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ABSTRACT
We model a transportation network where agents of differ-
ent types operate with conflicting objectives: drivers want to
drive at high speeds to reach their destination faster, while
police agents want to prevent unlawful speeding. Police
units have to efficiently allocate their limited resources to
monitor roads and catch speeders, who try to avoid being
caught. Assuming that police and drivers make strategic
choices, the problem can be modeled as a game-theoretic
problem. We describe the models and algorithms we devel-
oped and validate them on different maps.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

Keywords
Game Theory, Adversarial Reinforcement Learning, Experience-
Weighted Attraction

1. INTRODUCTION
The problem of guarding an area or a network against

adversaries when opponents can see guards is well studied.
However, the problem becomes hard when the locations of
the adversaries are not known, the number of guards is lim-
ited, and everyone adapts dynamically to changes in the
environment. Catching drivers who speed is an example of
such a problem.
We model the problem of speed control as a general-sum

repeated stochastic game played by police units and drivers
in a transportation network. Police units are in charge
of preventing drivers from driving above the speed limit.
Drivers speed up to reach their destination faster and try
to avoid getting caught by the police. Our choice of model-
ing the problem as a simultaneous game is motivated by the
fact that it is natural to assume drivers will not know po-
lice mixed strategies prior to making their speeding decision
(lack of observability) and drivers can simultaneously speed
along different roads (different targets). This makes the use
of Stackelberg leadership models not appropriate [13].
The game does not have pure strategy equilibrium points,
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and takes a long time to converge to a mixed-equilibrium [12].
Hence, we are interested in the dynamics during the game.
We show empirically that police and driver agents can ex-
ploit each other when suboptimal choices are made.

The algorithm we present is inspired by Experience-Weight-
ed Attraction (EWA) [4]. In our model, the algorithm, which
combines dynamic programming and EWA learning princi-
ples, is used by drivers to learn the paths where the chance
of being caught when speeding is the smallest. A simpler
version of the algorithm without the dynamic programming
part is used by police units to decide where to position them-
selves to increase the probability of catching drivers when
they speed. We compare experimentally the performance of
our algorithm against Opponent Q-learning [15] on two city
maps, a synthetic map and a real city map, using different
numbers of agents.

The main contribution of this paper is the modeling of
the problem and our learning algorithm. Our study of the
dynamics that ensue from interactions among drivers and
police units can be used to produce guidelines for police de-
ployment on transportation networks. The game we present
is a complex game with many heterogeneous agents, and can
be used to test other multiagent learning algorithms.

2. RELATED WORK
Opportunities and challenges for the use of agents in traf-

fic control are outlined in [3]. Most work in this area focuses
on adaptive control of traffic lights (e.g., [1]) and intersec-
tions [6], or on modeling individual drivers’ behaviors [9].
Kim et al. [12] investigate if increased penalties decrease
illegal speeding. They model opponent strategies as popu-
lation mixed strategies, where police behavior is influenced
by the proportion of drivers receiving a ticket, while driver
behavior is influenced by police presence. Hence, while in-
dividual agents follow pure strategies, population aggregate
statistics are used to introduce stochastic choices. Our work
takes a step further and investigates how agents learn to play
the game, while also learning the topology of the underly-
ing transportation network. To the best of our knowledge,
multiagent opponent learning in transportation networks to
catch unlawful speeders remains a sparsely studied topic.

There is a large body of work on security deployment
and patrolling. Patrolling or monitoring units are typically
placed in strategic locations to either respond to adversarial
activity or prevent it. Game-theoretic algorithms are used
in [8] and [7] to patrol a fence or an area. The problem is
modeled as a Stackelberg game when attackers can observe
the strategy defenders play before acting [8, 11]. We have



chosen to model the problem as a simultaneous game be-
cause we do not assume drivers know police strategies prior
to making decisions on speeding.
The actions of police units and drivers can be framed as a

K-armed bandit problem, where the objective is to choose
which gambling machine to play to maximize the payoff [2].
In our case, random variables are the roads upon which
agents make choices. Our driver agents could plan their
paths as in [14], in which loop-free stochastic shortest-paths
are computed using multiarmed bandit solutions.
Our work benefits from the diverse literature on opponent

learning (e.g., [15, 16]) and EWA learning [4, 10]. The de-
sign of our agents is inspired by the principles presented in
Camerer [4] and Uther [15].

