
Reliable Real-time Robot Operation
Employing Intelligent Forward Recovery
Rlchard E. Smith and Maria Gin1
Computer Science Department, University of Minnesota,
Minneapolis, Minnesota 55455
Received March 17, 1986; accepted May 16, 1986

Modern computer-controlled robots typically fail at their tasks whenever they encounter an emr ,
no matter how minor. The physical environment of a typical assembly robot is too unstructured
to benefit from conventional software approaches to reliability. We present an approach which
interfaces the real-time operation of the robot with an intelligent subsystem that performs error
analysis and forward recovery if a failure occurs. Our approach involves a special representation
of the robot's program that efficiently tracks the robot's operation in real time and is easy to
modify to include automatically generated recovery procedures.

1. INTRODUCTION

Computer-controlled robot manipulators have opened new possibilities for auto-
mating industrial processes. Robots are operating today on a wide variety of tasks
such as object handling, painting, and welding. Despite the growing interest and falling
hardware prices many manufacturers have found it very difficult to install computer-
controlled robots and automate complicated processes. Most robots in use today are
performing simple motion sequences and do not rely on sensors for feedback or control.
Few robots do parts assembly or use complex sensors such as cameras. Robot use is
impeded by several problems inherent in robot programming,' particularly in the
description and reliable execution of robot tasks.

Journal of Robotic Systems, 3(3 , 281-300 (1986)
0 1986 by John Wiley & Sons, I nc. CCCO471-2223/86/030281-20$4.00

282 Journal of Robotic Systems-1 986

Reliability problems in robot programming are different than in conventional soft-
ware environments. The problems do not involve specification and validation of pro-
cedures, nor do they involve unreliable communication or processor resources. The
problems stem from the variability of everyday matter and of physical mechanisms.
Robot tasks often fail due to minor variations in the robot’s motion or in the objects
that the robot manipulates. Computational analysis of failures such as jammed or
dropped objects is always time consuming and often mathematically intractable. It is
seldom feasible to implement general pu@se error detection and recovery procedures
because such errors can manifest themselves in so many ways.

A promising approach to this problem is to apply artificial intelligence techniques
such as knowledge-based programming. This involves the implementation of automated
reasoning systems to deal with knowledge about robot manipulators, work cells, and
manipulator programs. Reasoning about three-dimensional space and motion is also
necessary. Although promising work has taken place in these areas, the techniques
are seldom efficient enough in computation time to work effectively with industrial
robots in time critical situations.

Our approach is to factor out the reflexive, real-time operations of the system from
the reflective, automated reasoning components. Thus the robot can respond imme-
diately when it must and take the time to ponder when its next action is not yet known.
The system reasons about the task before its execution and generates a special program
form that incorporates knowledge about the task at hand and about necessary sensor
readings. The special form is used to monitor and control the robot in real-time as it
performs its task. If a failure is detected, the real-time system pauses while an intelligent
recovery system determines what happened and how to recover. The recovery system
then gives the real-time system a procedure to lead the robot from its erroneous state
into the next correct state in its task.

II. PROGRAMMING INDUSTRIAL ROBOTS

Robot manipulators consist of jointed mechanical members that are moved by ser-
vomotors in each joint. The robot is operated by supplying each servomotor with an
appropriate sequence of joint angles. Many robots are programmed manually by a
reach pendunr that directly controls the robot’s joints. An operator programs the robot
by moving it through the required motions while the teach pendant records them. The
robot then reproduces the motion sequence continuously when told to run. Teach
pendant programming, however, seldom permits conditional programming or the use
of sensor feedback other than joint positions. Another problem is that it requires direct
interaction between the programmer and the robot, a situation that is both costly in
robot time and dangerous for the programmer.’

The problems of teach pendant programming have led robotics researchers to develop
of-fine programming techniques. By off-line we mean “off-line with respect to the
robot” and not “off-line with respect to the computer” as commonly intended in
computer science. Off-line programming allows robot programs to be completely
developed without involving the robot itself. Only final testing and tuning requires the
real robot and real parts. The robot can continue to work on the assembly line while

Smith and Gini: Reliable Real-Time Robot Operation 283

the new program is developed, a major advantage when robots are components of
complex industrial automation systems. Another advantage is that off-line program-
ming can be performed in an environment more suited to programming than the factory
floor. Larger computers can be used because they are not tied to a single robot. This
opens the area of robot programming to computer-aided engineering techniques.

