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Auctions for task allocation to robots
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Abstract. We present an auction-based method for dynamic allocation of tasks
to robots. The robots operate in a 2D environment for which they have a map.
Tasks are locations in the map that have to be visited by the robots, in any order.
Unexpected obstacles and other delays may prevent a robot from completing its
allocated tasks. Therefore tasks not yet achieved are rebidevery time a task has been
completed. This provides an opportunity to improve the allocation of the remaining
tasks and to reduce the overall time for task completion. We present experimental
results that we have obtained in simulation using Player/Stage.
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1. Introduction

There are many real-world problems in which a set of tasks hasto be distributed to a
group of robots. We are interested in situations where, while a single robot could do
all the tasks, sharing the work with other robots will reducethe time to complete the
tasks and increase the success rate. Search and retrieval tasks, which have been studied
extensively in robotics (see, for instance [10,14]), are examples of the types of tasks we
are interested in.

In our study, tasks are locations in the map that have to be visited by the robots,
but we could easily add other activities the robot has to perform at each task location.
What distinguishes task allocation to robots from other task allocation problems is the
fact that robots have to physically move to reach the task locations, hence the cost of
accomplishing a task depends highly on the current robot location.

We describe an efficient method based on auctions to perform task allocation. The
method does not guarantee an optimal allocation, but it is specially suited to dynamic en-
vironments, where execution time might deviate significantly from estimates, and where
it is important to adapt dynamically to changing conditions. The method is totally dis-
tributed. There is no central controller and no central auctioneer, which increases robust-
ness.

The auction mechanism we propose attempts to minimize the total time to complete
all the tasks. Given the simplifying assumption of constantand equal speed of travel
for all the robots, this is equivalent to minimizing the sum of path costs over all the
robots. We are not as much interested in obtaining a theoretically optimal solution, as
in providing a method that is both simple and robust to failure during execution. If a
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robot finds an unexpected obstacle, or experiences any otherdelay, or is disabled, the
system continues to operate and tasks get accomplished. Ouralgorithm is greedy, and
finds close-to-optimal solutions that are fast to compute. It is flexible, allowing robots to
rebid when solutions are unobtainable, rather than forcinga costly re-computation of the
entire optimal solution.

2. Proposed Algorithm

In this work we assume that each robot is given a map that showsits own location and the
positions of walls and rooms in the environment. No information is given about where
the other robots are located. The map allows a robot to estimate its cost of traveling to
the task locations, and to compute the path to reach them fromits original location.

Suppose a user has a setR of m robotsR = {r1, r2, ...rm}, and a setT of n tasks
T = {t1, t2, ...tn}. In this study tasks are simply locations in the map that haveto be
visited, but the algorithm can take into account additionalcosts of doing the task once its
location has been reached. The user partitions the tasks into m disjoint subsets, such that

T1 ∪ T2 ∪ ... ∪ Tm = T andTi ∩ Tj = φ ∀i, j1 ≤ i, j ≤ m.

and allocates each subset to a robot. Note that a subset can beempty.
The initial task distribution done by the user might not be optimal. Some robots

might have no task at all assigned to them, while others mighthave too many tasks, the
tasks assigned to a robot might be distributed all over the environment, and might be
within easy reach of another robot, some tasks may be in an unreachable location.

A robot must complete all its tasks unless it can pass its commitments to other robots.
Since the robots are cooperative, they will pass their commitments only if this reduces
the estimated task completion time. The ability to pass tasks to other robots is specially
useful when robots become disabled since it allows the groupas a whole to increase the
chances of completing all the tasks. This process is accomplished via single-item reverse
auctions, in which the lowest bid wins, that are run independently by each robot for their
tasks.

Each bid is an estimate of the time it would take for that robotto reach that task
location (assuming for simplicity a constant speed) from its current location. To generate
paths efficiently, robots use Rapidly-expanding Random Trees (RRTs) [12]. Generation
of RRTs is very fast, and scales well with large environments. An example of a RRT is
shown later in Figure 2.

Auctions are simultaneous, i.e. many auctioneers may put uptheir auctions at once,
but since each bidder generates bids in each auction independently of the other auctions,
the effect is the same as having the auctions done sequentially.

The algorithm each robot follows is outlined in Figure 1. We assume the robots can
communicate with each other, for the purpose of notifying potential bidders about auc-
tioned tasks, for submitting their own bids, and for receiving notification when they won
a bid. When estimating costs for tasks in different auctions, a robot uses only its current
position, without accounting for possible movements in between task locations. A robot
can choose not to bid on a particular task, based on its distance from and accessibility to
that task.

