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Auctions for task allocation to robots
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Abstract. We present an auction-based method for dynamic allocatfcasis
to robots. The robots operate in a 2D environment for whigy thave a map.
Tasks are locations in the map that have to be visited by thetspin any order.
Unexpected obstacles and other delays may prevent a raisntdompleting its
allocated tasks. Therefore tasks not yet achieved are egbig time a task has been
completed. This provides an opportunity to improve thecaitmn of the remaining
tasks and to reduce the overall time for task completion. Ye¥sgnt experimental
results that we have obtained in simulation using Playagi&t
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1. Introduction

There are many real-world problems in which a set of tasksthvdie distributed to a
group of robots. We are interested in situations where,evaikingle robot could do
all the tasks, sharing the work with other robots will redtice time to complete the
tasks and increase the success rate. Search and retrgkg/wdich have been studied
extensively in robotics (see, for instance [10,14]), aranegles of the types of tasks we
are interested in.

In our study, tasks are locations in the map that have to htedidy the robots,
but we could easily add other activities the robot has toquarfat each task location.
What distinguishes task allocation to robots from othek tication problems is the
fact that robots have to physically move to reach the tasltions, hence the cost of
accomplishing a task depends highly on the current robaetilog.

We describe an efficient method based on auctions to perfasknallocation. The
method does not guarantee an optimal allocation, but itgsiafly suited to dynamic en-
vironments, where execution time might deviate signifilgainom estimates, and where
it is important to adapt dynamically to changing conditiohke method is totally dis-
tributed. There is no central controller and no centralianeer, which increases robust-
ness.

The auction mechanism we propose attempts to minimize thktime to complete
all the tasks. Given the simplifying assumption of constamd equal speed of travel
for all the robots, this is equivalent to minimizing the sufpath costs over all the
robots. We are not as much interested in obtaining a theatltioptimal solution, as
in providing a method that is both simple and robust to failduring execution. If a
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robot finds an unexpected obstacle, or experiences any détay, or is disabled, the
system continues to operate and tasks get accomplishedal@arithm is greedy, and
finds close-to-optimal solutions that are fast to computs.flexible, allowing robots to

rebid when solutions are unobtainable, rather than foraiogstly re-computation of the
entire optimal solution.

2. Proposed Algorithm

In this work we assume that each robot is given a map that sh®wswn location and the
positions of walls and rooms in the environment. No inforigrais given about where
the other robots are located. The map allows a robot to esiitsacost of traveling to
the task locations, and to compute the path to reach themifsomniginal location.

Suppose a user has a $ebf m robotsR = {ry,rs,...r,, }, and a sef” of n tasks
T = {t1,ta,...tn }. In this study tasks are simply locations in the map that havee
visited, but the algorithm can take into account additiausts of doing the task once its
location has been reached. The user partitions the tasksidisjoint subsets, such that

ThuTyU..UuT, :TandTiﬂTj =¢ Vi,71 <i,7 <m.
and allocates each subset to a robot. Note that a subset eanghg

The initial task distribution done by the user might not beirmpl. Some robots
might have no task at all assigned to them, while others niighé too many tasks, the
tasks assigned to a robot might be distributed all over tivr@mment, and might be
within easy reach of another robot, some tasks may be in araghable location.

A robot must complete all its tasks unless it can pass its ciemmants to other robots.
Since the robots are cooperative, they will pass their camaenits only if this reduces
the estimated task completion time. The ability to passstésiother robots is specially
useful when robots become disabled since it allows the gasupwhole to increase the
chances of completing all the tasks. This process is acashul via single-item reverse
auctions, in which the lowest bid wins, that are run indeenigt by each robot for their
tasks.

Each bid is an estimate of the time it would take for that raiooteach that task
location (assuming for simplicity a constant speed) frawiirrent location. To generate
paths efficiently, robots use Rapidly-expanding RandoneJ (RRTs) [12]. Generation
of RRTs is very fast, and scales well with large environmefitsexample of a RRT is
shown later in Figure 2.

Auctions are simultaneous, i.e. many auctioneers may ptheipauctions at once,
but since each bidder generates bids in each auction indep#yof the other auctions,
the effect is the same as having the auctions done sequgntial

The algorithm each robot follows is outlined in Figure 1. Véswame the robots can
communicate with each other, for the purpose of notifyintgeptial bidders about auc-
tioned tasks, for submitting their own bids, and for reaajunotification when they won
a bid. When estimating costs for tasks in different auctianm®bot uses only its current
position, without accounting for possible movements intaetn task locations. A robot
can choose not to bid on a particular task, based on its distaom and accessibility to
that task.