3. BACKGROUND

3.1 Definitions, Assumptions and Notation
The environment is a network of roads represented by a
weighted graph G = {V,E,W}. A node v ∈ V represents an
intersection between two roads and an edge e ∈ E represents
a road. We consider both directed and undirected graphs, to
account for one- and two-way roads. Each edge has a weight
w ∈ W , which represents the travel time through that road
segment at the speed limit. With some abuse of notation we
will use the terms node and state interchangeably.

The game is defined as G = (N , {Si}
n
i=1, {Ui}

n
i=1), where

N = {1, ..., n} is the set of agents, C ⊂ N is the set of police
agents and D ⊂ N is the set of driver agents. {Si}

n
i=1 is the

set of pure strategies and {Ui}
n
i=1 is the payoff function for

each agent.
For police agent j ∈ C a pure strategy sℓ ∈ Sj has the

format sℓ = (to-node, action). Where action is from the
set Aj = {enforce, not enforce}. Police agents either move
to another node or stay at the current node and choose
an action from Aj . Police agents can choose to enforce a
ticket only if a driver is speeding. For instance, at node
v1 a police agent can choose s1 = (v1, enforce) or s2 =
(v2, not enforce). When choosing s1 the police agent does
not move and catches In s2 the police moves to node v2 and
sees a speedy driver, it decides not to issue a ticket according
to some probability. Placing probabilities over Aj allows us
to model the uncertainty real police experience when giving
a ticket.
Likewise, a pure strategy sq ∈ Sk for driver agent for

k ∈ D has the format sq = (to-node, action), where action is
from the set Bk = (speed ≤ L,L < speed ≤ L+ 10, speed >

L+10), where L is the speed limit. A pure strategy sq = (to-
node, action) for a driver agent differs from sℓ because driver
agents always have to move. Hence, s1 = (v3, speed), s2 =
(v2, not speed) are examples of strategies for driver agent
who is at node v1.
When playing in a complete graph with m nodes, the set

of pure strategies Si is as large as |A|m(m − 1) for police
agents and |B|m(m−1) for drivers agents. and |A|m(m−1)
for police agents.

A mixed strategy for agent i ∈ N is a probability distribution
over the pure strategies Si. Our proposed approach uses
EWA to compute these probability distributions.

A joint play for agent i represents a simultaneous move by i

and its opponents. A move is comprised of the pure strategy

agent i plays and a vector of the strategies played by its
opponents.

A neighborhood of a node is the set of adjacent nodes. There
might be zero or more police agents in a neighborhood, and
a police agent might be at a node that is on the path of
several drivers.

Each game iteration starts with all driver agents at their
initial locations, and ends when all drivers have reached their
destinations. The game is repeated to enable agents to learn
from previous games and better predict opponent strategies.

At the end of each game, for each node and each agent,
a summary of the outcomes is stored in a History, which is
used by the agents to make decisions in successive games. To
reduce the amount of information to make a decision, agents
are only allowed to access the history in their neighborhood.

After a joint play, all agents receive a payoff according to the
payoff matrix (Table 1). The payoff depends on the speeding
option and the length of the road. We introduce the payoff
function in Section 4. We assume the following preferences:
(1) If no police agent is predicted to be at the next node, a
driver agent prefers to speed above 10 mph (f2 > e2 > d2).
(2) If police is predicted at the next node, drivers prefer not
to speed (a2 > b2). (3) Police agents almost always enforce
a ticket if drivers speed above 10 mph (c1 > b1 > a1) but
are less likely do so if drivers speed below 10 mph. They get
zero payoff when drivers do not speed. The probabilities of
enforcing tickets are discussed later in Section 5.

Driver
Police speed≤L L<speed≤L+10 speed>L+10
E a1, a2 b1, b2 c1, b2
N d1, d2 e1, e2 e1, f2

Figure 1: Payoff Matrix. E=Enforce, N= Not enforce

Further, we assume that agents do not communicate among
themselves and that driver agents speed solely to shorten
their travel time.