Once the auctioned tasks are assigned, the robots begin to move to their task loca-
tions, attempting the nearest task first (i.e. the task with the lowest cost). When a robot
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Repeat for each robotri ∈ R:

1. Activateri with a set of tasksTi and a list of robotsR−i = R - { ri}.
2. Create an RRT usingri’s start position as root.
3. Find paths in the RRT to each task location inTi.
4. Assign cost estimatecj to each tasktj ∈ Ti based on the path found.
5. Order task listTi by ascending order ofcj .
6. ri does in parallel:

(a) Auction the assigned tasks:

i. Create a Request For Quotes (RFQ) with tasksTi.
ii. Broadcast the RFQ toR−i and wait for bids.
iii. Find the lowest bidbjk among all the bids for tasktj .
iv. If bjk < cj then assigntj to robotrk else keeptj . Mark tj as assigned.
v. Ask rk to update its bids for the tasks left (rk has now new tasks).
vi. Repeat from 6(a)iii until all tasks are assigned.

(b) Bid on RFQs received from other robots:

i. Find a RRT path for each tasktr in the RFQ.
ii. Create a cost estimatecr for eachtr that the robot found a path to.
iii. Send the list of costs to the auctioneer that sent the RFQ.

(c) Begin execution of first assigned task:

i. Start executing the first tasktj by finding a path in the RRT and following
it as closely as possible.

ii. If new tasks are added as result of winning auctions, insert them in Ti

keeping it sorted in ascending order of cost, and repeat from6(c)i.
iii. If ri is stuck, auctionri’s tasks.
iv. If tj is completed successfully, restart from 4.

until timeout.

Figure 1. Task allocation algorithm.

completes its first task, it starts an auction again for its remaining tasks, in an effort to
improve the task allocation.

In case robots get delayed by unexpected obstacles, this redistribution of tasks allows
them to change their commitments and to adapt more rapidly tothe new situation. If a
robot is unable to complete a task it has committed to, it can auction that task. Any task
that cannot be completed by any of the robots is abandoned. Weassume that there is
value in accomplishing the remaining tasks.

The robots are given a time limit to complete the tasks, so that they do not keep trying
indefinitely. When all the achievable tasks (determined by whether at least one robot was
able to find a path to that task) are completed, the robots idleuntil the remainder of the
time given to them is over.

The algorithm allows for dynamical additions of new tasks during the execution, but
for simplicity, in the experiments described in Section 3, the set of tasks and of robots is
known at start and does not change during the execution.
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Figure 2. The hospital environment. The top part of the figure shows theStage simulation, with the locations
of the tasks and of the robots. (The active robot has its rangesensor traces shown). The lower part shows the
paths generated by the RRT algorithm, with the location of the active robot on the paths indicated by a square.
This is one of the single robot experimental runs, where onlyone robot is active.

3. Experimental setup and analysis

We conducted experiments in the Player/Stage simulation environment [9]. We simulated
robot deployment in complex 2-D worlds, using as our test environment the section of
the hospital world from Player/Stage shown in Figure 2. The hospital world consists
of several rooms with small doorways and limited accessibility, covering a total area
of 33 × 14m

2. Each robot is a small differential drive vehicle placed at an arbitrary
location in the world. It is equipped with 5 sonar sensors mounted at45

◦ angles across
its front, which are used for obstacle avoidance. While these sensors allow the robot to
avoid colliding into straight walls, robots tend to get stuck on corners where they cannot
detect the corner before colliding into it. This tend to produce unexpected delays in the
execution. Tasks are modeled as beacons placed at differentpositions in the environment.

We used different experimental setups, each with 16 tasks placed in different rooms.
We tested the setups with 1, 3, and 10 robots, and ran a final setof experiments with a
single auction (with no rebidding) to use as a baseline.

The experiments were run for 10 minutes each, to avoid long runs when robots were
unable to make much progress. This also allowed us to test howoften the robots could



M. Nanjanath and M. Gini / Auctions for task allocation to robots 5

not accomplish all the tasks in the allocated amount of time.We ran each experiment
10 times, with the same initial conditions, but with different initial task allocations. The
auction algorithm is sensitive to the order in which tasks are given to the robots. To re-
duce this effect we supplied the tasks to the robots in a random order each time an exper-
iment was run. This, combined with the inherently random nature of the RRT generation
algorithm, resulted in significant variations across runs both in the allocation of tasks and
time taken to complete the tasks.
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Figure 3. Time spent trying to complete tasks in different robot-auction combinations.