Once the auctioned tasks are assigned, the robots beginve tméheir task loca-
tions, attempting the nearest task first (i.e. the task vhighlowest cost). When a robot
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Repeat for each robet € R:

. Activater; with a set of taskg’; and a list of robots?_; = R - {r;}.

. Create an RRT using’s start position as root.

. Find paths in the RRT to each task locatioAjn

. Assign cost estimatg to each task; € T; based on the path found.
. Order task lis; by ascending order af;.

. r; does in parallel:

U WN P

(a) Auction the assigned tasks:

i. Create a Request For Quotes (RFQ) with taBks

ii. Broadcast the RFQ t®_; and wait for bids.

iii. Find the lowest bidh;;, among all the bids for task.

iv. If b, < ¢; then assigrt; to robotr;, else keeg;. Markt; as assigned.
v. Ask i to update its bids for the tasks left,(has now new tasks).

vi. Repeat from 6(a)iii until all tasks are assigned.

(b) Bid on RFQs received from other robots:

i. Find a RRT path for each tagk in the RFQ.
ii. Create a cost estimatg for eacht,. that the robot found a path to.
iii. Send the list of costs to the auctioneer that sent the RFQ

(c) Begin execution of first assigned task:

i. Start executing the first tasl by finding a path in the RRT and following
it as closely as possible.

ii. If new tasks are added as result of winning auctions, ringeem in T;
keeping it sorted in ascending order of cost, and repeat &@.

iii. If r; is stuck, auction;’s tasks.

iv. If ¢; is completed successfully, restart from 4.

until timeout.

Figure 1. Task allocation algorithm.

completes its first task, it starts an auction again for itsaiming tasks, in an effort to
improve the task allocation.

In case robots get delayed by unexpected obstacles, thssriledtion of tasks allows
them to change their commitments and to adapt more rapidiyemew situation. If a
robot is unable to complete a task it has committed to, it canti@n that task. Any task
that cannot be completed by any of the robots is abandonedsdleme that there is
value in accomplishing the remaining tasks.

The robots are given a time limit to complete the tasks, sttittesy do not keep trying
indefinitely. When all the achievable tasks (determined hgtiver at least one robot was
able to find a path to that task) are completed, the robotsuidiéthe remainder of the
time given to them is over.

The algorithm allows for dynamical additions of new tasksmiythe execution, but
for simplicity, in the experiments described in Sectionh®, et of tasks and of robots is
known at start and does not change during the execution.



4 M. Nanjanath and M. Gini / Auctions for task allocation to robots

Eile View Clock

Figure 2. The hospital environment. The top part of the figure showsStiage simulation, with the locations
of the tasks and of the robots. (The active robot has its raegsor traces shown). The lower part shows the
paths generated by the RRT algorithm, with the location efattive robot on the paths indicated by a square.
This is one of the single robot experimental runs, where only robot is active.

3. Experimental setup and analysis

We conducted experiments in the Player/Stage simulatisineamment [9]. We simulated
robot deployment in complex 2-D worlds, using as our tesirenment the section of
the hospital world from Player/Stage shown in Figure 2. Thepital world consists
of several rooms with small doorways and limited accessibitovering a total area
of 33 x 14m?2. Each robot is a small differential drive vehicle placed ataabitrary
location in the world. It is equipped with 5 sonar sensors med at45° angles across
its front, which are used for obstacle avoidance. Whiledrsnsors allow the robot to
avoid colliding into straight walls, robots tend to get #wa corners where they cannot
detect the corner before colliding into it. This tend to proe unexpected delays in the
execution. Tasks are modeled as beacons placed at diffevgitibns in the environment.

We used different experimental setups, each with 16 tasiceglin different rooms.
We tested the setups with 1, 3, and 10 robots, and ran a finaf sgperiments with a
single auction (with no rebidding) to use as a baseline.

The experiments were run for 10 minutes each, to avoid long when robots were
unable to make much progress. This also allowed us to tesiwlftew the robots could
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not accomplish all the tasks in the allocated amount of tile.ran each experiment
10 times, with the same initial conditions, but with diffaténitial task allocations. The

auction algorithm is sensitive to the order in which taskesgiven to the robots. To re-
duce this effect we supplied the tasks to the robots in a rar@tder each time an exper-
iment was run. This, combined with the inherently randomureadf the RRT generation

algorithm, resulted in significant variations across runthlin the allocation of tasks and
time taken to complete the tasks.
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Figure 3. Time spent trying to complete tasks in different robot-arctombinations.

