
Modeling and Simulation for Multi-Robot Allocation and Execution of
Tasks with Temporal and Precedence Constraints

Ernesto Nunes and Maria Gini1

Abstract— This work leverages the power of simulation as
a tool to analyze the robustness of schedules for robots in a
multi-robot system, where the robots cooperate to accomplish
a set of tasks. Data collected during simulations are used to
compute well-known indexes that measure the risk of delay
and failure in the robots’ schedules. We also build a Bayesian
probabilistic model from which we can compute the probability
of missing tasks’ deadlines. In this model, start times of tasks
are treated as random variables; the relations imposed by
precedence constraints define a graphical model that captures
the dependencies between tasks’ random variables. We run
ROS-Stage simulations for up to tens of robots and tasks on
an already computed schedule to generate data to perform
robustness analysis.

I. INTRODUCTION

Multi-robot systems continue to gain traction as a viable
option in warehouse automation, precision agriculture, en-
vironmental monitoring, and other application areas. Simu-
lation software systems have been critical in improving the
programming of multi-robot systems. They can also provide
large amounts of data that can be used to analyze the robots’
operations. In this paper we use data obtained in simulation
to compute risk and probabilistic analysis for stochastic
task allocation and execution when tasks have temporal and
precedence constraints.

Most of the research in multi-robot task allocation and
execution has proposed centralized and decentralized plan-
ners that are reactive in nature. Reactive planners absorb
delays caused by exogenous events by adjusting the temporal
bounds on tasks in a deterministic way, and re-planning
when required. However, such planners most often ignore
information that can be obtained by modeling the stochastic
processes that generate the exogenous events.

We propose a simulation framework that is used to gener-
ate two types of analysis: the first is a risk-based analysis of
task delay and failure. The second is a probabilistic analysis
based on Bayesian principles. A graphical model is used to
represent the probabilistic interdependencies between robots’
tasks. Interdependencies are created by precedence relations
imposed by the directed acyclic precedence graph, and by
the sequencing order of tasks in each robot’s schedule.

Our main contribution is an analytical framework in which
risk and probabilistic analysis are performed on data gen-
erated from our simulation framework. This analysis can
be used by a system user to identify changes in temporal
and precedence constraints that can improve the chance of
task completion. We also propose a graphical model for

1 Ernesto Nunes and Maria Gini are with the Department of Computer
Science and Engineering, University of Minnesota.

random variables for tasks’ start times. The graphical model
is preliminary, work is underway to learn and test the model.

II. RELATED WORK

Despite the increasing use of multi-robot simulators both
in academic and industrial settings, only a few works exist
that address the stochastic multi-robot task allocation prob-
lem by leveraging simulations to explicitly build probabilistic
models. These models could be used during decision-making
to account for the uncertainty induced by the use of robots
in dynamic environments.

Work exists that proposes centralized solutions for stochas-
tic routing and scheduling problems [1], [2], [3]. Like the
allocation problem herein discussed, these problems simul-
taneously solve an allocation, a routing and a scheduling
problem. In [3] a dynamic vehicle routing problem (VRP) is
studied in which demands (or tasks) with deterministic time
constraints arrive randomly, and the goal is to maximize the
fraction of demand met. In their work, vehicle motion is
constrained and a reachability graph is used for navigation.
In [2] uncertainty in task arrival is also addressed. Their work
provides theoretical analysis of a number of requirements,
such as bounds on the number of vehicles used and maximum
number of tasks that can be missed.

A more common way to model uncertainty in AI is by
using Markov Decision Processes (MDPs). In [4], [5] MDPs
are modeles in which states are locations in a map with
obstacles, tasks, and robots. In [5] a state is modeled as a
triplet representing the previously visited state, the amount
of resources left, and the time window. Solutions to the
MDP search for policies that maximize a value function over
the states. Dolgov et al. [6] pose the combinatorial resource
scheduling problem with uncertainty as an MDP. However,
none of the works directly address the problem we solve: we
deal with uncertainty generated by system dynamics during
robot travel, and none of these works address problems with
constraints.

Uncertainty modeling has been extended to temporally
constrained problems. In [7] a set bounded uncertainty
model is used to express duration uncertainty of temporal
events in a Simple Temporal Network (STN) [8], and STNs
with uncertainty (STNU) are introduced. STNUs have been
extended by modeling uncertainty as probabilities [9], [10],
[11]. The former attempts to minimize the risk of temporal
inconsistencies occurring, and the latter attempts to bound
the probability of not meeting a schedule. However, these
models cannot be directly applied to our problem since
they assume that tasks’ distributions are independent. In



Fig. 1. ROS/Stage simulation with 10 robots (circles) and 25 tasks (triangles).