Performance results are shown in Figure 3. The results show the time taken to com-
plete all the tasks that were accomplished in each run. We canobserve that a single robot
takes longer, but, as expected, the speedup when using multiple robots is sublinear. A
single round auction tends to perform worse than multiple auctions and has more vari-
ability in the time needed to complete the tasks. This is consistent with the observation
that reallocation of tasks via additional bidding tends to produce on average a better al-
location. The results are best when the number of robots and tasks is balanced. When the
task are few some of the robots stay idle, when the tasks are too many with respect to the
number of robots the completion time increases, since each robot has more work to do.

Figure 4 shows the percentage of tasks completed for each run. Since the number of
tasks was relatively large with respect to the time available and the distance the robots
had to travel, very few runs had all the tasks completed. We can observe that with a single
robot only a small percentage of the 16 tasks get accomplished in the time allocated.
With a more balanced number of tasks and robots a much larger percentage of tasks gets
done. We can see differences between runs when using a singleround auction versus
using multiple rounds. The performance of multiple rounds of auctions is not consistently
better than when using a single round. Recall that in each experiment the initial allocation
of tasks to robots was different, and some allocations were clearly better than others.
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Figure 4. Relative task completion rates for different robot-auction combinations

4. Related Work

The problem we studied is a subset of the larger problem of coordination in a team. Our
robots have to coordinate so that all the locations of a givenset are reached by a robot,
but are otherwise independent.

A recent survey [5] covers in detail the state of the art in using auctions to coordi-
nate robots for accomplishing tasks such as exploration [4,11], navigation to different
locations [15], or box pushing [7]. Auction-based methods for allocation of tasks are be-
coming popular in robotics [4,8,15] as an alternative to other allocation methods, such
as centralized scheduling [3], blackboard system [6], or application-specific methods,
which do not easily generalize [1] to other domains.

Combinatorial auctions have been tried as a method to allocate navigation tasks to
robots [2] but are too slow to be practical and do not scale well. They allow tasks to be
accomplished with maximum efficiency, but the time taken in determining whom to as-
sign which tasks often ends up being more than the time for thetasks themselves. Single
item auctions tend to miss opportunities for optimal allocation, even though they can be
computed in polynomial time. Our approach tries to find a tradeoff between computa-
tional complexity and optimality of allocations. We do not use combinatorial auctions,
but we reauction tasks multiple times while they are being executed, so allowing for a
better allocation.

Recent work [15,13] has focused on producing bidding rules for robot navigation
tasks that lower computational costs while providing an optimal solution. The method
uses multi-round auctions, where each robot bids in each round on the task for which
its bid is the lowest. The overall lowest bid on any task is accepted, and the next round
of the auction starts for the remaining tasks. Once all the tasks have been allocated,
each robot plans its path to visit all the sites for the tasks it won. The bidding rules
are such that there is no need for a central controller, as long as each robot receives
all the bids from all the robots, each robot can determine thewinner of the auction.
Our approach differs in many ways. First, the auctioneer determines the winner of the
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auction, so if a robot fails to submit a bid (perhaps because of communication failure),
the auction can continue. Second, our approach is designed for dynamic situations where
unexpected delays during execution can prevent a robot fromaccomplishing its tasks, or
can make task accomplishment more expensive than originally thought. By continuously
rebidding and reallocating tasks among themselves during task execution, the robots
react and adjust to changing situations.

5. Conclusions and Future Work

We have presented an algorithm for allocation of tasks to robots. The algorithm is de-
signed for environments that are dynamic and where failuresare likely.

We assume the robots are cooperative, and try to minimize thetotal time to complete
all the tasks assigned to the group. Each robot acts as an auctioneer for its own tasks and
tries to reallocate its tasks to other robots whenever this reduces the cost. Robots also re-
assess the current situation and attempt to improve the current task allocation by putting
their remaining tasks up for bid whenever they complete a task. The process continues
until all the tasks have been completed or the allocated timehas expired.

We removed any need for central coordination; tasks are assigned in a distributed
fashion, so that the system can recover from single or even multiple points of failure.
This prevents us from using any centralized system, such as ablackboard system [6],
since this will create a single point of failure.

Future work will include considering additional costs to dotasks over the cost of
reaching the task location, and introducing heterogeneousrobots having different speeds
and capabilities.

In addition, we have left addressing communication malfunctions for future research.
It is our experience that robots can become disabled but rarely lose the ability to com-
municate. Disabling communication will introduce new challenges. Since each robot is
initially given its own tasks, it will have to maintain separately the complete list of tasks
given to the system as a whole. This can be done by having an initial communication
phase that involves broadcasting the list of tasks to all therobots (assuming no commu-
nication failure at that time). Each robot will also need to track task completion by the
other robots, and periodically broadcast its own state.
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