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Abstract

This paper discusses the current analysis of a large set of
child-robot interaction experiments, in which a 2–4 year old
child plays a set of games with a small humanoid robot, with
the goal of detecting early signs of autism in toddlers based on
the interactions. Our first goal in this paper is to condense and
display these child-robot interactions as multi-channel time
series, starting with the distances between the child, robot,
parent, and experimenter. Our second goal is to use these data
displays to compare and contrast different children, with the
aim of clustering children with similar interaction patterns.
Using a ceiling-mounted camera, we record the interaction
between a child and a robot which performs different games
and dances. After analyzing the video footage for the loca-
tions of all people and the robot in the room over the variable
length of the interaction, we condense the interactions into
simplified, quantifiable, scale-invariant data. We show how
the distances between the child and robot, experimenter, and
caregiver can be discretized into a few location zones and
compared across children using classic similarity measures.
Proxemics (social distances) between the child, robot, care-
giver, and experimenter during a child-robot interaction show
differences between participants and hence can provide addi-
tional information for behavior analysis.

1 Introduction
Our work is part of a larger experimental project in which we
seek to automate the analysis of the reaction of a child while
s/he plays games with a robot. This paper shows how we
condense and display the movements of each child with re-
spect to the robot, the child’s caregiver, and the experimenter
throughout the interaction, and compare all participants to
each other. The overarching goal is to assist in the detec-
tion of abnormal development by leveraging the interest of
children with autism in robots, as established in (Scassellati
2007). The work shown here is with neurotypical children,
giving us a baseline with which to compare future partic-
ipants. Symptoms of some pervasive developmental disor-
ders, such as autism spectrum disorder (ASD), include dif-
ferences in personal space between individuals and objects
or people (Asada et al. 2016), eye contact, physical contact,
and a longer delay or non-response when called by name,
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Figure 1: Sample overhead view of the human-robot inter-
action experiment.

among other differences (Zwaigenbaum et al. 2005). These
behaviors are thus considered early markers for autism. We
propose methods to generate a portable, reproducible, au-
tomated behavior analysis that can help detect these early
markers.

The children we work with may be on the autism spec-
trum or have another pervasive developmental disorder, so
we want to avoid adding fiducial markers to the child while
maintaining a structured and reproducible play interaction.
We thus record all interactions from several different per-
spectives; the only perspective that can reliably capture the
participant’s location at all times is from the ceiling, so we
mount a camera on the ceiling in the center of the room. Fig.
1 shows this vantage point, taken from a GoPro; distortion
exists but still allows for identifying an individual’s position
over time.

The work we present here has two goals, framed as ques-
tions. First, how can we compactly represent the interaction
of a child and robot as a time series? Second, how can we
compare participants to each other on the basis of the inter-
action? By answering these questions, we provide a method



to cluster participants based solely on proxemics throughout
the interaction. The results for our neurotypical participants
will provide a baseline with which to compare results from
children at high risk for autism or even children with clin-
ical diagnoses. The responses of high risk children, when
compared to these neurotypical participants, could end up
being outliers or could be similar to an identifiable subset
of children reactions. In these cases, the results will provide
a potentially clinically useful identifier, which could then be
matched to other data collected on the participants and added
to the autism phenotype. If instead the responses of high risk
children look very similar to neurotypical children, we will
know that children in this age group behave similarly for
these interactions. In this case, future research will need to
carefully consider how autonomous behaviors of robots af-
fect reaction for this age group.

This paper contributes several ways of organizing and dis-
playing child-robot interactions as time series data. We show
how difference scores between interactions can be displayed
graphically, how individual interactions can be displayed as
interaction zones, how interaction zones simplify the visu-
alization of how child comfort levels change over time, and
how the interaction zones compare across children. We be-
gin with related work in Section 2, give a high-level descrip-
tion of the human-robot interaction experiment and raw data
taken therefrom in Section 3, describe the preliminary anal-
ysis in Section 4, and end with a summary in Section 5.