3.2 Learning Algorithms
The learning principles of our algorithm are inspired by

EWA [4]. Police agents learn by combining soft-max ac-
tion selection with the updating rules of EWA, while driver
agents combine EWA and soft-max action selection with a
Dijkstra-like algorithm to pick the best road and speeding
decision. We use Opponent Q-learning [15] as a benchmark
algorithm.

Experience-Weighted Attraction: Experience-Weight-
ed Attraction [4] combines two learning models, belief and
choice reinforcement. Three data parameters are kept: the
agent’s experience, which is measured as the discounted ob-
servations of past opponent plays; the agent’s attractions
to strategies; and the probabilities of the agent playing its
strategies. There are also three weight parameters: the for-
getting parameter (φ) which takes values in [0,1] and is used
as a discount factor for observations. If φ=1 the agent re-
members the opponents past plays, if φ=0 it forgets them.
The attention parameter (δ), with values in [0,1], represents
the attention an agent pays to foregone payoffs. δ = 0 means
that the agent reinforces the chosen strategies with a weight
of 1, and the not chosen strategies with a weight in [0,1] [4].
The response sensitivity parameter (λ) allows the agent to



either pick a random response (if λ = 0) or to best respond
(if λ = ∞).
Agents update their experiences and attractions according

to Eqs. (1) and (2).

N(t) = φ(1− κ)N(t− 1) + 1, t ≥ 1 (1)

Ai(sℓ, t) =
φN(t− 1)A(sℓ,O−i, t− 1)

N(t)

+
[δ + (1− δ)I(sℓ)Ui(sℓ,O−i)

N(t)
(2)

Agent i computes its attraction to pure strategy sℓ ∈ Si as a
combination of its prior experience, prior attraction, and the
payoff collected from a joint play ((sℓ,O−i)) [10], where O−i

is the set of pure strategies chosen by agent i’s opponents.
I is an indicator function that returns 1 if sℓ is the strategy
chosen by agent i in the previous iteration of the game, and
0 otherwise. The chosen strategies are reinforced with their
full payoff and the not chosen strategies with a fraction (δ)
of their payoffs. Agents are allowed to explore according to
the exploration parameter (κ). The probability of agent i

picking strategy sℓ is computed via a logit function (Eq. 3).

Pi(sℓ, t) =
e−[λAi(sℓ,t)]

∑

∀sx∈O−i
e−[λAi(sx,t)]

, ∀sx 6= sℓ (3)

Opponent Q-learning: Opponent Q-learning [15] extends
the standard Q-learning algorithm (Eqs. 4–6) by learning
optimal policies in the presence of opponents [16].

Q(v, a) = R(v, a) + γ
∑

v′

P (v, a, v′)V (v′) (4)

V (v) = max
a

(Q(sℓ)) (5)

Q(v, a) = Ui(sℓ) + γV (v′) (6)

P (v, a, v′) is the probability for agent i of transitioning from
its current node v to its next node v′ with action a. Since
in our case all actions for drivers are deterministic, Eq. 4 is
equivalent to Eq. 6, where the reward can now be linked to
both start and destination nodes, by performing the corre-
sponding action. Agents form beliefs about how opponents
play using the observed frequency with which the opponent
played an action to estimate the probability of the oppo-
nent choosing that action in the future. The probability is
factored into the calculation of the expected value of the
action in that node (Eq. 8). The update of each agent cur-
rent beliefs (Eq. 7) uses two parameters, α and γ, which are
the learning rate and the discount factor on future actions,
respectively [15].

Q(v, a) = αQ(v, a) + (1− α)(Ui(v, a) + γV (v′)) (7)

E[Q(v, a)] =
∑

∀sx∈O−i

P (sx|v)Q(sℓ|sx) (8)

Eq. (8) computes the expected value of an action by sum-
ming across the expected values of the joint play of the
agent and its opponents. In order to select the next node,
the agent computes the action with the highest expected
value argmaxsℓ

E[Q(v, a|sx)], accounting for P (sx|v), where
P (sx|v) is the probability that the opponent plays the strat-
egy sx from node v. The value of this action is the value
V (v′) for that node. This method of choosing the action

given the probability distribution of previous actions is the
same as arriving at a best action using fictitious play [16].

