
FULL PAPER

Decentralized Multi-Robot Allocation of Tasks with Temporal and

Precedence Constraints

E. Nunesa, Mitchell McIntireb, and M. Ginia

a Department of Computer Science and Engineering, University of Minnesota, 200 Union St
SE, Minneapolis. MN 55455, US.; bComputer Science Department, Stanford University, US

ARTICLE HISTORY

Compiled September 19, 2017

ABSTRACT
We present an auction-based method for a team of robots to allocate and execute
tasks that have temporal and precedence constraints. Temporal constraints are ex-
pressed as time windows, within which a task must be executed. The robots use our
priority-based iterated sequential single-item auction algorithm to allocate tasks
among themselves and keep track of their individual schedules. A key innovation
is in decoupling precedence constraints from temporal constraints and dealing with
them separately. We demonstrate the performance of the allocation method and
show how it can be extended to handle failures and delays during task execution.
We leverage the power of simulation as a tool to analyze the robustness of sched-
ules. Data collected during simulations are used to compute well-known indexes that
measure the risk of delay and failure in the robots’ schedules. We demonstrate the
effectiveness of our method in simulation and with real robot experiments.

KEYWORDS
Task allocation; temporal constraints; precedence constraints

1. Introduction

Service robots that operate in large areas have often tasks that are distributed in
space and require to be executed within assigned time intervals while satisfying specific
precedence constraints. Examples include robots in warehouses, hospitals, and offices.
In a warehouse, robots might need to prioritize packages going to some locations over
others, or have to move packages from start to end points within specific time intervals.

In this paper we study the temporal and precedence constrained multi-robot task
allocation problem with homogeneous robots. The problem is NP-hard even for a
single-robot and without precedence constraints, as we can reduce the elementary
shortest path problem with resource constraints [1] to our problem. It is therefore
infeasible in general to compute exact solutions to these problems.

This problem falls under the XD[ST-SR-TA = Single-Task robot, Single-Robot task,
Time-extended Assignment] category of the Multi-Robot Task Allocation (MRTA)
taxonomy given in [2], since precedence constraints impose cross-schedule dependen-
cies, so any delay or execution failure in one robot’s schedule will affect other robots’
schedules. We assume robots can execute at most one task at a time (ST), tasks require

CONTACT Author. Email: gini@umn.edu



a single robot (SR), and tasks are scheduled over a planning horizon (TA).
We defined the class of multi-robot task allocation problems with temporal and or-

dering constraints as MRTA/TOC [3], and extended the MRTA taxonomy to include
temporal constraints expressed in the form of time windows (TA:TW) and order-
ing constraints expressed in the form of synchronization and precedence constraints
(TA:SP). In this paper we handle both types of temporal constraints. Unlike many
other MRTA problems, this problem in its general form, allowing arbitrary precedence
constraints and time windows for tasks, has not been thoroughly studied, due in part
to its complexity even for approximate solutions.

Our main contribution is an auction-based algorithm, TePSSI (Temporal and Prece-
dence constrained Sequential Single-Item auction), which provides a decentralized
method of computing a solution for task allocation problems with temporal and prece-
dence constraints. In our approach each robot owns its schedule for the subset of tasks
assigned to it. A schedule is represented as a simple temporal network (STN) [4],
which stores the execution times of the tasks. In this paper, we describe the auction
algorithm, analyze its complexity, prove its soundness and completeness when only
precedence constraints are considered, and demonstrate the algorithm’s performance
empirically. We also show how to combine the task allocation algorithm with an exec-
utive that monitors the execution of the tasks, reallocating tasks via a one-shot greedy
auction when needed because of execution delays or failures. The framework herein
proposed supports task execution and recovery via a planning-execution-replanning
cycle. We present an experimental evaluation of the framework in simulation and
through experiments with real robots.

In our previous work we designed TeSSI (Temporal Sequential Single-I tem auc-
tion) [5] and pIA (Prioritized Iterated Auction) [6], to handle general temporal and
precedence constraints independently, and only at planning time. The auction herein
proposed is, to the best of our knowledge, the first auction-based algorithm that is
designed to handle general precedence and temporal constraints simultaneously, whilst
also considering plan execution aspects.

2. Related Work

Methods for multi-robot task allocation can be broadly categorized into centralized,
decentralized, and hybrid; and depending on the optimality of the solution, exact or
heuristic. A recent example of a centralized method uses an efficient mixed-integer
linear programming approach for multi-robot scheduling with spatial constraints [7].
Centralized methods can achieve optimal results, but are not suitable for field oper-
ations where communication can be limited and unreliable, and faults are common.
Hence, we choose a decentralized approach.

Distributed Constraint Optimization Problem (DCOP) [8] algorithms provide a
viable option for modeling constraint problems in a distributed way. However, solving
DCOP exactly is NP-hard and impractical even for unconstrained Multi-Robot Task
Allocation (MRTA) problems [9]. Approximate methods such as Max-Sum have been
proposed [10, 11], yet we are not aware of any DCOP algorithm that handles task
allocation with precedence and time window constraints.

Auction-based approaches have become popular for their flexibility, decentralized
nature, and robustness to failure [12, 13]. Auctions move the burden of computation
onto individual robots and are robust to local changes or failures, since the auction
can proceed with the remaining robots when some robots malfunction [14].

2



For the simple case of the MRTA problem in which robots are homogeneous and need
only to visit tasks in order to complete them, the sequential single-item (SSI) auction
from [15] gives a 2-approximation for the total sum-cost of the resulting schedule and
a 2m-approximation (where m is the number of robots) for the makespan [16], which
is the difference between the overall latest finish and the overall earliest start time.
Combinatorial auctions in which robots bid on combinations of tasks can produce
good schedules, but are expensive to compute. Zheng et al. [17] show that borrowing
combinatorial methods can improve the SSI auction scheme without incurring high
computation costs. The SSI auction has been shown both effective and computationally
inexpensive compared to other auction schemes [18], but it does not handle precedence
and temporal constraints. We have extended SSI to tasks with temporal constraints
and proposed the Temporal Sequential Single-Item auction (TeSSI) algorithm [5].