2 Related Work
Socially Assistive Robotics is a recent area of robotics re-
search aimed at helping populations with special needs; it
includes research for children or adults, such as robots as
tools for children with pervasive developmental disorders
or robots for adults as tools, companions, or helpers. So-
cially assistive robotics research in autism is over a decade
old, yet does not currently meet standards of psychol-
ogy and child development researchers (Diehl et al. 2012;
Scassellati, Matarić, and Admoni 2012; Pennisi et al. 2016).
Robotics research with children with autism stems from
the fact that afflicted children tend to especially enjoy au-
tonomous (or seemingly autonomous) robots (Dautenhahn
and Werry 2004), and researchers have used a wide variety
of robot appearances and abilities in this area (Scassellati,
Matarić, and Admoni 2012). While the reason for this high
level of interest is unknown, researchers clearly have the
potential to leverage robotics for autism diagnosis or treat-
ment (Scassellati 2005). We now give a brief overview of
related work for this paper, detecting autism traits through
automated video analysis and proxemics.

Automatically detecting autism or autistic traits is a cur-
rent research area in computer vision, and much work uses
as much data as possible. For example, Hashemi et al. (2012)
analyzed non-intrusive camera footage using a GoPro placed
on a table, two to four feet from a clinician-child pair in
which the clinician was testing the child with a disengage-
ment of attention task and a visual tracking task. The au-
thors went even further in (Hashemi et al. 2014), in which
they analyzed interest sharing and atypical motor behavior
by estimating head motions from facial features and motor

behavior by arm symmetry. Fasching et al. (2015) automat-
ically coded activities of people with obsessive-compulsive
disorders from overhead video footage in a structured lab,
tracking how many times participants touched various ob-
jects. These objects are statically located, such as faucets
and handles, and easier to locate in a static environment. In
contrast, our laboratory works with very young children in
a play-based interaction, which adds difficulties in instru-
menting the room and reliably tracking an active, potentially
non-cooperative child.

Much research in socially assistive robotics studies child-
robot interactions. Feil-Seifer and Matarić (2011) created a
short free-play interaction with children and a robot, with
the future intention of allowing a robot to adjust its own be-
havior based on the child’s reaction. This work tracked the
child in relation to the robot to automatically determine if
the child was having a positive or negative reaction to the
robot. The authors manually coded for the child avoiding
the robot, interacting with the robot or playing with bubbles
the robot generated, staying still, being near parent, being
against the wall, or none of those. Results showed that chil-
dren with a positive reaction to the robot spent over 80%
of time interacting, whereas children with a negative reac-
tion spent less than 20% of time interaction with the robot.
Mead et al. (2013) also investigated proxemics (the study
of social distances), by placing a participant and researcher
in discussion about a static humanoid robot. Using a video
camera and depth data, they studied body pose during the
experiment, training Hidden Markov Models on sensory ex-
periences (such as voice loudness and a variety of distances
to other people and environment objects) to correctly anno-
tate initiation and termination of conversation.

3 Research Method
3.1 Experimental Paradigm
The overarching goal of the robot interaction study with
toddlers (the age group of roughly 2–3 years old) is to
identify children at high risk for autism spectrum disor-
der (ASD). Children were recruited from a laboratory-
maintained database at the University of Minnesota’s Insti-
tute of Child Development. The participants in this study
are very low to medium risk for ASD, but mostly low risk.
Thus, the data in this paper represents a mostly neurotyp-
ical set of children, providing us with a reactionary base-
line for future comparisons with very high risk or diagnosed
toddlers. Written informed parental consent was ensured in
advance of all testing; all research was approved by the uni-
versity’s Institutional Review Board. We collected multiple
data sets from each participant, including standardized and
novel assessments and video footage, but for this paper we
review and discuss only video footage taken from an over-
head perspective through-out the duration of the interaction
with the child. We wrote software to track the actors of inter-
est throughout the video, usually the child, the robot, exper-
imenters, and/or caregivers, and the analysis presented here
is generated from the raw coordinates of each actor in every
frame of the video.

During the experiments, we introduce the child to Robbie



the Robot (a NAO from Softbank Robotics). Robbie plays
different games such as looking games, imitation games, and
dances. The games include “I Spy” (a looking game that en-
courages the child to find objects in the room), “Simon Says”
(a behavior imitation game that encourages the child to copy
motions possible with gross motor skills like clapping and
waving), and several dances set to music. The set of games
is in the same order for every child. The experimenter con-
trolling the robot imitates some of the robot’s movements
and plays along during some of the looking games, encour-
aging the child to do the same. The interaction is recorded
from up to four perspectives, most notably from a GoPro
mounted on the ceiling. The GoPro is the only camera that
is always located in the same place, is impossible to reach
by participants, and from which we can almost always see
all actors in the room.