[10] probabilistic STNs (pSTNs) are introduced. Instead of
requiring consistency for all probabilistic durations pSTNs
require schedules for which the probability of failure can be
bounded. Unfortunately, in robotics it might not be possible
to find such strategies.

In [12] uncertainty is handled as a chance-constrained
model. The Consensus-Based Bundle algorithm (CBBA) is
proposed that solves the stochastic multi-robot task allocation
problem with temporal constraints. CBBA allocates tasks
with uncertainty in planning parameters to multiple robots.
This work comes closest to ours, however it does not handle
precedence constraints.

III. PROBLEM DEFINITION

We assume, as in [13], a set R of m robots. Each robot
ri has an initial pose, a maximum velocity, and a set of
sensors. The maximum velocity is the same for all robots,
but robots can travel at different speeds. We also assume
a set T of n tasks, each with a location, an earliest start
time EStj , a latest finish time LFtj , and a duration (DUtj ).
Together, (EStj , LFtj ) define the bounds for the task’s time
window. Robots need to arrive to a task before its latest
start time LStj , which, if not specified, can be computed as
LStj = LFtj−DUtj . The robots have a graph representation
of the environment, where the vertices are waypoints and the
edges connect pairs of vertices between which there are no
obstacles.

The execution framework proposed in [13] produces:
1) A multi-robot schedule, with a set of m sub-schedules

Λ = {...,Λri , ...} one per robot. Each schedule in
Λ contains a sequence of a subset of tasks, ordered
according to the time they will be performed.

Fig. 2. Start time distribution for task T2 for 10 robots and 25 tasks.

2) the set of planned start times ∆ for each task. Each
∆tj is fixed for a multi-robot schedule.

In this paper, we are interested in using a large number of
simulations to compute:

1) P (sttj ≤ ∆tj ), the probability that the start time at
execution time is within the planning time;

2) P (sttj ≤ lstj ), the probability that the start execution
time is smaller than the task’s latest planned start time.
This is the probability that the task will not fail;

3) a discretized division of the map into areas. Finally,
a distribution of the average robot traversal times per
grid area.

For each task, our simulation system produces a distribu-
tion (µsttj

, σsttj ) for the times in which the execution of a
task starts. For the environment in Figure 1 the start time
distribution for task T2 is shown in Figure 2. We use such
distributions to compute measures of risk for each task, and
instantiate the probabilistic model we propose, as shown later
in Section V.



IV. THE SIMULATION AND TASK EXECUTION SYSTEM

We implemented our prioritized Iterated Auction [14]
using the Robotic Operating System (ROS) Stage plugin as
described in [13]. The simulator uses a 2D representation
of the robots and of the environment in which the robots
operate. The system relies on ROS packages for local and
global path planning (including collision avoidance), and for
communication.

During the planning stage, the set Λ of robots’ schedules
is generated using pIA. During the execution stage, the
robots execute the tasks in their schedules using the executor
we proposed in [13]. During execution robots travel to
tasks, execute them, and request task reassignments when
they cannot perform any of their allocated tasks. Robots
communicate with each other and with an auctioneer agent
who keeps track of task execution across robots to ensure
that precedence constraints are not violated and to reallocate
tasks when reallocation is requested by a robot.

A. Robot Schedule Dispatching and Task Execution

At any time during execution a robot is either traveling
to a task, executing a task, waiting to perform a task, or
aborting execution. These states are directly correlated to
the following execution outcomes: succeeded – the task was
successfully executed, aborted – the assigned robot estimates
that it cannot arrive to the task on time but there is still
time to perform the task, failed – due to temporal constraint
violation no robot in the system can do the task.

When the execution starts, a robot retrieves the first task in
its schedule and travels to that task. In each ROS cycle, the
robot computes the estimated start time of its next task by
adding the travel time from its current location to the task’s
location to the already elapsed time (since the start of the
traveling action). If the estimated start time is smaller than
the start time computed during planning, the robot continues
execution. If not, there are different cases. If the estimated
new start time is smaller than the task’s latest start time,
the task can still be executed, but the new start time could
cause inconsistencies with other tasks for which this task
is a precedence constraint. Since those other tasks could
have been assigned to other robots, the delayed robot needs
to check with the auctioneer for any potential violation. If
there are no violations, the robot assigns the estimated new
start time as the task’s start time and continues executing.
Otherwise, the robot notifies the auctioneer that it is unable
to execute the task within its temporal constraints. The
auctioneer runs an auction to try to reallocate that task.