4. DESIGN OF LEARNING AGENTS

4.1 Environment Representation
The environment model is an augmented graph with three

types of edges: and a non-speeding edge, a speeding up to 10
edge, and a speeding above 10 edge. Edges represent possible
driver actions and are added between any pair of nodes that
are connected in the original graph (see Fig. 2).

Figure 2: Graph-based road model. Edges represent travel time.

Each edge is weighted by the travel time to traverse it
and produces a different payoff or penalty, proportional to
its weight and outcome of the play. Let W (sℓ) be a function
that returns the weight of the edge connecting the agent’s
current node v and node v′ of strategy sℓ, according to the
speeding decision of the strategy. Let H(v) be the function
that returns the weight of the heaviest non-speeding edge
from v. The payoff driver agent d gets when moving from v

to v′ using sℓ is defined as:

Ud(sℓ) =







1− W (sℓ)
H(v)

if no ticket is received

0 if not speeding
−1 if ticket received

(9)

The payoff for police agent c stationed at node v is as
follows:

Uc(sℓ) =















1 if driver speeds, is caught, and gets ticket
0 if driver speeds, is caught, but gets no ticket
0 if driver does not speed

−1 if driver speeds, but there is no police

(10)

4.2 EWA-Inspired Agent Models
Dynamic-EWA Driver Agent Design: At the start of
the game each driver agent begins with initial beliefs on
its own strategies. In each iteration the algorithm (Algo-
rithm 1) follows two steps: (1) it computes an optimistic
path using Dijkstra’s shortest path algorithm and simulta-
neously use EWA to choose the actions; (2) it updates the
agents’ beliefs using EWA learning principles. The Dijk-
stra shortest path algorithm computes paths that minimize
travel, assuming that drivers will always speed on the edges,
hence the optimistic assumption. However, the speeding
decision is made using EWA probabilities (Eq. 3). In the
worst case, the agent may choose not to speed on all the
edges in the path provided by Dijkstra’s algorithm, resulting
in a slower path. Using Dijkstra’s shortest path algorithm
frees agents from having to learn which paths to follow, in-
stead, agents focus on which decisions to make on the paths.



Another advantage is that drivers get loop-free paths at a
relatively low computational cost. The algorithm keeps a
priority queue (q) to reduce computation time for the mini-
mum weight edge. The distance (dist(s)) for a node v is the
distance from the initial node (start) to v. If v′ is a neighbor
of v, dist(v′) is updated to be dist(v)+weight(v, v′), if this is
less than the prior value for dist(v′). Nodes already visited
are not visited again to avoid loops and re-computations.
The computed path can be retrieved from a data structure
that saves the predecessor of each node in the path (prev).
The EWA model is updated according to driver and police
strategies on nodes in the path. Payoff for each edge is com-
puted according to Eq. (9). Payoffs and historical data are
used to compute the new values for Eqs. (1)–(3).

Algorithm 1 Dynamic-EWA Driver

1: Initialize attraction, experience, and beliefs
2: for each iteration on games t do
3: visited = ∅
4: for v ∈ V do

5: dist(v) = ∞

6: current = start; dist(current) = 0
7: q = q ∪ (current, dist[current])
8: while q not empty do

9: current = argmin(q)
10: q = q − target

11: visited = visited ∪ target

12: for n ∈ neighbors(current) do
13: if n 6∈ visited then

14: dst = dist(current) + weight(current, n)
15: if dist(n) > dst then

16: prev(n) = current

17: dist(n) = dst

18: q = q ∪ (n, dst)
19: Choose an action with P from Eq. (3)

20: Compute the path using prev
21: Update attraction, experience and probabilities
22: Play according to the path and chosen actions

EWA-Inspired Police Agent Design: A police agent
follows the steps described in Algorithm 2. Upon catching a
driver, depending on whether the driver is 10 mph above the
speed limit or not, police agents choose to enforce a ticket or
not according to a probability distribution (see Section 5).
If a police agent moves, its movement is constrained to a
neighboring node. The constraint helps reduce the strategy
space over which the agent has to sample from the Cartesian
product of the number of nodes and number of available
actions, to the Cartesian product of the number of neighbor
nodes and number of available actions. This reduction can
be significant for large graphs.