We attempted to keep the same location for all actors in
the room across experiments. The experimenter that con-
trolled the robot (hereafter called simply the experimenter)
sat next to the robot slightly off-center in the room. If the
child did not need comfort or attention from their caregiver,
they were seated or standing on the floor near the robot, fac-
ing the robot. In this case, the caregiver sat near the edge of
the room with another researcher, answering questions from
a development assessment. If the child needed constant or
frequent attention from the parent, the child might be seated
on or near their parent during all or part of the interaction,
usually closer to the robot than the parent would be if the
child did not need attention. Fig. 1 shows part of an over-
head video frame; the child faces the robot, seated on their
caregiver, and the experimenter is next to the robot.

3.2 Data
In all, 65 participants were recruited for this study, of which
60 contributed video footage of a robot interaction. In one
case, the experimenter, a second researcher, and the parent
all sat on the floor and attempted to draw the child’s attention
to the robot; as this was a highly unusual configuration, this
video was not analyzed for this paper, leaving us with 59
videos. These 59 participants, 31 males, 28 females, were
aged 25 to 45 months with a mean of 32.9 months and stan-
dard deviation of 4.6 months. The interactions and therefore
videos range from roughly nine to 15 minutes long, depend-
ing on the child’s willingness or ability to continue interact-
ing with the robot. The original video is slightly distorted,
thus we first perform an un-distortion and use the undistorted
video for later analysis.

There are seven total parts to the interaction (games and
dances), which we call presses for attention, or presses. Each
press varies in time, and there is a one minute buffer between
each press to give the child time to re-engage if they were
not interested or took a break from playing for some reason
(e.g. requested a snack). If the experimenter did not trigger
the next press, after one minute passed the robot started the
next press anyway. Some interactions were not completed
due to equipment malfunction or participant choice, giving
us some children who did not complete all seven presses.
Where possible, these data are included in the analyses.

The data used here stems from the raw coordinates of each

actor in the room. First, we find the Euclidean distance be-
tween actors, giving us three channels of data: the distances
between the child and robot, the child and caregiver, and
the child and experimenter. In choosing Euclidean distances
between actors over time, we start on our first goal, to rep-
resent an interaction over time. An example of this data is
shown in Fig. 2; the distance between the child and care-
giver, shown in a solid green line, starts at 0 feet, which is
also the frame shown in Fig. 1. Around minute 4 of the in-
teraction, the child began to move away from the caregiver,
shown in Fig. 3, and away from the caregiver, robot, and ex-
perimenter around minute 6 of the interaction, shown in Fig.
4. For sake of continuity, most of the graphs or figures in this
paper that show a single child participant’s data comes from
the same child; the only exception is in Fig. 11.

Figure 2: The Euclidean distances between the child and par-
ent, child and robot, and child and experimenter (smoothed
by averaging over every second). Blue vertical bars indicate
the beginning of a press for social interaction.

Figure 3: The child moves
away from caregiver around
minute 4.

Figure 4: The child moves
across the room around
minute 6.

In some experiments, two caregivers were present dur-
ing the interaction; the minimum distance between the child
and either parent was used in our data, ensuring that we
can reasonably compare children with one or two care-
givers present. The interactions, which are recorded at 33



frames/second, were reduced by averaging the Euclidean
distances in one second windows to smooth the data slightly;
this averaged dataset is what we used for data analysis.

4 Data Analysis and Results
Our first data reduction method reduces the three time series
per child into one, essentially normalizing the data.

Figure 5: Condensing three time series to a single metric,
with and without considering the distance to the experi-
menter (smoothed by averaging over every second). Blue
vertical bars indicate the beginning of a press.

Fig. 5 shows two ways of doing this. The first reduction
considers the distance to the robot, denoted N , and the dis-
tance to the caregiver, denoted CG, in Eq. 1.

N/(N + CG) (1)

The second reduction also considers the distance to the ex-
perimenter, denoted E, in Eq. 2, so as to retain data on some
cases in which participants sought the experimenter’s com-
pany while interacting with the robot and not the caregiver.

N/(N + CG + E) (2)

In either case, we have reduced multiple series of variable
magnitude to a single, unit-less number scaled [0, 1], where
a 1 value means closest to caregiver and a 0 value means
closest to the robot, regardless of the absolute distance be-
tween child and robot or child and caregiver. We will return
to our first goal of representing a single child’s interaction
with a robot over time, but we move now to our second goal,
to compare and contrast all participants with each other, with
these raw Euclidean distance data.