A decentralized solution to tasks with temporal constraints has been proposed in
[19], where the coupling introduced by precedence constraints is maintained by adding
to each robot schedule a set of “remote” nodes, which have inter-dependency with the
local tasks. Our approach avoids the very large temporal representation they need for
dense precedence graphs when predecessors and successors of tasks are assigned to
other robots, and the high computation and communication costs needed to update
the temporal model when the environment changes rapidly.

In [20], a distributed solution is presented for tasks that have precedence and re-
source constraints, but no temporal constraints. However, this solution computes essen-
tially a greedy schedule initially, and then adapts this schedule during task execution.
Our goal by contrast is to compute the entire schedule initially, so no communication
is required during task execution. In [21] a multi-tier auction and a genetic algorithm
are proposed for tasks that have intra-path and precedence constraints, but again no
temporal constraints.

Luo et al. [22] recently introduced an auction-based algorithm for multi-robot as-
signment of tasks for a particular special case, in which precedence constraints are in
a form called set precedence constraints (SPCs). The SPC problem partitions tasks
into sets with size at most equal to the number of robots. These sets are strictly or-
dered, giving a precedence relationship. The resulting problem is similar to ours, but
heavily constrains the space of allowable precedence graphs. In particular, if we view
the precedence graph by layers (described in more detail later), SPCs require that
every task in a layer has a precedence constraint with every task in the next layer.
This is equivalent to saying that the topological ordering of an SPC precedence graph
is unique up to changing the order of tasks within each set. They also require that
robots complete at most one task per set. This method is therefore too restrictive to
apply to our problem.

3. Problem Definition and Model

We assume a set R of m robots. Each robot ri has an initial pose, a maximum velocity,
and a set of sensors. The maximum velocity is the same for all robots, but robots
can travel at different speeds. Every robot is given a graph representation of the
environment. The graph’s vertices are waypoints and its edges connect pairs of vertices
between which there are no obstacles.

Additionally, we have T , a set of n tasks, each with a location, an earliest start time
EStj , a latest finish time LFtj , and a duration (DUtj ). Together, (EStj , LFtj ) define
the bounds for the task’s time window. A robot need to arrive to a task before its

3



latest start time LStj , which, if not specified, can be computed as LStj = LFtj −DUtj .
The objective is to find a route for each agent, such that (1) each task location is

visited once by one agent, (2) all locations are eventually visited, and (3) the team
optimizes an objective function. We assume a non-negative objective function that
represents the cost of moving between two locations. Typical functions used in the
literature [23] are: MiniSUM, i.e. minimize the sum of the agent path costs over all
the agents; MiniMAX, i.e. minimize the maximum agent path cost over all the agents;
MiniAVE: i.e. minimize the average path cost to reach all the tasks. An agent’s path
cost is the sum of the costs along an agent’s entire path, from its initial location to
the last task location on its path. Minimizing the makespan (i.e., the total duration
of the schedule) is similar to MiniMAX, but costs are measured in terms of time.

While time windows impose in-schedule constraints for individual robots, precedence
constraints can create cross-scheduling constraints since those tasks can be allocated
to different robots. We use a directed acyclic graph (DAG) to model precedence con-
straints. Nodes in the graph represent tasks, and edges represent precedence relations.
For example, t1 ≺ t2 means that t1 precedes t2, or equivalently, (t1, t2) ∈ E, where E
is the set of directed edges in the DAG. In our problem, a valid schedule consists of a
partition of T across R in which a task is assigned to a single robot, and the execution
times assigned to tasks respect their temporal and precedence constraints.

4. Temporal and Precedence constrained Sequential Single-Item auction

Our Temporal and Precedence constrained Sequential Single-Item auction (TePSSI)
combines the Prioritized Iterated Auction (pIA) [6] algorithm, with a modified ver-
sion of the TeSSI algorithm [5] to enable scheduling tasks with both temporal and
precedence constraints.

pIA uses a hierarchical approach to “peel” off layers of the precedence graph. The
tasks in each precedence layer are incrementally allocated and moved from more to
less constrained. Once they become unconstrained they are auctioned off using TeSSI.
TeSSI uses a variant of the sequential single-item auction algorithm [16], where each
robot maintains information on its allocated tasks using a simple temporal network
(STN).

In explaining the operation of the iterated auction algorithm, it is helpful to think
about the task precedence graph GP as a DAG with nodes grouped into layers. We
use the term ‘free’ to describe task nodes with no parents, and for a set of tasks A we
let free(A) be the set of tasks in A which have no predecessors in A

Hierarchical Decomposition of the Precedence Graph. In each iteration the
auctioneer divides the precedence graph (GP) into three layers: the free layer (TF ),
the second layer (TL), and the hidden layer (TH). TF contains tasks without any
predecessor, TL contains tasks with parents in TF , and all the remaining tasks not yet
touched by the planning algorithm are in TH .

Graph layering leads to a decomposition that allows individual robots to bid on
tasks that are independent (precedence-wise) in each iteration of the auction.

Task Prioritization. Tasks are assigned a priority depending on their criticality. Not
all tasks in the free layer affect equally the temporal problem. This means that more
“critical” tasks, i.e., tasks that are precedence constraints for longer chains of tasks,
should be auctioned off first. We use a simple priority assignment heuristic [6] that is
based on the shape of the precedence graph.

We define U(t) and L(t) for t ∈ T to be the length of the longest path in GP rooted

4



at t, respectively with and without the travel time, tt, between tasks. More precisely,
we let

L(tk) = dutk + max
tj∈children(tk)

(L(tj)) ,

U(tk) = dutk + max
tj∈children(tk)

(tt(tk, tj) + U(tj)) ,

where we use the convention that max∅(x) ≡ 0, so that L and U for a task without
children are equal to the task’s duration. Then we let

prioβ(tk) = (1− β)L(tk) + βU(tk) , 0 ≤ β ≤ 1 (1)

where U(tk) represents the total time it would take a single robot (in the absence
of any constraint) to execute a task chain that starts with tk. L(tk) is the least un-
constrained time required to execute these tasks. The priority function in (1) ranks
tasks depending on how much they add to the longest path in GP ’s. The tasks in
the set of free tasks that add more will be chosen, provided that their critical value
is higher than that of the most critical second-layer task. This allows the auction to
defer non critical tasks to the next auction iteration. The parameter β balances the
two components. β can be thought of roughly as the proportion of travel time that is
accounted for in task priorities. β can be adapted according to the tasks and prece-
dence configurations. The values of prioβ(tk) are computed in linear time by using
bottom-up dynamic programming starting from tasks that do not have successors.