When a robot has completed the execution of a task, it
marks it as succeeded, notifies the auctioneer, and proceeds
to its next task. This way the auctioneer can keep track of
the overall progress.

B. Auctioneer Execution Updates

As execution unfolds the auctioneer updates information
about the tasks that have been completed and the tasks whose
start times need to be updated due to execution delays.

Fig. 3. Example of graphical model showing dependencies between random
variables representing tasks for 6 tasks and 2 robots.

To stay updated, the auctioneer subscribes to ROS topics
in which robots post their tasks’ execution status. In each
ROS cycle it checks if a task has been completed. If a task
is marked as aborted, the auctioneer put that task up for
auctions to see if any of the robots can add it to its schedule.
Each robot computes its bid, as it did during planning, and
sends the bid to the auctioneer, which allocates the task to
the robot with the smallest bid, if any. If no robot can do the
task (i.e., all robots submit ∞ as their bid value), the task
and all the tasks in its induced subgraph are marked as failed
and removed from the scheduled tasks. To keep precedence
constraints consistent failed tasks are never executed.

When a robot experiences a delay it attempts to set a new
value to its task start time and any task whose execution
time depends on the delayed task. The auctioneer needs to
check if the new start time causes inconsistencies for other
robots. The auctioneer keeps a a directed acyclic graph GP
representing precedence constraints between tasks and the
start and finish times of the tasks, which are updated during
execution. When a robot asks the auctioneer to check for
inconsistency of a potential time update, it sends the new start
(and finish) times. The auctioneer proceeds by temporarily
updating the finish times of all remaining tasks in the DAG.
Next, it performs a topological sort on the DAG to compute a
linear ordering according to the precedence constraints. The
auctioneer uses the sorted graph to compute S̃tk for all tasks.
It then checks if S̃tk ≤ LStk ,∀tk. If that is the case, the
auctioneer accepts the temporal updates and send the robot
an “OK” message. Otherwise, the auctioneer rejects the time
updates, the robot aborts the task, and the auctioneer resets
the task start time to its previous value.

V. TOWARD RISK AND PROBABILISTIC MODELS FOR
ANALYSIS OF A SINGLE SCHEDULE

We expect the start times of tasks to vary across runs due
to several sources of uncertainty. In this paper we focus on
the delays caused by congestion (too many robots working
in the same area), number and shape of fixed obstacles,
and sensor and localization errors as the main sources of
uncertainty.

Congestion causes the robots to reduce their speeds to
avoid collisions, which in turn causes fluctuation in their



travel times, and ultimately affects their arrival times to tasks.
The number and shape of fixed obstacles in an environment
(especially in unstructured environments) require robots to
slow down to avoid collision with the obstacles, causing
arrival time variations. When robots experience localization
and sensor failures they might need to replan, which intro-
duces a time overhead. In this paper we only account for
transient failures such as the ones already discussed, we do
not directly address permanent failures (e.g., destruction of
robots).

Let BT = {Bt1 , ...,Btj , ...,Btn} be the set of random
variables for the tasks’ start times, one per task. We treat Btj
as a continuous random variable. We assume hard temporal
constraints, for this reason the probability mass for each Btj
is non-zero only within the task’s time windows ([estj , lstj ]).

We also consider dependencies among Btj variables. The
structure of these dependencies is formed due to precedence
constraints over the set of tasks and task sequencing in
the robots schedules. The dependencies are also encoded
in uncertainties of the tasks: a late arrival of a robot to a
predecessor of a task might delay the arrival to that task too.
We use a Bayesian network (BN) to model the dependencies
(see Figure 3).

A BN is a directed acyclic graph in which random vari-
ables that share an edge are dependent. The directed edges
define parent-child relationships among random variables,
the same way that they describe precedence in our problem.
In a BN each variable is conditionally independent of all its
non-descendants given all of the variables’ parents. This is
useful because it allows us to model tasks in the precedence
graph that are not dependent on each other (e.g tasks in
different subgraphs).