Recall that each interaction varies in length due to po-
tential buffer time between presses in a single interaction.
The buffer time, lasting up to one minute between presses
as needed, was included in the last press that occurred. For
example, if Child A needed a 40 second break after a one
minute press, but Child B didn’t need a break and only used
two seconds after a one minute press, the press lasted for
100 seconds for Child A but only 62 seconds for Child B.

This flexibility in interaction time naturally raises the
question of how to compare these variable length data. The
time difference between presses is capped at 60 seconds, and
any time between presses is used to draw the participant’s at-
tention back to the robot. By and large, the excess time was
spent by the participant getting a snack or toy, playing with
other items in the room, or talking to their caregiver; none
of the buffer time was spent interacting with the robot while
the robot was moving autonomously. Therefore, we consider
the time between presses to be noise.

To remove this noise, we choose a simple method of align-
ing all presses in all interactions, and we truncate each press
to the length of the shortest occurrence of that press over all
participants. For example, say Child A took 60 seconds dur-
ing Press 1 with a 30 second break, then 180 seconds during
Press 2 with a 10 second break. Say Child B took 60 seconds
during Press 1 with a 2 second break, then 180 seconds dur-
ing Press 2 with a 2 second break. It should be noted that in
most cases the experimenter manually starts the next press
for attention with the robot, so short breaks of 1-3 seconds is
simply the time taken to reach over and push buttons on the
robot (or occasionally, to first re-orient the robot towards the
child if they shifted position). Our first data exploration only
compares participant reactions to the robot while the robot is
actively moving or speaking; thus, Press 1 is truncated to 62
seconds for both participants and Press 2 is truncated to 182
seconds for both participants. Alternatively, we could have
timed the presses off-line and truncated participant data with
those timings, but in practice, some participants progressed
through the interactions in immediate succession and this
off-line timing was unnecessary.

The effect of such data loss, i.e. 28 seconds after Press
1 and 8 seconds after Press 2 in the above example, ad-
mittedly contains some distance data. Either the participant
didn’t move between presses or approached the robot again
from somewhere else in the room. In theory, a participant
might have outlasted the one minute buffer time and started
the next press further from the robot than they were at the
(truncated) end of the previous press. However, in practice,
this did not happen; only the first two cases occurred. Thus,
minimal interaction information was lost due to this trunca-
tion. Comparisons of these extraneous portions of time that
may include redirection, however, are left as future work.

Following this alignment and truncation procedure for ev-
ery press, we next used several classic similarity measures
for comparing interactions. With the shortened, three chan-
nel time series, we applied four classic similarity measures
as given in (Cassisi et al. 2012): mean similarity, root mean
square similarity, peak similarity, and Pearson’s correlation
function. In any case where a participant did not finish all
seven presses, we compared only the presses he did finish
with other participants. The mean similarity and root mean
square similarity uses the similarity between two numbers
as defined in Eq. 3.

numSim(x, y) = 1− |x− y|
|x|+ |y|

(3)

Let two time series, X = x1, x2, ..., xn and Y =
y1, y2, ..., yn. Then we define mean similarity in Eq. 4, root



mean square similarity in Eq. 5, peak similarity in Eq. 6, and
the cross-correlation or Pearson’s correlation function in Eq.
7. In all cases, n is the length of the time series X and Y ; in
Pearson’s correlation function, l allows a shifted comparison
of positions within the second time series.

tsim(X,Y ) =
1

n

n∑
i=1

numSim(xi, yi) (4)

rtsim(X,Y ) =

√√√√ 1

n

n∑
i=1

numSim(xi, yi)2 (5)

psim(X,Y ) =
1

n

n∑
i=1

[
1− |xi − yi|

2max(|xi|, |yi|)

]
(6)

rXY =

∑n
i=1(xi − X̄)(yi−l − Ȳ )√∑n

i=1(xi − X̄)2
√∑n

i=1(yi−l − Ȳ )2
(7)

Figure 6: Mean similarity between the 59 children, with each
number represented as the darkness of a grey-scale pixel.
White pixels indicate total similarity; black pixels represent
complete dissimilarity. This is only the distance to caregiver,
sorted in order of average intensity of each child partici-
pant’s similarity scores to the other participants.