Auction and Robot Bidding. Tasks in TF are auctioned in a sequential single-
item auction. In each iteration of the auction, a subset of high priority tasks in TF is
auctioned-off.

Upon receiving the list of tasks up for auction, each robot computes a bid for each
task. To compute the bid the robot temporarily inserts one task at a time in its
schedule. If the insertion is feasible, the bid value is computed as

bid = α×m+ (1− α)×Δtt (2)

where m is the makespan after inserting the task and Δtt is the additional travel
time the robot incurs for the new task. α is a parameter used to specify the relative
importance of makespan vs. travel time. Travel time is estimated using the distance
and a constant fraction of the robot maximum speed. Notice that adding a task does
not necessarily increase the makespan, since the task could fit into an empty slot in
the robot schedule. Δtt is included in the bid to penalize bids from robots that are far
away from a task compared to robots that are closer to the task.

Each robot sends to the auctioneer only its smallest bid, i.e. the one that minimizes
the cost function. The auctioneer keeps a priority list of the bids received and selects
the overall minimum bid efficiently (in time logarithmic in the number of bids). The
task is assigned to the robot that submitted that minimum bid. Only one task is
allocated in each round of the auction. The auctioneer marks that task as scheduled
and continues the auction with the remaining tasks.

Temporal Model and Validity Checking. Temporal constraints are modeled as a
simple temporal network [4]. In our model, each robot keeps its own STN (see [5] for

5



details), which grows as more tasks are allocated to the robot. The auctioneer keeps
a DAG with all the tasks’ start times that account for the precedence constraints.

To improve efficiency we employ a simple propagation and consistency checking
scheme inspired by [24]. Our scheme takes advantage of the hierarchy imposed by the
precedence constraints to compute the start and finish times of tasks in time linear in
the number of tasks in the schedule. This checking is done during the bidding phase, to
ensure that the insertion of a task in a robot’s schedule does not lead to an infeasible
schedule. The start time of task tk, Stk , is set to zero if the task is the dummy task
representing the robot’s initial location. Otherwise, it is set to max(S̃tk , EStk , Ftj +

tttj ,tk) where S̃tk is the maximum finish time over all tj ≺ tk. This only if the resulting
value of Stk ≤ LStk , i.e. the start time is not greater than the latest start time. If not,
the value of Stk is set to∞. The task’s finish time is then computed as Ftk = Stk+DUtk .
If any of the start times has the value ∞ it means that the schedule is inconsistent,
in which case the robot cannot do the task.

After the tasks in TF are assigned and before the tasks in TL are promoted to TF ,
the auctioneer computes the value S̃tk for all the tasks tk ∈ TL and sends them to all
the robots. This ensures that the constraints created by the schedule of TF tasks are
accounted for when bidding for TL tasks.

Once the tasks in TF have been allocated, they are removed from GP . Tasks in
TL that follow the removed tasks are promoted to TF , and the process restarts and
continues until all tasks are allocated. Some tasks might end up not being allocated
because there are not enough robots, or because choices made early in the auction
are never revisited. To prevent the algorithm from looping forever trying to allocate
tasks that cannot be allocated, The process terminates after a maximum number of
iterations, which in our implementation is set to the total number of tasks.
Soundness and Completeness. We will now outline an informal proof that our
algorithm will always produce a valid schedule if one exists, when only precedence
constraints are taken into account. Note that we allow general precedence constraints,
and so any set of tasks whose precedence graph is a DAG is valid. Furthermore, a
valid schedule will always exist in this case, since we can simply assign every task
to a single robot, which can complete the tasks in any topological ordering of the
precedence graph. For the rest of this section, we will assume that the problem instance
is valid, with a directed acyclic precedence graph. We therefore only need to show that
the algorithm produces a valid schedule in this case. We assume that priorities are
nonnegative and that the priority of every task is at least as high as that of any of its
successors in the precedence graph.

First, we show that the algorithm will successfully schedule all the tasks and ter-
minate. In every iteration the number of tasks auctioned is > 0, and therefore the
number of tasks scheduled increases in every iteration until all tasks are scheduled.

Now assume instead that the second layer TL is empty. If TL is empty there must
be at least one task in TF , as otherwise every task would already have been scheduled.
Since we assume that priorities are nonnegative, every task in TF will be added to
Tauct, and so Tauct will be nonempty. Thus in every iteration at least one task is
scheduled, and so the algorithm terminates.

Next, we must show that the schedule produced by the algorithm is valid. It is only
invalid if precedence constraints are violated. Note that the tasks scheduled in any
given iteration are pairwise independent, so tasks with precedence constraints must
have been scheduled in an earlier iteration.

A similar analysis can be used to show that soundness is guaranteed also for tem-
poral constraints. However, completeness cannot be guaranteed in the presence of

6



temporal constraints. The task prioritization algorithm does not take time windows
into account. For this reason, it is possible for tasks to be auctioned in an order that
violates the time window constraints for tasks that appear later in task chains.

5. Execution of Allocated Tasks

When tasks are allocated, robots communicate with each other and the auctioneer via
ROS (Robot Operating System) [25] publishers and subscribers. We run an auction
topic in which requests for bids and bids are sent back and forth. For simplicity,
bidding is done synchronously. The auctioneer waits until all robots send their bids or
a timeout is reached, prior to choosing the winner. There is a timeout to account for
cases where robots fail to submit their bid.

After the tasks are allocated, when the start time arrives robots execute the tasks
in their schedules in real time in ROS/Gazebo. When delays occur the auctioneer,
which during execution becomes an executive, monitors execution across schedules,
and updates the robots’ schedules with adjusted start times to ensure they still respect
the precedence constraints.

Task Execution by the Robots and Role of Executive. The result of the auction
process is a multi-robot schedule, with a set of m sub-schedules, one per robot. Each
of them contains a sequence of tasks, ordered according to the time they will be
performed. Each task tj appears only in one sub-schedule and has a planned start
time Δtj . The number of tasks scheduled could be smaller than n if some tasks could
not be scheduled.