Analysis of the Algorithms: The dynamic-EWA algo-
rithm incurs computational costs during path selection, up-
date of the learning model, and selection of the best-response
strategy. During path selection, the dynamic-EWA algo-
rithm requires a O(N2) worst-case running time, where N

is the number of nodes. When running on completely con-
nected graphs, the algorithm inspects N nodes and N − 1
neighbors. Driver agents compute the best-response strat-
egy by evaluating the space of joint plays between each
driver and the entire police population. While this space

Algorithm 2 Police EWA-based strategy selection

1: Initialize attraction, experience, and beliefs
2: Choose initial strategy (start, start, ai) with P from

Eq. (3)
3: for each iteration t do

4: for each v′ ∈ {v ∪ neighbors(v)} do

5: for each sℓ = (v′, ai) do
6: Observe payoffs given O−i

7: Update history and the EWA model

8: Choose sℓ P from Eq. (3)

could be large, our algorithm makes two simplifying assump-
tions in order to reduce complexity: (1) driver agents only
need to consider strategies of police agents in the neighbor-
hood of the driver. (2) Driver agents are independent in
relation to other driver agents, hence they plan paths inde-
pendently of each other. The first assumption allows agents
to prune the strategy space to consider. The size of the
reduced strategy space is define by the Cartesian product
of the agent’s strategies by the opponent’s strategies, both
constrained to the neighborhood of the current agent loca-
tion. For police agents using EWA, the learning algorithm
is cheaper than that of drivers, because the main cost comes
from the evaluation of the space of joint strategies.

The algorithms do not converge to pure strategy equilib-
rium points because such points do not exist in the game [12].
Driver agents drive above the speed limit if police agents
do not enforce tickets. The increased number of speeding
drivers leads police agents to give tickets, which in turn
causes driver agents not to speed. Hence, either agent type
can increase its payoff by changing its strategy unilaterally.
Intuitively, the game would have an equilibrium when the
probabilities of enforcing a ticket makes the driver agent
choose to speed or not with equal likelihood. Proving that
the algorithms converge to such equilibrium distributions is
left for future research.

4.3 Opponent Q-learning Models
Opponent Q-learning Driver Agent Design: The Q-
values associated with each node in the graph represent the
discounted payoff of speeding or not speeding in each out-
going edge. We store only one Q-value for speeding and one
for not speeding to reduce the number of Q-values stored.
Drivers use thresholds to decide whether to speed or not:
driver agents choose to speed above 10 mph if the Q-value
for speeding is larger than the Q-value for not speeding.
They choose to speed up to 10 mph if the Q-value for speed-
ing is greater than half of the Q-value for not speeding (for
the same action and next node pair). Else, if the Q-value
for speeding is less than half of the value for not speeding,
then the agent decides not to speed. For any two neighbor-
ing nodes, the two related Q-values are updated using the
Bellman equation (7) [15] modified as follows: when drivers
choose to speed, the discounted value of the action is mul-
tiplied by one minus the frequency with which tickets were
issued at a node.

In this model, drivers do not plan paths to destination
beforehand. Instead, drivers make local node-level decisions
to learn the path to their goals. Additionally, drivers rely
on their history to deduce police presence when making a
speeding decision.



Opponent Q-learning Police Agent Design: Police
agents select their next node according to the following cri-
teria:

• Spatial criteria – select only neighbor nodes each time.
• Expected profit – select another node only if the expec-

tation of issuing more tickets is higher than the actual
rate of tickets issued in the present node.

• Presence or absence of police – select a next node that
is not already occupied by another police agent.

In each iteration, each police agent checks these three con-
ditions for each neighboring node and moves only if there is
a node with a higher expected payoff.

