit or collect toys.

and danced with the robot on all three dances. When the ex-
perimenter told him the robot had played all of its games, he
hugged the robot before it sat down. Fig. 5 shows a child that
stayed with his caregiver almost the entire time; he watched
the robot closely but rarely followed prompts to look around,
do actions, or dance. He approached the robot twice to put
his toys in front of it, and twice to take his toys back.

Other data collected included a child who became easily
distracted, wrestling with his caregiver for much of the robot
interaction, some children who did not want to play with the
robot but were willing to watch it, and four children who be-
came distressed or exhausted enough that the experimenter
ended the experiment early. Other responses included becom-
ing distracted or disinterested when the robot repeated games,
(e.g., the second round of “I Spy”), becoming more interested
when the robot stood up to dance, and seeking caregiver as-
surance when the robot stood up to dance. Other proxemics
show varied and rapidly changing distances between the child
and the NAO, experimenter, caregiver, after the initial novelty
of the robot wears off and the child moves around the room
more. Of the 28 experiments, 5 children did not finish (4
mentioned earlier, 1 that ended due to equipment failure); of
the 23 completed experiments, the minimum run was 9 min.
2 sec., the maximum 15 min. 17 sec.; the mean time was 9
min. 59 sec. with a SD of 1 min. 58 sec.

4 Future Work

Our over-all goal is to give a toolbox to clinicians that in-
cludes off-line video processing and behavior flagging, and
we will continue to work with psychologists to add auto-
mated tools to enable easier diagnosis. Our next step is to
run the robot program with high risk children, compare ap-
proach and avoidance behaviors with our typically develop-
ing base group, and try to identify movement patterns for TD
and high-risk children. We are also looking at the robot’s
point of view footage to study how frequently the child is
meeting the robot’s gaze and to detect expressions.
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and Henny Admoni. Robots for use in autism research. An-
nual Review of Biomedical Engineering, 14(1):275–294,
2012.

[Scassellati, 2005] Brian Scassellati. Quantitative metrics of
social response for autism diagnosis. Proceedings - IEEE
International Workshop on Robot and Human Interactive
Communication, 2005:585–590, 2005.