A number of languages have been developed for off-line robot programming. The
simplest of these languages only provides an interface to the servomotors and motions
are described in terms of robot joint angles. However, most languages now accept
Cartesian coordinates and automatically perform the kinematic transformations either
at compile time or at run time. Typical of these languages are AL and VAL.3*4 These
languages closely resemble conventional programming languages such as Ada or PU
1 except that they include statements that operate robots and other industrial equipment.
The programmer specifies robot motions in terms of the coordinates of the destination
the manipulator is supposed to reach. Grasping and releasing objects is performed by
commanding the servo that controls the robot’s gripper. Robot manufacturers and users
have found these languages to be cost effective and satisfactory, if not ideal.

In the search for better robot languages, several researchers have turned to artificial
intelligence. Much of this research has centered on planning sysrems. These systems
take high level descriptions of robot tasks and automatically plan appropriate robot
manipulator actions. These languages attempt to express the desired task in terms of
the objects involved and operations on them: “Put Object A on Object B,” for example.
The planner determines what objects need to move, how to grasp them, what order
to do things in, what manipulators to use, and so on. Although such an approach is
very attractive, planning systems are still too rudimentary to solve the complex prob-
lems found in real applications of robots.

111. ROBOT RELIABILITY

The fundamental issue in robot reliability is that robot manipulators and the parts
they deal with must all be in precise locations and follow precise motions. This problem
appears during robot task development as a requirement that the programmer know
the exact coordinates of everything taking part in the task. The location problem
becomes important during execution of the task when inaccuracies of part sizes and
manipulator positions creep in. Other problems may be parts slipping out of the
manipulator’s gripper, jammed parts feeders, or side effects where misplaced parts
collide with other parts.

A variety of computer-aided engineering systems are helping with the problem of
robot task development. Typical systems combine solid modeling, motion simulation,
and computer graphics to provide a graphic simulation of robot motion. Robot pro-
grammers use these systems to test their programs by visually watching for collisions;
some systems provide automatic collision detection as well. 5 7 6 Interactive development
and simulation systems increase the likelihood that the robot’s task is described ac-
curately. The systems can provide important savings when they reduce the use of
production robots for programming and debugging.

The development systems, however, do not contribute much to robot reliability

284 Journal of Robotic Systems-1986

during task execution. It is well known that programs developed off-line tend to be
unreliable and error prone, In many cases reliability is increased by expanding the
robot’s task program to use sensors to improve accuracy and to detect and recover
from errors; code to handle sensors and errors often comprises 80% of the robot’s task
program. Unfortunately, development systems can not effectively test such code since
sensor interaction can only be ~imulated.~

Error detection and recovery, then, depends on the experience, intuition, and com-
mon sense of the robot programmer.8 The programmer is responsible for anticipating
all the possible errors and for determining the actions to take to recover from them.
Since not all the possible errors can be considered, a long testing cycle is still needed.
This all makes developing and testing a robot program a long and painful job. It is
common to spend between 3 and 6 rnan-months to develop a new, reasonably complex
program. Automatic techniques for error detection and recovery can have important
advantages in engineering savings and robot reliability.

IV. AUTOMATIC ROBOT ERROR RECOVERY

Recovering from execution errors is difficult because they typically involve dis-
crepancies between what the system believes is true and what is true in the physical
world. Discrepancies can occur because the robot itself has inherent inaccuracies,
actions are not exactly reproducible, and there are real-time constraints. It is tricky to
determine when a slight discrepancy constitutes an error as opposed to normal variation
and whether a minor miscalculation will result in disruption or go unnoticed. Inap-
propriate decisions may be costly. Failures to detect an incorrect arm position may
result in the arm crashing into a wall. On the other hand, a program that has worked
well hundreds of times may fail because of a small difference in the size of one part,
a difference that should be insignificant. The range of possible errors is so vast that
it is impossible to anticipate and implement recovery strategies for each application.
Automatic recovery systems must be able to reason about the problem in order to
decide what to do.