Performance results are shown in Figure 3. The results shewrhe taken to com-
plete all the tasks that were accomplished in each run. Welsserve that a single robot
takes longer, but, as expected, the speedup when usingphautbibots is sublinear. A
single round auction tends to perform worse than multipletians and has more vari-
ability in the time needed to complete the tasks. This is isb@st with the observation
that reallocation of tasks via additional bidding tendsttoduce on average a better al-
location. The results are best when the number of robotsaskd is balanced. When the
task are few some of the robots stay idle, when the tasks amaamy with respect to the
number of robots the completion time increases, since admt has more work to do.

Figure 4 shows the percentage of tasks completed for eaclsmere the number of
tasks was relatively large with respect to the time avadaid the distance the robots
had to travel, very few runs had all the tasks completed. Webaerve that with a single
robot only a small percentage of the 16 tasks get accomplishéhe time allocated.
With a more balanced number of tasks and robots a much laegeeptage of tasks gets
done. We can see differences between runs when using a smgid auction versus
using multiple rounds. The performance of multiple rounidsutions is not consistently
better than when using a single round. Recall that in eacbrerent the initial allocation
of tasks to robots was different, and some allocations wleaxly better than others.
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Figure4. Relative task completion rates for different robot-autttmmbinations

4, Related Work

The problem we studied is a subset of the larger problem afdioation in a team. Our
robots have to coordinate so that all the locations of a gdetrare reached by a robot,
but are otherwise independent.

A recent survey [5] covers in detail the state of the art imgsuctions to coordi-
nate robots for accomplishing tasks such as exploratidri]4navigation to different
locations [15], or box pushing [7]. Auction-based methaatsafilocation of tasks are be-
coming popular in robotics [4,8,15] as an alternative taeotllocation methods, such
as centralized scheduling [3], blackboard system [6], giliagtion-specific methods,
which do not easily generalize [1] to other domains.

Combinatorial auctions have been tried as a method to aflowvigation tasks to
robots [2] but are too slow to be practical and do not scalé. viaky allow tasks to be
accomplished with maximum efficiency, but the time takenatedmining whom to as-
sign which tasks often ends up being more than the time faiasles themselves. Single
item auctions tend to miss opportunities for optimal altao® even though they can be
computed in polynomial time. Our approach tries to find aecdflbetween computa-
tional complexity and optimality of allocations. We do na&teucombinatorial auctions,
but we reauction tasks multiple times while they are beingcaied, so allowing for a
better allocation.

Recent work [15,13] has focused on producing bidding rubegdbot navigation
tasks that lower computational costs while providing arimat solution. The method
uses multi-round auctions, where each robot bids in eachdron the task for which
its bid is the lowest. The overall lowest bid on any task isspted, and the next round
of the auction starts for the remaining tasks. Once all ts&stdnave been allocated,
each robot plans its path to visit all the sites for the taskson. The bidding rules
are such that there is no need for a central controller, ag &neach robot receives
all the bids from all the robots, each robot can determinewitnmer of the auction.
Our approach differs in many ways. First, the auctioneeerd@ines the winner of the
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auction, so if a robot fails to submit a bid (perhaps becafi®mmunication failure),
the auction can continue. Second, our approach is designégtfiamic situations where
unexpected delays during execution can prevent a robotdia@mmplishing its tasks, or
can make task accomplishment more expensive than origithalight. By continuously
rebidding and reallocating tasks among themselves duesk ¢xecution, the robots
react and adjust to changing situations.

5. Conclusionsand Future Work

We have presented an algorithm for allocation of tasks t@tobrhe algorithm is de-
signed for environments that are dynamic and where failaresikely.

We assume the robots are cooperative, and try to minimizethktime to complete
all the tasks assigned to the group. Each robot acts as aoreet for its own tasks and
tries to reallocate its tasks to other robots whenever #dsces the cost. Robots also re-
assess the current situation and attempt to improve thertask allocation by putting
their remaining tasks up for bid whenever they complete la fBlse process continues
until all the tasks have been completed or the allocated hiasesexpired.

We removed any need for central coordination; tasks argrssiin a distributed
fashion, so that the system can recover from single or evdtipteupoints of failure.
This prevents us from using any centralized system, suchtdacboard system [6],
since this will create a single point of failure.

Future work will include considering additional costs to tdsks over the cost of
reaching the task location, and introducing heterogenesits having different speeds
and capabilities.

In addition, we have left addressing communication malfiens for future research.
It is our experience that robots can become disabled bulyrse the ability to com-
municate. Disabling communication will introduce new d¢bages. Since each robot is
initially given its own tasks, it will have to maintain sep#gly the complete list of tasks
given to the system as a whole. This can be done by having tal ildmmunication
phase that involves broadcasting the list of tasks to altdhets (assuming no commu-
nication failure at that time). Each robot will also needrack task completion by the
other robots, and periodically broadcast its own state.
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