In the BN each Btj is parameterized with a conditional
probability table (CPT) that encodes the probabilities of
the random variable, given its parents. In Figure 3 the
CPT for Bt3 is represented as the conditional probability
p(Bt3 |Bt3 ,Bt5). If we are given an already learned BN, we
can answer queries such as “what is the probability that a
robot 1 will arrive to task t3 on time, given that the robot
started t3’s predecessors within their planned start times?”
To answer the query we compute the following probability:

p(Bt3 ≤ ∆t3 |Bt2 ≤ ∆t2 ,Bt5 ≤ ∆t5) =
P
Q

P = p(Bt2 ≤ ∆t2 ,Bt3 ≤ ∆t3 ,Bt5 ≤ ∆t5);Q = p(Bt3 ≤ ∆t3)

The computation of P and Q is intractable, especially for
a BN that encodes a large and complex precedence graph.
Approximate inference could be employed using methods
such as Gibbs sampling, but this would assume that the
BN parameters (the CPT for each Btj ) and structure have
already been learned. Fortunately in this case we would
not need to learn the BN structure (which is a harder
task), given that these are derived from the precedence and
sequencing constraints. However, we still need to learn the
BN parameters.

Training data to learn the BN parameters are obtained

in simulation as historical data for tasks’ start times (see
Figure 2 for example). To learn the BN parameters we will
use a Bayesian update approach: assign a prior probability
density function to each Btj and use the training data (e.g
Figure 2) to compute a posterior parameter distribution and
the Bayes estimates. The next future step in our project is to
learn the BN parameters for our data sets.

For now, we estimate probability distributions for each Btj
following a frequency-based analysis. We run our simulation
several times and collect statistics about tasks’ start times,
and estimate some probabilities, as we will discuss shortly.

Using the collected distributions we compute risk mea-
sures for individual tasks. This level of risk analysis gives
the system user granular information about individual task’s
influence on the overall execution outcome. The designer
can then adjust tasks’ temporal constraints to improve the
probability of a task being completed on time.

To measure risk we adapt two well-known risk measures,
the schedule sensitivity index (SSI) and the critical delay
contribution index (CDC) to our problem. Both indices have
been identified as good risk measures in probabilistic project
scheduling [15]. SSI measures risk as a task’s variance
contribution compared to the overall schedule variance. CDC
measures risk as individual task’s contributions the over-
all lateness (difference in makespan between the planned
makespan and the execution makespan).

We simplify the computation of SSI and CDC as follows:
the variance contribution in SSI is weighted by the number
of times a robot arrived to a task after the task’s planned start
time (start time delay). We compute that in each simulation,
and sum over all the simulations (see Equation 1). The
same weights are also used to compute CDC values (see
Equation 2).

When computing SSI we normalize individual task’s vari-
ances by dividing them by the maximum variance over all
tasks’ start times. This is a departure from the original
index, which used the variance of the last task’s start time.
This distinction is important because the variance in the last
overall task’s start time depends on the task’s predecessors’
variances. If the task has very large time window (and
temporal flexibility) the time window length may attenuate
or even dissipate the effects other tasks’ variances have on
the last task’s variance.

SSItj = z ·

√
Var(~stj )

maxtk∈T Var(~stk)
(1)

CDCtj = z ·
N∑
q=1

(mplan −mq) (2)

z =

∑N
q=1 δ

q
tj

N
∑

tj∈T
∑N

q=1 δ
q
tj

(3)

In Equation 1 δptj is an indicator function that assumes the
value of 1 if the robot assigned to execute task tj starts the
task past its planned start time ∆tj , and 0 otherwise. This
value is collected in each simulation run p over all simulation



runs N . ~stj is the vector of start times for task tj , and ~smax

is the vector of tasks’ start times with the maximum variance.
These vectors have dimensions N × 1. In Equation 2 mplan

is the makespan robots’ schedules prior to execution, and mp

is the makespan for simulation number p (mplan −mp < 0
indicate lateness in finishing the last overall schedule).

VI. EXPERIMENTS AND PRELIMINARY RESULTS

Given the set of schedules Λ, and other inputs, we run
the simulator several times (100 times in the results herein
reported) to gather statistics for tasks’ start times and for
the time robots spend on a grid abstraction of the map (see
Figure 4).

A. Grid Time Distribution Results

We generate a discretization of the map by overlaying a
grid over the map. We tried grids of different sizes and found
that a 4× 4 meter grid size yielded the best results.