Error recovery techniques are often classified as involving either forward recovery
or backward rec~very .~ In both cases there is the notion that an error indicates a
difference between the actual and the desired state of the system. Recovery consists
of fixing the cause of the problem and then proceeding with system operation from a
state known to be correct. In backward recovery the system recovers by “going back”
to a previous state that is known to be correct. This usually involves undoing some
actions performed previously. In forward recovery, the system performs actions that
lead it to a state the system is supposed to eventually achieve. Forward recovery avoids
undoing previous actions, but is more difficult to do since it requires an intelligent
recovery system.

Backward error recovery has been used successfully in software systems where
actions can be characterized purely by the state of information. The strategy associated
with backward error recovery often involves the notion of rolling back the system to
a known correct previous state. This approach works poorly in the robot environment
because robot actions can not be reversed exactly. In some cases the attempt to undo
some action may compound the problem by leading to further disruption of part

Smith and Gini: Reliable Real-Time Robot Operation 285

locations. Also some operations such as fastening might not be reversible by the
available tools.

Since robot actions are not recoverable in the sense necessary for backward recovery,
a form of forward recovery is more appropriate. Forward recovery consists of deter-
mining the difference between the actual state and the desired state, then developing
a sequence of operations to achieve the desired state. The robot needs to recognize
situations such as “dropped part” and decide, perhaps, to “ignore the dropped part and
get a new one from the feeder.” We need to figure out side effects of motion (collision
of a part involved in a failure with another part, for example) in order to characterize
the current state of the work cell.

In prior research on robot planning systems, much of the work has concentrated on
detection and correction of errors in the robot plan rather than during the plan’s
execution.” Such work does not really represent either forward or backward recovery,
since recovery may involve rewriting plan steps both ahead and behind the point of
error in the plan. A few systems have attempted to detect unexpected situations during
execution and do a form of forward recovery. STRIPS” was used to control Shakey,
a mobile robot. Shakey was able to detect unexpected situations in its environment
and to react by replanning its actions. Research with the JPL Robot also addressed
robot error c~rrect ion’~*’~ including a specialized system for analyzing the causes of
failures in robot programs and for replanning the robot activity. These studies all make
several assumptions: knowledge about events is correct, there are no uncertain data,
correct predicates are generated from sensor data every time they are needed, and
enough knowledge is provided to take into account all the possible states of the
environment. Current planning systems are too rudimentary and slow to solve the
complex problems found in real applications of robots.

V. A SYSTEM FOR AUTOMATIC ERROR RECOVERY

We have designed a system that handles failures in robot programs performing parts
manipulation and assembly. The system starts with a robot program and applies general
knowledge about robot manipulation tasks to generate an expanded form of the pro-
gram. This expanded form is then used to monitor and control the robot’s operation
in real time. If a failure is detected during the robot’s operation, information collected
during execution is passed to a recovery process that perfoms the forward recovery.
The recovery process analyzes the failure and plans the sequence of robot operations
necessary to correct the failure and proceed with the robot’s task.

An overall view of the system components is given in Figure 1. The boxes correspond
to procedures and the ovals correspond to data shared among procedures. There are
three major parts to the process:

A. The Preprocessor creates a task description that is adequate for handling error

B. During execution the AP Processor tracks the robot’s activities to detect errors

C. If an error occurs, the Recoverer collects the facts necessary to plan a recovery

analysis and recovery.

if they occur.

and alters the robot’s existing task to do the recovery steps.

286 Journal of Robotic Systems-1 986

- A -

I PREPROCESSOR

A Qc/' Augmented

Recovery
Knowledoe Base

+Sensor Data

+Commands s- ---- , I .

Figure 1. Organization for the intelligent robot recovery system.