When the execution starts, a robot retrieves the first task in its schedule. In each
ROS cycle, the robot computes the estimated arrival time to its upcoming task by
adding to the current time the estimated remaining travel time to the task’s location.
If the estimated arrival time is smaller than the start time for the task in its schedule,
the robot continues execution. If not, there are different cases. If the estimated arrival
time is smaller than the task’s latest start time, the task can still be executed, but the
delay could cause inconsistencies with other tasks for which this task is a precedence
constraint. Since those other tasks might have been assigned to other robots, the
delayed robot needs to check with the executive, for any potential violation. If there
are no violations, the robot assigns the estimated arrival time as the task’s start time
and continues executing. Otherwise, the robot marks the task as aborted since it is
unable to execute it within its temporal constraints. At that point, the executive runs
an auction to try to reallocate that task to another robot, if possible, otherwise marks
the task as failed. When a robot has completed the execution of a task, it marks it as
succeeded, notifies the executive, and proceeds to its next task. This way the executive
can keep track of the overall progress.

Monitoring by the Executive. As execution unfolds the executive monitors the
execution of the tasks by subscribing to ROS topics in which robots post their tasks’
execution status. In each ROS cycle it checks if a task has been completed. The
auctioneer keeps a DAG that encodes precedence constraints and start and finish
times of tasks, which are updated during execution. When a robot has a potential
time update, the executive proceeds by temporarily updating the finish times of all
remaining tasks in the DAG. Next, it does a topological sort on the DAG to compute a
linear ordering according to the precedence constraints. It then uses the sorted graph
to compute a new start time S̃tk for all tasks. If S̃tk ≤ LStk , ∀tk, the executive accepts
the temporal updates and the robot is sent an “OK” message. Otherwise, the executive

7



rejects the time updates, the robot aborts the task, and the executive resets the task
start time to its previous value.

When a task is marked as aborted, the executive starts an auction for that task to
see if any other robot can add it to its schedule. Each robot computes a bid, as during
planning, and sends it to the executive, which allocates the task to the robot with the
smallest bid, if any. If no robot can do the task (i.e., all robots submit ∞ as their bid
value), the task and all the tasks in its induced subgraph are marked as failed and
removed from the scheduled tasks. To keep precedence constraints consistent, there is
no attempt to execute failed tasks.

We found it convenient to use the ROS subscribing mechanism to share information
among robots and executive. Having the executive keep track of the overall progress
of all the tasks keep things consistent, but can create a bottleneck when the number of
tasks and robots is very large, Individual robots could be given more control in mon-
itoring the execution, but this will make it harder to deal with potential catastrophic
failures of the robots.

6. Experimental Setup

Simulation Experiments. Simulation experiments were conducted in ROS [26], us-
ing the Gazebo plugin. We used a Gazebomodel for virtual Pioneer 3-DX robots, and
a 2D world in which the robots operate.

To facilitate robot localization and motion planning, the simulator keeps a 2D map
of the world, but the sensing is done in the 3D model. The maps are discretized by
overlaying a graph over them. A node in the graph represents a (x, y) location, the
weighted edges represent Manhattan distances between pairs of nodes without obsta-
cles between them. The graph is used for path planning, using Dijkstra’s algorithm to
compute the distance between graph nodes (or waypoints). For simplicity, the travel
times used by robots in their bids are computed using the distance between nodes in
the graph. The ROS navigation package handles the actual motion of the robots.

Real Robot Experiments. We also validated our algorithm with three Turtlebot
2 robots and 12 tasks. Each robot has a Kinect sensor, which is used for obstacle
avoidance.

Data Generation for Real and Simulated Experiments. We generated a set
of tasks, each located at a distinct waypoint. Each task’s x-y location is randomly
drawn within the map, and a nearest-neighbor search with Manhattan distances is
used to assign the task to the nearest waypoint. In our data sets, each task is assigned
an earliest start time that is randomly drawn from U(25, 400), which is the range of
the numbers of seconds from the beginning of the simulation. The length of the tasks
time windows is uniformly drawn from U(100, 1200), hence the time window with the
latest possible end point closes roughly 26 minutes after the simulation starts. Tasks’
durations range from 20 to 40 seconds.

We also generated precedence graphs randomly. To prevent the generation of over-
constrained problems, we placed restrictions on the number of edges in the graph. In
our experiments, we created precedence graphs with random density. This randomiza-
tion is important to test the algorithm sensitivity to graph shapes and sizes. Graphs
can have at most 3n edges, where n is the number of nodes (or tasks) in the graph.
The algorithm that generates the precedence graph is described in [6]. Each data set
is created by keeping the tasks’ locations fixed, while the time windows can change.

8



Benchmark Algorithms. In addition to TePSSI, tasks are allocated using a greedy
auction and two modifications, OPT-M and OPT-Duo, of the MILP in [6]. In the
greedy auction, the auctioneer allocates up to m tasks, one per robot per round,
which is equivalent to each robot greedily choosing the task with the least cost in each
round. OPT-M minimizes the makespan, z(A, Stj , Ftj ), where the decision variables
are the allocation A, the start Stj and finish time Ftj for all tasks tj ∈ T . OPT-Duo
minimizes the average of the makespan and the sum of all the travel times of the
individual robots. Both optimization are solved using Gurobi [27].

7. Results and Discussion

7.1. Simulation Results

Simulation experiments were conducted in ROS [26], using the Gazebo plugin. The
100 × 100 meters map shown in part in Fig. 1 contains a total of 40 points, from which
we choose task locations and initial positions for the robots.

Figure 1. Example indoor Gazebo simulation scenario with two robots and eight tasks. Tasks are shown
colored small cubes. The colors represent dependencies between tasks: the precedence order is red, blue, green,
and yellow. The goal is to minimize the time to clear the last hazard or the distance covered.

Table 1. A specific example of time windows with
eight tasks.

Task Id EarlyStart LateFinish Duration

0 60 600 20
1 90 600 20
2 100 800 20
3 150 800 20
4 70 600 20
5 120 600 20
6 150 800 20
7 100 800 20

For the experiments, we generated 10 data sets for different number of tasks (8
and 16 tasks used), keeping the task locations fixed but changing the time windows.
We present now a sensitivity analysis to see how results are affected by the choice of
the parameters α and β. Then we compare the performance of TEPSSI against other
algorithms.

9



Table 2. Simulation experiments with 2 robots and 8 tasks. The table shows makespan and total

distance for TePSSI for different values of α and β. Results averaged over 10 random precedence

graphs for a total of 120 simulation runs.