5. EXPERIMENTS
We designed a set of experiments to test the effectiveness

of the algorithms.
Graphs: We chose two graphs with similar structures but
different sizes and number of agents: a 4 × 4 graph, which
we call the Grid graph, and a portion of a US city, which we
call the Downtown graph.
The Grid graph (Fig. 3) has a rich set of paths. Twelve

drivers start on the first two rows of the graph, and have
different destinations in the bottom row. Six police agents
are placed in the bottom rows. The graph has 16 nodes
and 72 edges, and contains loops. We use this graph to
analyze drivers behaviors when there are multiple paths to
destination and how police adapt to them.

Figure 3: Grid graph, with symmetrical weights on the edges

The Downtown graph (Fig. 4) contains 279 nodes, with
edges that reflect the real traffic directions in the city. We
use six drivers and three police agents. The start and desti-
nation nodes for the drivers are landmark places in the city.
This map was chosen to study how the size of the decision
space affects the prediction ability of the agents.
In Fig. 4 we show the paths for two drivers, D1 and D2.

The blue and green circles indicate their start and destina-
tion nodes. The two police agents, P1 and P2, are repre-
sented by red circles. Because P2 is in the path of D2, D2
will eventually get ticketed if it decides to speed on the road
segment that leads to the location of agent P2. For both
graphs we ran 30,000 iterations per experiment.
In addition to EWA-based police algorithm, we tested

three other algorithms for police agents:

• Adaptive: police agents analyze the profit in their cur-
rent node and in neighboring nodes, based on the num-
ber of observed speeding drivers. They decide to move

Figure 4: Map of a section of the downtown of a US city, with
paths of two drivers and two police agents.

if a neighboring node seems more profitable in terms
of the number of tickets that they may issue.

• Static: the police agents do not change node.
• Random: the police agents move to random nodes.

The only constraint that restricts their movement is
the presence of another police agent at the randomly
chosen node.

Algorithm Parameters: We set the probability of police
agents to issue tickets to drivers that speed above 10 mph
to be 0.9, and drivers that speed below 10 mph to be 0.3.
These values reflect the assumption that driving at higher
speeds increase the chance of getting a ticket. For the EWA-
inspired algorithms, we found experimentally that λ = 0.45
for the driver and λ = 0.65 for the police agents lead to bet-
ter performance. The attraction decay rate (φ) for a strategy
was automatically set by subtracting from one the ratio be-
tween the number of times the opponent played a strategy
so far divided by the number of iterations so far. Strategies
the opponents play less often will then have higher experi-
ence values according to Eq. (1). The exploration parameter
κ = 0.65 allows agents to explore moderately. The weight
on forgone payoffs (δ) was also set automatically as follows:
if the potential payoff of playing a strategy is greater than
the payoff of playing any other strategy, then δ = 1, else
δ = φ

constant
, with constant = 2.

Experiments with the Opponent Q-learning drivers show
that setting α to 0.2 gives more weight to newly computed
values, allowing for faster convergence of the Q-values. γ

weights the best neighboring Q-value so that it prefers bet-
ter actions in earlier steps of the game than later. Experi-
ments showed that γ = 0.6 yielded better results than other
values. VisitDiscount is used to prevent driver agents from
going into a cycle when the presence of a police prevents
them from reaching their destination. After a road is visited,
we multiply its Q-values by VisitDiscount=0.5; this makes
future visits to that road less likely. To enable driver agents
to share the same road without influencing each other, the
discounted value is computed for each agent separately.

Metrics for the Experiments: We use two metrics in
our experiments. The payoff driver agents accumulate dur-
ing the iterations of the game and the regret driver agents
experience. Regret is measured as the difference between the
best possible payoff and the payoff the agent receives from
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(a) Dynamic-EWA on the Grid Graph
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(b) Opponent Q-L on the Grid Graph
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(c) Dynamic-EWA on the Downtown Graph

0 0.5 1 1.5 2 2.5 3

x 10
4

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Iterations

S
m

ot
h 

A
ve

ra
ge

 p
ay

of
fs

Smooth Average Payoffs for Opponent Q−L Drivers on the Downtown Graph

 

 

Adaptive
Static
Random
Maximum

(d) Opponent Q-L on the Downtown Graph

Figure 5: Payoffs for Dynamic-EWA and Opponent Q-learning drivers.

the joint play. The highest regret has a value of 1 and occurs
when a driver is caught speeding. Drivers that do not speed
do not experience regret. The regret for a driver agent that
speeds below 10 mph and is not caught is computed as the
difference between the payoff for speeding above 10 mph and
the payoff for speeding below 10mph. We report smoothed
payoffs and regrets. This helps to better see the trends in
the average values of these quantities. In addition, payoffs
and regret are not tied to any specific metric, they solely
represent agent preferences.