We first considered each data stream individually, com-
paring each child to every other child (using the shorter
of the two data streams if a participant did not finish all
presses). The similarity measure for each child to every other
child was multiplied by 255 and turned into a three-part tu-
ple, which was then used as the grey-scale pixel color in a
59x59 image where a row and column correspond to the sim-
ilarity measure between two children. Fig. 6 shows the simi-
larity measures between 59 participants using the distance to

caregiver as the only data stream, using the mean similarity
measure. The participants have been ordered by the intensity
of the average of the entire vector of differences per child.

Figure 7: Best viewed in color. Mean similarity between the
59 children, in three color channels: caregiver in green, ex-
perimenter in red, and robot in blue. White pixels indicate
total similarity; black pixels represent complete dissimilar-
ity. This represents all channels of the three-channel time
series that form a participant’s proxemics, sorted in order of
average intensity of distance to caregiver of each child par-
ticipant’s similarity scores to the other participants, resulting
in the same sorting order as the single channel in Fig. 6.

Figure 8: The combined
mean similarity measure
between the 32 male par-
ticipants, sorted by average
distance metric of the
distance to caregiver.

Figure 9: The combined
mean similarity measure
between the 28 female
participants, sorted by by
average distance metric of
the distance to caregiver.

Figures 7, 8, and 9 show combined similarity measures
between all 59 participants, just the 32 males, and just the
28 females, respectively. These images use all three chan-
nels, again using the mean similarity measure; the similarity



measure between the participants’ distance to robot was as-
signed to the blue color channel, caregiver distance was as-
signed green, and experimenter distance was assigned red.
Each image has been ordered by the average intensity of the
caregiver channel of the time series, meaning the order of
participants in Fig. 6 and Fig. 7 are the same. Note that the
images look similar, but the variation in distance to robot
and distance to experimenter adds further characterization
of the participants. In Figures 6 – 9, the order of the chil-
dren is the same across the rows and columns, resulting in a
symmetric image split from top left to bottom right, sorted
by the summation of the intensity of differences per child. In
these images, total similarity comes out as white, and total
dissimilarity comes out as black.

Thus far, we have used absolute and continuous distances,
even in our distance metrics in Eq. 1–2. Consider that shorter
distances between a participant and another actor probably
indicate more comfort or interest, and longer distances in-
dicate less comfort or interest. A participant sitting two feet
away from the robot and five feet away from the caregiver
probably indicates strong comfort with or interest in the
robot (e.g. Fig. 10). However, if a participant is seated on
their caregiver and the caregiver is seated two feet from the
robot, they probably need comfort from their caregiver while
they watch the robot (e.g. Fig. 13). Two feet of distance be-
tween the participant and the robot can indicate very differ-
ent levels of comfort and interest. We therefore must cre-
ate a system which considers relative, rather than absolute,
distances to quantify and discretize the levels of interest or
comfort the child has in the robot.

Figure 10: Zone 1 – the child
is closest to the robot.

Figure 11: Zone 2 – the child
is nearest the experimenter.

Figure 12: Zone 3 – the child
is not close to anyone.

Figure 13: Zone 4 – the child
is nearest the caregiver.

There are four basic places a child can be during an inter-

Figure 14: Percent of time spent in each zone for one par-
ticipant for each press, from P1 to P7. Note the progression
from Zone 4, closest to caregiver, to Zone 1, closest to robot.
This can indicate greater comfort with the robot or less need
for comfort from a caregiver, or both, as time progressed.

action: closest to their parent, closest to the robot, closest to
the experimenter, or not close to any of these. If the child is
exactly mid-way between the robot and caregiver, we cannot
say there is a clear preference for one or the other. Therefore,
we want to qualify definite spaces that indicate a preference
for robot (or experimenter) or caregiver, with a buffer space
between them. The simplest method of doing so is to split
the distance between the robot and the caregiver into thirds,
giving the caregiver, robot, and the buffer an equal share of
the distance. If the child is within the third of distance closest
to the caregiver, we say they have a preference for the care-
giver (Fig. 13); if the child is within a third of that distance
to the robot, we say they have a preference for the robot
(Fig. 10). If they are much closer to the experimenter than
the robot while within that distance (which happens very in-
frequently), we say they have a preference for the experi-
menter (Fig. 11). If none of those situations apply, the child
is near no-one (Fig. 12). We call these locations ‘zones,’ and
number them from 1 to 4, in order of preference from robot
(Zone 1), experimenter (Zone 2), no-one (Zone 3), to care-
giver (Zone 4). When averaging zones across time, we use
the mode zone during that time.