β = 0.1 β = 0.5 β = 0.7 β = 0.9

μ σ μ σ μ σ μ σ

Makespan Values (minutes)

α = 0.1 3.86 0.72 3.64 0.67 3.85 1.51 3.64 0.81

α = 0.5 4.23 1.73 3.74 0.98 3.49 0.52 3.61 0.66

α = 0.9 3.53 0.76 3.91 1.02 4.21 1.29 4.14 0.68

Distance Values (meters)

α = 0.1 153.33 43.20 131.07 36.35 114.85 25.81 150.22 48.37

α = 0.5 126.43 34.51 142.69 34.99 142.69 34.99 144.27 35.33

α = 0.9 131.23 46.22 145.47 37.31 150.22 48.37 153.14 45.59

7.1.1. Sensitivity Analysis Results

In Table 2 we report statistics for the makespan and distance values for different values
of α and β. α is used in the optimization function, β is used when prioritizing tasks
with precedence constraints. Higher values of α increase the importance of makespan,
lower values increase the importance of travel time in the value of the bid (see Eq.
2). Higher values of β place more weight on combined duration and travel times of
task chains, lower values place more weight on durations of task chains alone ignoring
travel times (see Eq. 1).

The TEPSSI auction registers up to 33% change in distances (38.5 meters) and 17%
in makespan values (less than a minute) as the α and β parameters change.

No parameter combinations result in non-dominated solutions. For lower α values
(0.1-0.5) the best makespan values are obtained by using β ≥ 0.5, this is also partly
true for distances. We have not observed much advantage in setting α values very high.
Roughly, the parametric analysis shows that the algorithm performs better when more
weight is placed on distance-based measures.

7.1.2. Comparison of Methods

Table 3 shows that TEPSSI finds solutions with paths that are nearly 28% and 16%
shorter than the paths returned by the Greedy algorithm for the eight and 16-task
cases, respectively. The makespan of the schedules returned by the methods are not
statistically different. TEPSSI’s solutions are also competitive compared to optimal
solutions that only consider makespan as objective, and are less than twice the distance
and makespan values returned by OPT-Duo. The performance differences are more
evident in the 16 task case.

Figure 2 shows examples of the solutions found by TePSSI, OPT-DUO, and a greedy
algorithm. The colors of the tasks in the figure reflect their precedence constraints.
The allocations produces by TePSSI and OPT-DUO are very similar, while the greedy
algorithm produces much worse allocations.

10



Table 3. Simulation results comparing the makespan, total distance traveled, total idle time, and

completion percentage for TEPSSI, greedy auction, OPT-M, which finds optimal solutions using

makespan only, and OPT-Due, which finds optimal solutions using and makespan and distance
combined. μ is the mean and σ the standard deviation. Eight and 16 tasks are allocated to two
robots in the simulated environment in Fig. 1 (left). Minimum values are bold.

Configuration
Makespan
(minutes)

Distance
(meters)

Idle Time
(minutes)

%Tasks
completed

μ σ μ σ μ σ μ σ

TePSSI
2 robots, 8 tasks 3.85 1.51 114.85 25.81 2.35 0.97 100 0.00

2 robots, 16 tasks 9.52 2.10 418.24 35.52 0.00 0.00 100 0.00

Greedy
2 robots, 8 tasks 4.02 0.44 159.47 13.71 0.00 0.00 100 0.00

2 robots, 16 tasks 9.44 1.64 494.99 93.36 0.00 0.00 100 0.00

OPT-M
2 robots, 8 tasks 3.47 0.48 139.58 39.85 0.00 0.00 100 0.00

2 robots, 16 tasks 7.95 0.70 410.60 21.47 0.00 0.00 100 0.00

OPT-Duo
2 robots, 8 tasks 2.94 0.17 99.76 6.08 0.00 0.00 100 0.00

2 robots, 16 tasks 9.00 2.12 307.21 13.48 0.00 0.00 100 0.00

Figure 2. Routes produced by OPT-Duo (left; makespan 2.87, distance 96.88), TePSSI (middle; makespan
3.06, distance 96.88) and Greedy method (right; makespan 4.03, distance 154.26) for an instance with 8 tasks
and two robots. Makespans are measured in minutes and distances in meters. The colors represent tasks’
precedence where red precedes blue, blue precedes green, and green precedes yellow. The temporal constraints
on the tasks are in Table 1.

7.2. Results with Real Robots

The experiments with real robots were run on a map (54 by 51 meters) of a room and
corridors (see the left part of Fig. 3). Three TurtleBot 2 had to do 12 tasks distributed
around the space. The results for these experiments are averaged over five runs.

With the real robots the initial allocations were computed with OPT-M, TePSSI,
and Greedy. Results are shown in Table 4. The allocation returned by TePSSI yields
a Manhattan distance (132.5) that is nearly 34% longer than for OPT-M (99.1) and
nearly 13% shorter than the one returned by Greedy (152.41). The differences in
makespan values are more modest, TePSSI schedules are best with a makespan of
about 4 minutes, while both OPT-M and Greedy yield schedules of about 6 minutes.
Unlike TePSSI and the Greedy auction, OPT-M only uses two of the three available

11



Figure 3. (Left) Scenario used with real robots. The colors represent dependencies between tasks: the prece-
dence order is red, blue, green, and yellow. The goal is to minimize the time to complete the last task or the
distance covered. (Right) Three Turtlebot 2 robots used for our physical robot experiments, which operated in
the room and corridor environment shown.

Table 4. Real robot results comparing makespan and total distance
traveled for TePSSI, greedy auction, and OPT-M solutions. All the tasks
are allocated and there is no idle time. Results averaged over five runs.

Configuration
Makespan
(minutes)

Distance
(meters)

μ σ μ σ

TePSSI 3 robots, 12 tasks 4.20 0.52 132.50 1.50

Greedy 3 robots, 12 tasks 6.21 1.20 152.41 1.80

OPT-M 3 robots, 12 tasks 6.40 0.48 99.10 1.35

robots, which explains in part why the algorithm’s makespan is larger than TePSSI’s.