Data Generation. The data we used are synthetic. The
speeding and non-speeding travel times were created accord-
ing to our discretion for the Grid graph, but we used real
distances for the Downtown map and computed the travel
time by multiplying the edge length by one time unit (as-
sumes agents travel one meter per time unit). To compute
the travel time when drivers speed, we randomly generated
the travel times for speeding below and above 10mph. Fu-
ture research will involve using real traffic and ticket data.

6. RESULTS
Next, we report results of experiments performed on the

Grid and the Downtown graphs.

Grid graph. Results in Fig. 5(a) and Fig. 5(b) illustrate
an example in which adaptive driver agents perform poorly

when playing against police agents that play randomly. The
average payoff that dynamic-EWA and Opponent Q-learning
driver agents collect is lower when playing against police
that play random strategies than when playing against the
EWA-based and adaptive police agents, respectively. Po-
lice playing randomly choose each location on the map with
equal probability. Perfect randomization produces a near
uniform distribution of the frequency with which police visit
nodes on the graph. This makes it harder for driver agents
to effectively predict strategies police agents will play in
the future. The average payoff for dynamic-EWA driver
agents converges to an average payoff of roughly 1.6 (af-
ter smoothing the payoffs) when playing against a random
police allocation. The payoffs for dynamic-EWA drivers are
roughly twice as large as the average payoffs of Opponent
Q-learning driver agents ( 0.8). The difference in average
payoffs indicates that dynamic-EWA drivers adapt better
against random police than Opponent Q-learning drivers.
The dynamic-EWA algorithm takes advantage of combining
the history of joint plays and the changes in collected re-
wards to compute probabilities for choosing the action. This
enables dynamic-EWA drivers to better randomize against
opponents. Opponent Q-learning agents garner their high-
est payoffs when playing against static agents (1.6 units of
payoff). To the contrary, dynamic-EWA drivers perform
poorly against static drivers. The poor performance can be
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(a) Dynamic-EWA on the Grid Graph
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(b) Opponent Q-L on the Grid Graph
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(c) Dynamic-EWA on the Downtown Graph
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(d) Opponent Q-L on the Downtown Graph

Figure 6: Regrets for Dynamic-EWA and Opponent Q-learning drivers

explained by observing that when using soft-max selection
players do not choose the best-response strategy with prob-
ability 1. Instead, they choose the most attractive strategy
with higher probability [5]. Hence, the probabilistic best-
response may allow driver agents to choose to speed towards
a node, even if police were present at the node in the recent
past. This happens when the probability of playing the best
choice is close in value to the probabilities of playing other
strategies.
Opponent Q-learning drivers experience highest regret when

playing against police that play randomly (Fig. 6(b)). This
is consistent with the reported payoff results. Driver agents
become conservative in the presence of random police and
choose not to speed on roads in which they received tick-
ets. Contrarily, drivers’ regret is minimized when playing
against static police. This illustrates a case in which Oppo-
nent Q-learning drivers exploit police suboptimal decisions
by speeding where police are not present and not speeding in
locations where they received tickets in the past. The aver-
age regret Opponent Q-learning drivers experience is cyclic
when playing against adaptive police, evidencing adaptive
behavior. Dynamic-EWA drivers experience the highest re-
gret when playing against police agents that play randomly.
This is consistent with the payoffs agents receive. Both
dynamic-EWA and Opponent Q-learning drivers experience
similar regrets (with the mean of the average regrets between

0.6 to 0.8) when playing against the EWA-based police and
the adaptive police, respectively.

The large police to driver ratio (1 : 2) in this experimental
setup leads driver agents to obtain low payoffs. This example
illustrates the fact that larger police presence leads drivers
to loose more from suboptimal decisions.