We first show a sample breakdown of percent time spent



in each zone over an entire interaction, separated by press, in
Fig. 14 (for the same participant as in Fig. 1, 3, and 4). This
figure shows the presses in order from 1 to 7, top to bot-
tom, as the percent time in each press spent in each zone.
This child spent most of the time in Press 1 and Press 2
near their caregiver; in Press 3 and Press 4 they began to
explore the room and spent time away from (or in between)
the robot and the caregiver. In Press 5 more time was spent
away (or between) the robot and caregiver, until Press 6 was
entirely spent nearest the robot or experimenter, and Press 7
was more mixed. This concludes our first goal, representing
a single child’s interaction proxemics.

Figure 15: Zones throughout every child’s interaction, sorted
top to bottom by increasing age. White indicates time closest
to caregiver, and black indicates closest to robot.

Fig. 15 shows all children’s zones over time; the blue bar
indicates a lack of press information (i.e. that the experiment
had ended). White indicates the zone closest to the caregiver,
light gray indicates not close to anyone, darker gray indi-
cates closest to experimenter, and black indicates closest to
the robot. The 59 children here are sorted from youngest
to oldest, with the youngest at the top. A border has been
included to make the top two rows more obvious – these
children were always in Zone 4, or nearest the caregiver. At
this juncture, it appears that as age increases, the zones tend
closer towards the robot.

We show the same zone information sorted by age with
just the male participants in Fig. 16 and with just the female
participants in Fig. 17. Note that the tendency towards being
closer to the robot is more visible in boys. We also graph
the total percent of time per child in each zone as a three
dimensional plot in Fig. 18. Note that there are two areas of
concentration: 100% near caregiver, and 100% near robot. A
three dimensional plot of age (in months) versus preference
for robot, experimenter, or caregiver (over the entire inter-
action) is shown in Fig. 19. Note that the age range varies
across the cluster of individuals that spent 100% of their time
near the robot, but there is a slight effect of age on percent
time spent with robot or caregiver. This concludes our sec-
ond goal of comparing and contrasting all participants.

5 Conclusions and Future Work
In this paper we have shown several ways of collapsing our
child-robot interaction proxemics data. We began by show-

Figure 16: Zones throughout the male participants’ interac-
tion, sorted top to bottom by increasing age.

Figure 17: Zones throughout the female participants’ inter-
actions, sorted top to bottom by increasing age.

Figure 18: Percent of time spent in each zone for all partic-
ipants; some jitter has been added to all points to make the
clusters at both ends more visible.

ing the simple Euclidean distance between the child par-
ticipants and other actors of interest, and normalizing that
three-channel time series into a single metric over the same
amount of time. We then employed similarity measures over
the time series both as three separate series and a three-
channel series, condensing variable length interactions to a
single distance measure between participant pairs. We then
discussed how using the space around the parent, robot, or
experimenter could be simplified into a single zone at any
point in time, and showed how this can demonstrate progres-
sion over time from one zone to another. We also succinctly
showed all participants’ progressions over time.

Future work will include broader methods of participant



Figure 19: Percent of time spent in caregiver and robot zones
(without any adjustment for time spent in no-one’s range),
plotted against age in months. This combines robot and ex-
perimenter zones. Note a slight preference for older children
for being closer to the robot.

comparison, participant clustering, and further validations
of statistical significance between male and female partic-
ipants and over age. First, while our initial method of equal-
izing participants’ time series is truncation of excess noise,
it could be that the time lapse between presses holds key
information– for example, longer time between presses po-
tentially indicates a less interested child or a more active
child that repeatedly needs their attention drawn back to the
robot. Thus, other methods that include the entire interac-
tion, such as dynamic time warping, on a press-by-press ba-
sis or on the normalized nearness metric across all partici-
pants, might show useful differences.

Second, we will explore how to group or cluster these par-
ticipants; while straightforward methods such as k-means re-
quire a priori knowledge of how many clusters to use, other
methods such as k-medoids may prove to give reasonable (if
not optimal) solutions. We have also explored choosing clus-
ters based on the visual data (e.g. the two green patches and
the pink or blue strips in Fig. 6), but we need to explore po-
tential relationships between participants’ similarity scores
and participants’ location zones over the interactions. Lastly,
while we have visually explored the sex and age differences
of participants, it is not yet clear how much statistical signif-
icance the differences hold.
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