7.3. Analysis

Our parametric analysis shows that placing more emphasis on the distance objective
yields schedules with shorter distances. The same is not true for makespan values.
This is partly due to the large distances robots (both real and virtual) have to travel
to get to the tasks, and the delays that occur due to re-planning. The results could
differ for datasets with very small distances and far apart time windows, because the
time windows would dominate the allocation decisions.

Comparison with other methods shows that TePSSI has a clear advantage over the
greedy method when both distance and makespan are considered. Its schedules yield
distance and makespan values that are not larger than twice the optimal allocations.
Part of the success depends on our careful selection of tasks to auction and balancing
of spatial and temporal objectives. However, we do not guarantee that our method
will always yield results less than twice larger than optimal; data instances can be
designed that produce results similar to the Greedy algorithm. Lastly, all the tasks in
our experiments were completed without re-auctioning.

12



Figure 4. The map used for risk analysis. Robots are the colored circles labeled R0,...,9 and tasks are the

green triangles labeled T0,...,24

8. Schedule Execution and Uncertainty

The goal in this section is to propose the use of simulation as a tool to identify
and estimate some of the sources of schedule execution failures. This is a first step in
incorporating uncertainty during task allocation and execution. Uncertainty is modeled
via probabilities that ultimately can be used with probabilistic STN models [28]. We
also discuss risk measures, which can be used as part of the computation of TePSSI.
The inclusion of probabilities and risk measures into the STN model and the auction
are left for future work.

Specifically, in this paper we are interested in using a large number of simulations
to compute:

(1) P (sttj ≤ Δtj ), the probability that the start time of task tj at execution time is
within its planning time;

(2) P (sttj ≤ lstj ), the probability that the start execution time of tj is smaller than
the task’s latest planned start time.

For these experiments we simulated robots using ROS/Stage robot and world models
[29] to allow us to scale the number of robots used. Each robot is equipped with
a simulated Hokuyo ranger sensor for sensing. We used a 52 × 37 meter map (see
Figure 4), with 10 robots and 25 tasks. Tasks temporal constraints are drawn from
distributions similar to those used in Section 7. For the constraint graph generation
we limited the number of immediate children for any node to be at most 4 (found
experimentally), however we do not limit the length of any task chain.

We generate a discretization of the map by overlaying a grid over the map (see
Figure 5). We tried grids of different sizes and found that a 4× 4 meter cell provided
enough resolution for our analysis. We use the grid to gather statistics for tasks’ start
times and for the time robots spent on each cell of a grid. The start times statistics in
the right part of Figure 5 were collected over 100 runs on the same robots’ schedules.

Using the global plan returned by the ROS navigation we generate timed path traces

13



Figure 5. (Left) 4× 4 meter grid decomposition of the map. (Right) Distribution of traversal times over the
grid. Results collected over 100 simulated execution runs.

for the robots, where to each (x, y) location we attach a timestamp indicating when
the robot arrived to the location. For each set of locations in the robot path that are
in the same cell we compute the time the robot spends in the cell by calculating the
difference between timestamps. The differences are computed across all robot runs.
The time distribution is averaged over all robots that have paths that visit the same
cells. We also run additional simulations where we vary tasks’ locations but keep time
windows, precedence constraints, and robots’ locations the same. By varying tasks’
locations we create traversal time profiles for more cells in the map.

The traversal time distribution (right part in Figure 5) per cell shows that for most
cells the robot traversal time is under 7 minutes, except for the regions between 56-
58 where robots spend much longer. This is partly explained by the fact that when
operating in that area robots sometimes cannot properly localize themselves and they
get stuck in the same place for the rest of the simulation.

8.1. Toward Risk Models for Scheduling Analysis

We expect the start times of tasks to vary across runs due to several sources of uncer-
tainty. Here we focus on the delays caused by congestion (too many robots working in
the same area), number and shape of fixed obstacles (space is too tight), and sensor
and localization errors as the main sources of uncertainty.

Congestion causes the robots to reduce their speeds to avoid collisions, which in
turn causes fluctuations in their travel times, and ultimately affects their arrival times
to tasks. The number and shape of fixed obstacles (especially in unstructured environ-
ments) require robots to slow down to avoid collision with the obstacles, also causing
arrival time variations. When robots experience localization and sensor failures they
might need to replan, which introduces a time overhead. In this paper we only account
for transient failures such as the ones already discussed, we do not directly address
permanent failures (e.g., destruction of robots).

Let BT = {Bt1 , ...,Btj , ...,Btn} be the set of random variables for the tasks’ start
times, one per task. We treat Btj as a continuous random variable. We assume hard
temporal constraints, for this reason the probability mass for each Btj is non-zero only
within the task’s time windows ([estj , lstj ]).

We also consider dependencies among Btj variables. The structure of these depen-
dencies is due to precedence constraints over the set of tasks and task sequencing in
the robots schedules. The dependencies are also encoded in uncertainties of the tasks:

14



Figure 6. Distribution of start times for task T2 in experiments with 10 robots and 25 tasks.

a late arrival of a robot to a predecessor of a task might delay the arrival to that task
too. We use a Bayesian network (BN) to model the dependencies.

A BN is a directed acyclic graph in which random variables that share an edge
are dependent. The directed edges define parent-child relationships among random
variables, the same way that they describe precedence in our problem. In a BN each
variable is conditionally independent of all its non-descendants given all of the vari-
ables’ parents. This is useful because it allows us to model tasks in the precedence
graph that are not dependent on each other (e.g tasks in different subgraphs).

In the BN each Btj is parameterized with a conditional probability table that encodes
the probabilities of the random variable, given its parents. Given a BN, we can answer
queries such as “what is the probability that robot 1 will arrive to task t3 on time,
given that the robot started t3’s predecessors within their planned start times?” To
answer the query we compute the following probability:

p(Bt3 ≤ Δt3 |Bt2 ≤ Δt2 ,Bt5 ≤ Δt5) =
P
Q

where

P = p(Bt2 ≤ Δt2 ,Bt3 ≤ Δt3 ,Bt5 ≤ Δt5) and Q = p(Bt3 ≤ Δt3)

The computation of P and Q is intractable, especially for a BN that encodes a
large and complex precedence graph. Approximate inference could be employed using
methods such as Gibbs sampling, but this would assume that the BN parameters (the
conditional probability tables for each Btj ) and structure have already been learned.
Fortunately, in this case we would not need to learn the BN structure (which is a harder
task), given that these are derived from the precedence and sequencing constraints.
However, we still need to learn the BN parameters.