Using a ROS localization package we generate timed path
traces for the robots, where to each (x,y) location we attach a
timestamp indicating when the robot arrived to the location.
For each set of locations in the robot path that fall under
the same grid we compute the time a robot spends in a
grid by calculating the difference between timestamps. The
differences are computed across all robot runs. The time
distribution is averaged over all robots that have paths that
visit the same grids. We also run extra simulations where
we vary tasks’ locations but keep time windows, precedence
constraints, and robots’ locations the same. By varying tasks’
locations we create traversal time profiles for more grids on
the map. The grid representation and the respective traversal
times are reported in Figure 4.

The traversal time distribution (right plot in Figure 4) per
grid shows that for most grids robot traversal time is under
7 minutes. Except for regions between 56-58 where robots
spend nearly 10 minutes. This is partly explained by the fact
that when operating in that are robots some times can not
properly localize themselves and they get stuck in the same
place for the rest of the simulation.

B. Risk and Probability Results

We also report results computed for tasks’ risks and
probabilities (see Figures 5, 6, 7, 8). The risks are computed
according to (1) and (2). The two risks highlight different
information about tasks’ stochastic start times: SSI highlights
the importance of tasks’ variances, while CDC highlights the
importance of delays of individual tasks. In our experiments
the tasks with highest SSI risk are located in the grids with
largest traversal times. This supports the hypothesis that tasks
with high variance in their travel times, and consequently
start times, are more risky. However SSI by itself might
be enough because it does not measure effects of a tasks’
variance on the overall risk of a schedule. For that we need
the CDC risk index.

The CDC risk index shows that more tasks are at risk.
Part of that is explained by the fact that CDC combines
the individual (task level) and overall (schedule-level) delays

Fig. 5. Schedule sensitivity index for 25 tasks executed by 10 robots.

Fig. 6. Critical delay contribution for 25 tasks executed by 10 robots.

when computing risk. Tasks for which the start time at
execution time exceeds the planned start time (indicating
delay) are considered more risky. An interesting property is
that tasks at the end of long task chains (e.g. tasks with ids
7) have large CDC risks; this is in part due to the fact that
delays in earlier tasks are propagated to the later ones in the
chain, even if these later tasks do not have high variance in
their start times.

Our experiments also show that tasks have low prob-
abilities of failing. Failure is the event of a task’s time
window constraints not being met during execution. Failure
probabilities of tasks in Figure 7 are consistent with the
hypothesis that more constrained tasks (e.g., task 7) are more
likely to fail. This is also consistent with the delay risk
reported in Figure 6. The delay probabilities are consistent
with the CDC results, because CDC values use delay fre-
quencies in their computation. The reported low probabilities
in part show the robustness of our allocation and execution
method. Robustness in our method is improved by schedule
adjustments and task re-auctioning.

VII. CHALLENGES AND FUTURE DIRECTIONS

The work proposed so far is for a fixed schedule and fixed
starting positions of robots and tasks. This level of analysis



Fig. 4. (Left) 4× 4 meter grid decomposition of the map. (Right) Distribution of traversal times over the grid.

Fig. 7. Probability of task failure measured as frequencies over the number
of simulations for 25 tasks and 10 robots.

Fig. 8. Probability of task delay measured as frequencies over the number
of simulations for 25 tasks and 10 robots.

is appropriate for situations when schedules, and initial posi-
tions of robots and tasks do not change over a period of time.
However, the analysis might not generalize well to different
maps and different configurations of tasks. A more general
analysis should include simulations over different schedules

and positions of robots and tasks. However, learning over
the space of all possible schedules is intractable due to the
exponential number of schedules.

The issue of sample complexity (the number of samples
required to learn model parameters) in our problem is es-
pecially important because individual samples are expensive
to obtain. Executing a schedule can take anywhere between
5-20 minutes on commodity hardware. Getting thousands or
even millions of samples can take several days. However,
sample collection can be made efficient by using parallel
computing.

Currently we perform the analysis offline, after we run
multiple simulation. We could consider models for online
analysis such as dynamic BNs, or probabilistic filtering, and
do the analysis online as each simulation runs.

In future work we will also study how to incorporate
the risk and probabilistic analysis directly in the allocation
and execution system. This raises two important questions:
where in the auction and execution process should we include
the risk and probabilistic analysis? and which agent should
handle the probabilistic reasoning? We have taken steps to
include the risk analysis to better inform the prioritization of
tasks within our prioritized iterated auction. Further experi-
ments and analysis are necessary to evaluate the effectiveness
of the approach.