Next, we consider a larger graph with a layout similar to
the Grid graph but with fewer police units. Results show
a narrower gap between drivers’ payoffs and the maximum
attainable average payoff.

Downtown Graph: Driver agents that use Dynamic-EWA
and Opponent Q-learning attain similar average payoffs when
playing against EWA police and adaptive police (Fig. 5(c)
and Fig. 5(d)). The payoffs are close to the maximum at-
tainable. The limited movement of both types of adaptive
police agents combined with the number of uncovered paths
driver agents can take are the main reasons for the success
of these driver agents. In this experiment, two of the three
police agents start at a location that intersects driver short-
est paths in at most one edge. However, these police agents
cover less area, which allows driver agents to speed with-
out punishment on these uncovered edges. The same is not
true when playing against police agents that play randomly.
These agents can see the whole map, and they are allowed
to fly over to other locations. Dynamic-EWA drivers per-
form better than Opponent Q-learning drivers when playing



against police agents that play randomly.
Dynamic-EWA drivers perform better for two main rea-

sons: first, dynamic-EWA drivers only travel on the shortest
paths returned by the Dijkstra’s algorithm. Thus, agents
explore fewer paths than Opponent Q-learning drivers. Ex-
ploring fewer paths makes it less likely for police agents
choosing randomly to occupy nodes on the driver’s path
with more frequency than nodes outside the path. Hence,
dynamic-EWA agents take advantage of the absence of po-
lice agents to speed and collect higher rewards.
Second, dynamic-EWA driver agents are risk-takers. These

agents might choose to speed, even in nodes where they pre-
viously received a ticket, provided that the node has a higher
attraction than the recently played nodes. The regret re-
sults for the dynamic-EWA (Fig. 6(c)) and for the Opponent
Q-learning driver (Fig. 6(d)) agents confirm that dynamic-
EWA algorithms do worse against static police, while Op-
ponent Q-learning drivers are able to learn to play against
this type of police agents. It also confirms that both agents
struggle against police playing random strategies.

7. CONCLUSIONS AND FUTURE WORK
We used repeated stochastic games to model the interac-

tion between police and driver agents in a transportation
network. We proposed the dynamic-EWA algorithm that
enables drivers to adapt to police agents. Experimental
results indicate that the proposed approach performs well
against police agents playing EWA and random strategies.
Our results support that the deployment of police force in
strategic locations discourages drivers from speeding. In a
broader context, the results support the hypothesis that al-
locating resources randomly leads police to catch more un-
lawful drivers. However, the strategy where police do not
move from their assigned places is effective against drivers
who try to speed aggressively (as it was the case with our
dynamic-EWA agents).
Our model simplifies the domain to make the problem

tractable. While this simpler model gives good insights into
the dynamics of the interactions among agents, scalability
to graphs of entire cities and much larger number of agents
remains a challenge. A further challenge is to balance ex-
ploration and exploitation and guarantee a security value for
the agents while remaining scalable. Our dynamic-EWA al-
gorithm scales well to a reasonable amount of drivers and its
path exploration can be improved by including paths that
are some constant away from the optimal paths. However, it
is not clear how driver agents will perform against opponents
that can efficiently cover the graph.
Analysis of convergence and theoretical properties of the

learning algorithms is a topic for future research. We will
also consider models that capture other aspects of the do-
main, such as communication and potential collusion. Fu-
ture research will investigate how agents can learn and adapt
when police agents have different personalities, and will model
risk-seeking and risk-averse drivers. Finally, we believe that
our algorithm, analysis and models contribute positively to-
wards inventing computational models that help police bet-
ter allocate their limited resources, which is essential for
better traffic control.
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The online loop-free stochastic shortest-path problem.
In COLT, pages 231–243, 2010.

[15] William T. B. Uther and Manuela M. Veloso.
Generalizing adversarial reinforcement learning.
Technical report, AAAI Fall Symposium on Model
Directed Autonomous Systems, 1997.

[16] J. Wu, C. Ye, and S. Jin. Opponent learning for
multi-agent system simulation. Rough Sets and
Knowledge Technology, pages 643–650, 2006.