Training data to learn the BN parameters can be obtained in simulation as historical
data for tasks’ start times (see Figure 6 for an example). To learn the BN parameters
we will use a Bayesian update approach: assign a prior probability density function
to each Btj and use the training data (e.g., Figure 6) to compute a posterior param-
eter distribution and the Bayes estimates. We roughly estimate the BN parameters
experimentally by running many simulations of the robots executing schedules, and
collecting statistics about tasks’ start times. Probabilities are computed by counting

15



the number of times tasks started at given times. The use of more advanced parameter
estimation techniques is left for future research. This BN can be used as more advanced
probabilistic model for probabilistic STN approaches such as the one proposed by Fang
et al [28].

The simulation data can also be used to compute risk measures for individual tasks.
This level of risk analysis gives the system user granular information about individual
task’s influence on the overall execution outcome. The designer can then adjust the
tasks’ temporal constraints to increase the probability of a task being completed on
time.

8.2. Risk measures

To measure risk we adapt two well-known risk measures, the schedule sensitivity index
(SSI) and the critical delay contribution index (CDC) to our problem. Both indices
have been identified as good risk measures in probabilistic project scheduling [30].
SSI measures risk as a task’s variance contribution compared to the overall schedule
variance. CDC measures risk as individual task’s contributions to the overall lateness
(difference in makespan between the planned makespan and the execution makespan).

We simplify the computation of SSI and CDC as follows: the variance contribution
in SSI (Eq, 3) is weighted by the number of times a robot arrived to a task after the
task’s planned start time (start time delay). We compute it in each simulation run
and sum over all the simulations (see Eq. 5). The same weight is also used to compute
CDC values (see Eq. 4).

When computing SSI we normalize individual task’s variances by dividing them
by the maximum variance over all tasks’ start times. This is a departure from the
original index, which used the variance of the last task’s start time. This distinction
is important because the variance of the last overall task’s start time depends on the
task’s predecessors’ variances. If the task has very large time window (and temporal
flexibility) the time window length may attenuate or even dissipate the effects that
previous tasks’ variances have on the last task’s variance.

SSItj = Z ·
√

Var(�stj )

maxtk∈T Var(�stk)
(3)

CDCtj = Z ·
N∑
q=1

(mplan −mq) (4)

where

Z =

∑N
q=1 δ

q
tj

N ∑
tj∈T

∑N
q=1 δ

q
tj

(5)

In Equation 5, δptj is an indicator function that assumes the value of 1 if the robot
assigned to execute task tj starts the task past its planned start time Δtj , and 0
otherwise. This value is collected in each simulation run p over all N simulation runs.
�stj is the vector of start times for task tj , and �smax is the vector of tasks’ start times

16



Figure 7. Schedule sensitivity index for 25 tasks
executed by 10 robots.

Figure 8. Critical delay contribution for 25 tasks
executed by 10 robots.

Figure 9. Probability of task failure measured as
frequencies over the number of simulations for 25
tasks and 10 robots.

Figure 10. Probability of task delay measured as
frequencies over the number of simulations for 25
tasks and 10 robots.

with the maximum variance. These vectors have dimensions N × 1. In Equation 4,
mplan is the makespan of the robots’ schedules prior to execution, and mp is the
makespan for simulation number p. (mplan−mp < 0) indicate lateness in finishing the
overall schedule.

8.3. Preliminary Risk and Probability Results

We show here preliminary results on tasks’ risks and probabilities for the map and
tasks illustrated in Figure 4. Figure 7 and Figure 8 show the two measures SSI and
CDC, while Figure 9 and Figure 10 show the probabilities of failures and of delay,
respectively. The risk measures are computed according to Eqs. 3 and 4. The two risks
highlight different information about the tasks’ stochastic start times: SSI highlights
the importance of tasks’ variances, while CDC highlights the importance of delays of
individual tasks. In our experiments the tasks with the highest SSI risk are located in
the cells with largest traversal times. This supports the hypothesis that tasks with high
variance in their travel times, and consequently start times, are more risky. However
SSI by itself might not be enough because it does not measure the effects of a tasks’
variance on the overall risk of a schedule. For that we need the CDC risk index.

The CDC risk index shows that more tasks are at risk. Part of that is explained by
the fact that CDC combines the individual (task level) and overall (schedule-level) de-

17



lays when computing risk. Tasks for which the start execution time exceeds the planned
start time (indicating a delay) are considered more risky. An interesting property is
that tasks at the end of long task chains (e.g. tasks with ids 7) have large CDC risks;
this is in part due to the fact that delays in earlier tasks are propagated to the later
ones in the chain, even if these later tasks do not have high variance in their start
times.

Our experiments also show that tasks have low probabilities of failing. Failure hap-
pens when a time window constraints are not met during execution. Failure probabili-
ties of tasks in Figure 9 are consistent with the hypothesis that more constrained tasks
(e.g., task 7) are more likely to fail. This is also consistent with the delay risk reported
in Figure 8. The delay probabilities are consistent with the CDC results, because CDC
values use delay frequencies in their computation. The reported low probabilities sup-
port our claim on the robustness of our allocation and execution method. Robustness
is improved by schedule adjustments and task re-auctioning.

9. Conclusions and Future Work

We extended the pIA and TeSSI algorithms to allocate to multiple robots tasks that
have both with temporal and precedence constraints, and we presented an executor
that monitors the execution of the tasks and reallocates tasks when failures or delays
will cause constraint violations. TePSSI is used by the auctioneer to allocate tasks to
robots, forming a schedule for each robot. When robots execute their schedules, they
send to the executive information about the execution status of their tasks. In case of
failure or delays that cannot be dealt with locally by a robot, the executive tries to
reallocate tasks to the other robots.

Our experimental results show that our method outperforms a Greedy method and
yield schedules with distances that are within two away from the optimal. Future
work will focus on designing more constrained data sets that will further show the
robustness of our method.

The preliminary analysis of potential execution delays proposed so far is for a fixed
schedule and fixed starting positions of robots and tasks. A more general analysis
should include simulations over different schedules and locations of robots and tasks.
However, learning over the space of all possible schedules is intractable due to the
exponential number of schedules. In future work we will incorporate the risk and
probabilistic analysis directly in the allocation system, to produce directly more robust
schedules.