There are at least two ways to handle probabilistic rea-
soning: either the auctioneer alone updates the probabilistic
models or a combination of the auctioneer and the robots.
The main advantage of the former is that saves on communi-
cation and computational burden placed on robots. However,
this leads to a higher degree of centralization. If robots are
to also estimate probabilities, we would need to build a
complex message passing system during inference to ensure
that inference is performed over an accurate representation
of the model. This could lead to high communication and
computation complexity.

VIII. CONCLUSIONS AND FUTURE WORK

We provided a first step study of how simulations can
be used as an analysis tool in task allocation and execution



of tasks with temporal and precedence constraints. We pre-
sented risk and probabilistic models that can be readily used
to provide information about the robustness of schedules.
This information could allow system designers to more easily
adjust tasks’ temporal constraints. We also provide a grid-
based analysis of traversal times on a map. The end goal is
to provide a quantitative analysis of which parts of the map
cause delays in robots’ schedules. Our preliminary results
identify risky regions and tasks. Work is underway to extend
our analysis to our auction and executor, and to consider
more general offline and online probabilistic models.
Acknowledgments: Partial support provided by the National
Science Foundation (under grants NSF IIP-1439728, NSF
CNF-1531330) and the Doctoral Dissertation Fellowship
program from the University of Minnesota.

REFERENCES

[1] X. Miao, P. Luh, D. Kleimnman, and D. Castanon, “Distributed
stochastic resource allocation in teams,” IEEE Trans. on Systems, Man,
and Cybernetics, vol. 21, no. 1, pp. 61–70, 1991.

[2] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler, “A stochastic and
dynamic vehicle routing problem with time windows and customer
impatience,” Mobile Networks and Applications, vol. 14, no. 3, pp.
350–364, 2009.

[3] S. Bopardikar, S. Smith, and F. Bullo, “On dynamic vehicle routing
with time constraints,” IEEE Trans. on Robotics, vol. 30, no. 6, pp.
1524–1532, 2014.

[4] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson, “Planning with
deadlines in stochastic domains,” in Proc. AAAI Conf. on Artificial
Intelligence, 1993, pp. 574–579.

[5] A. Beynier and A.-I. Mouaddib, “Decentralized Markov Decision
Processes for handling temporal and resource constraints in a mul-
tiple robot system,” in Distributed Autonomous Robotic Systems 6,
R. Alami, R. Chatila, and H. Asama, Eds. Springer Japan, 2007, pp.
191–200.

[6] D. A. Dolgov, M. R. James, and M. E. Samples, “Combinatorial re-
source scheduling for multiagent MDPs,” in Int’l Conf. on Autonomous
Agents and Multi-Agent Systems, 2007, pp. 657–664.

[7] T. Vidal, “Handling contingency in temporal constraint networks:
from consistency to controllabilities,” Journal of Experimental &
Theoretical Artificial Intelligence, vol. 11, no. 1, pp. 23–45, 1999.

[8] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial Intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.

[9] I. Tsamardinos, “A probabilistic approach to robust execution of
temporal plans with uncertainty,” in Methods and Applications of
Artificial Intelligence: Proc. 2nd Hellenic Conference on AI (SETN
’02), ser. Lecture Notes in Computer Science. Springer-Verlag, 2002,
pp. 97–108.

[10] C. Fang, P. Yu, and B. C. Williams, “Chance-constrained probabilistic
simple temporal problems,” in Proc. AAAI Conf. on Artificial Intelli-
gence, 2014, pp. 2264–2270.

[11] J. Brooks, E. Reed, A. Gruver, and J. C. Boerkoel, “Robustness in
probabilistic temporal planning,” in Proc. AAAI Conf. on Artificial
Intelligence, 2015, pp. 3239–3246.

[12] S. S. Ponda, L. B. Johnson, and J. P. How, “Distributed chance-
constrained task allocation for autonomous multi-agent teams,” in
American Control Conf., 2012, pp. 4528–4533.

[13] E. Nunes, M. McIntire, and M. Gini, “Decentralized allocation of tasks
with temporal and precedence constraints to a team of robots,” in Proc.
SIMPAR, 2016.

[14] M. McIntire, E. Nunes, and M. Gini, “Iterated multi-robot auctions for
precedence-constrained task scheduling,” in Int’l Conf. on Autonomous
Agents and Multi-Agent Systems, 2016, pp. 1078–1086.

[15] S. Creemers, E. Demeulemeester, and S. Van de Vonder, “A new ap-
proach for quantitative risk analysis,” Annals of Operations Research,
vol. 213, no. 1, pp. 27–65, 2014.