Acknowledgments: Partial support provided by the National Science Foundation
(under grants NSF IIP-1439728, NSF CNF-1531330) and the Doctoral Dissertation
Fellowship program from the University of Minnesota.

References

[1] Feillet D, Dejax P, Gendreau M, et al. An exact algorithm for the elementary
shortest path problem with resource constraints: Application to some vehicle rout-
ing problems. Networks. 2004;44(3):216–229.

[2] Korsah GA, Stentz A, Dias MB. A comprehensive taxonomy for multi-robot task
allocation. The International Journal of Robotics Research. 2013;32(12):1495–
1512.

18



[3] Nunes E, Manner M, Mitiche H, et al. A taxonomy for task allocation problems
with temporal and ordering constraints. Robotics and Autonomous Systems. 2017;
90:55–70.

[4] Dechter R, Meiri I, Pearl J. Temporal constraint networks. Artificial Intelligence.
1991;49(1-3):61–95.

[5] Nunes E, Gini M. Multi-robot auctions for allocation of tasks with temporal
constraints. In: Proc. AAAI Conf. on Artificial Intelligence; 2015. p. 2110–2116.

[6] McIntire M, Nunes E, Gini M. Iterated multi-robot auctions for precedence-
constrained task scheduling. In: Int’l Conf. on Autonomous Agents and Multi-
Agent Systems; 2016. p. 1078–1086.

[7] Gombolay M, Wilcox R, Shah J. Fast scheduling of multi-robot teams with tem-
porospatial constraints. In: Robotics: Science and Systems (RSS); Berlin, Ger-
many; 2013. p. 49–56.

[8] Maheswaran RT, Tambe M, Bowring E, et al. Taking DCOP to the real world:
Efficient complete solutions for distributed multi-event scheduling. In: Int’l Conf.
on Autonomous Agents and Multi-Agent Systems; 2004. p. 310–317.

[9] Junges R, Bazzan ALC. Evaluating the performance of DCOP algorithms in a real
world, dynamic problem. In: Int’l Conf. on Autonomous Agents and Multi-Agent
Systems; 2008. p. 599–606.

[10] Farinelli A, Rogers A, Petcu A, et al. Decentralised coordination of low-power
embedded devices using the Max-Sum algorithm. In: Int’l Conf. on Autonomous
Agents and Multi-Agent Systems; 2008. p. 639–646.

[11] Ramchurn S, Farinelli A, Macarthur K, et al. Decentralised coordination in
RoboCup Rescue. The Computer Journal. 2010;53(9):1–15.

[12] Dias MB, Zlot R, Kalra N, et al. Market-based multirobot coordination: A survey
and analysis. Proceedings of the IEEE. 2006;94(7):1257–1270.

[13] Korsah GA, Kannan B, Fanaswala IA, et al. Enhancing market-based task al-
location with optimal seed schedules. In: Proc. of the Int’l Conf. on Intelligent
Autonomous Systems; August; 2010. p. 249–258.

[14] Nanjanath M, Gini M. Repeated auctions for robust task execution by a robot
team. Robotics and Autonomous Systems. 2010;58(7):900–909.

[15] Lagoudakis MG, Berhault M, Koenig S, et al. Auctions with performance guaran-
tees for multi-robot task allocation. In: Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems; 2004. p. 1957–1962.

[16] Lagoudakis MG, Markakis E, Kempe D, et al. Auction-based multi-robot routing.
In: Robotics: Science and Systems (RSS); 2005. p. 343–350.

[17] Zheng X, Koenig S, Tovey C. Improving sequential single-item auctions. In: Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems; 2006.

[18] Koenig S, Tovey C, Lagoudakis M, et al. The power of sequential single-item
auctions for agent coordination. In: Proc. AAAI Conf. on Artificial Intelligence;
2006. p. 1625–1629.

[19] Barbulescu L, Rubinstein ZB, Smith SF, et al. Distributed coordination of mobile
agent teams: the advantage of planning ahead. In: Int’l Conf. on Autonomous
Agents and Multi-Agent Systems; 2010. p. 1331–1338.

[20] Sariel S, Balch T, Erdogan N. Incremental multi-robot task selection for resource
constrained and interrelated tasks. In: Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems; Oct; 2007. p. 2314–2319.

[21] Jones E, Dias MB, Stentz AT. Time-extended multi-robot coordination for do-
mains with intra-path constraints. In: Robotics: Science and Systems (RSS); July;
2009.

19



[22] Luo L, Chakraborty N, Sycara K. Multi-robot algorithm for tasks with set prece-
dence constraints. In: Proc. IEEE Int’l Conf. on Robotics and Automation; 2011.
p. 2526–2533.

[23] Tovey C, Lagoudakis M, Jain S, et al. The generation of bidding rules for auction-
based robot coordination. In: Parker LE, Schneider FE, Schultz AC, editors.
Multi-Robot Systems: From Swarms to Intelligent Automata, Volume III; Mar.
Springer Netherlands; 2005. p. 3–14.

[24] Wilson M, Roos N, Huisman B, et al. Efficient workplan management in main-
tenance tasks. In: Proc. 23rd Benelux Conference on Artificial Intelligence; nov;
2011. p. 344–351.

[25] Quigley M, Conley K, Gerkey BP, et al. Ros: an open-source robot operating
system. In: ICRA Workshop on Open Source Software; 2009.

[26] Gerkey B, Vaughan R, Howard A. The Player/Stage project: Tools for multi-
robot and distributed sensor systems. In: 11th Int’l Conf. on Advanced Robotics;
2003.

[27] Gurobi Optimization I. Gurobi optimizer reference manual ; 2014. Available from:
http://www.gurobi.com.

[28] Fang C, Yu P, Williams BC. Chance-constrained probabilistic simple temporal
problems. In: Proc. AAAI Conf. on Artificial Intelligence; 2014. p. 2264–2270.

[29] Portugal D, Rocha RP. On the performance and scalability of multi-robot pa-
trolling algorithms. In: IEEE Int’l Symp. on Safety, Security, and Rescue Robotics;
Nov.; 2011. p. 50–55.

[30] Creemers S, Demeulemeester E, Van de Vonder S. A new approach for quantita-
tive risk analysis. Annals of Operations Research. 2014;213(1):27–65.

20