We are interested in physical errors and faults in the robot work cell. These include
errors by the robots themselves, tools, feeders, and other components. The errors we
aim to detect include collisions, jammed parts, gripper slip, orientation and alignment
errors, or missing parts. Our primary goal is to develop a framework in which the
activity of error recovery can be automated without excessive overhead. Our main
objective is to make the robot more robust so that there is less need for operator
intervention during execution. Another important objective is to reduce the robot's
programming time by shifting some of the burden of error detection from the pro-
grammer onto the robot system itself. l4

The system starts with a working robot program; one that works correctly in rea-
sonably typical situations on the robot in question. The system translates this working
program into an augmented form that is used to monitor and control the robot's
operation in real-time. Information is collected during execution that can then be used
to analyze the failure and plan the recovery. Here is a description of the steps in detail.

Smith and Gini: Reliable Real-Time Robot Operation 287

First, the system analyzes the robot’s task program off-line to generate a specialized
description of the robot’s task. This task description has two parts: the program de-
scribing the robot’s task, and additional facts about what the task’s intentions are and
what physical objects (robots, parts, tools, etc.) the task uses. The first part is referred
to as the Augmented Program (AP). The AP describes the sequence of actions the
robot must perform, the sensor readings necessary to verify the performance, and
information about how the robot’s actions affect objects in the robot’s work cell. The
second part of the task description is called the Tusk Knowledge Base. This contains
detailed information about the work cell layout and attributes of the robot and the
parts.

Next, we monitor the execution of the robot program and we maintain a trace of
events. Sensors are used to verify the robot’s proper operation and to detect errors.
Information in the AP about sensor usage is used to sift through sensor input and to
extract relevant data. Relevant sensor data is used to invoke subsequent robot actions
and to trace robot activities.

Once an error has been detected, the recovery system uses the event trace and
information about the task to determine the causes and effects of the error. This
information is then used to build an appropriate recovery procedure. The steps in the
recovery procedure are then appended to the existing AP and the AP Processor is
restarted with the first step of the recovery procedure.

VI. THE AUGMENTED PROGRAM

The Augmented Program is the internal representation of the robot’s task. The
primary purpose of the AP is to relate the robot’s expected position and sensor readings
to its expected operation. This gives Us a basis for collecting useful information on
the robot’s operation for recovery if an error occurs. In addition, the AP includes
knowledge about how the robot’s actions are related to changes in the robot’s work
cell and the progress of the robot’s task. For reasons of efficiency and ease of mod-
ification the AP. is structured internally as a finite automaton.

The AP provides the interface between the knowledge-based components of the
system and the real-time components. In addition to the command, sensory, and
procedural information necessary to control the robot the AP contains information
about how the robot’s actions affect the objects in the work cell and the goals of the
robot’s task. This gives the AP some higher level knowledge about the robot’s operation
without burdening it with time consuming inference procedures. The AP structure is
designed to be interpreted efficiently in real-time.

The AP incorporates two kinds of information not obvious in the original AL
program: sensor information and implications about objects in the workspace. This
information is extracted from the original program and from the programmer by the
Preprocessor as described The sensor information in the AP is used to
guide the real-time system in its use of sensors. The AP specifies which sensors need
to be monitored during each step of the robot’s task and often identifies specific sensor
values that are meaningful. All unspecified sensor readings can be ignored by the
system, thus saving computation time and expense. The higher level knowledge con-
tained in the AP is not used to directly control the robot. This knowledge is saved in

288 Journal of Robotic Systems-1 986

an event truce and used if an error occurs. By interpreting the event trace the Recoverer
can determine how the robot was expected to interact with objects in its work cell and
what the robot intended to do.

Another requirement is that the AP must be in a form that can be modified dynam-
ically by the Recoverer. When a failure has been analyzed and a recovery plan devised,
the Recoverer needs to add new instructions to the AP. By executing these new
instructions the robot will bring the work cell into a valid state so that it can continue
execution. We do not want to have to recode and recompile the robot’s entire task
program; we prefer a representation that allows careful patching. This process is
described in a later section.

The AP represents the sequence of actions in the robot’s task as a finite automaton.
Note how the automaton representation provides a natural way to map events to actions.
Significant sensor readings are treated as “tokens” that may cause state transitions and
actions related thereto. The discrete states in the automaton representation also provide
a useful way of identifying separate parts of the robot’s task for automated reasoning
and analysis. Structuring the task as an automaton also makes it easy to modify; new
actions can simply be added as new state transitions that eventually lead to previously
existing ones.

Figure 2 gives a short example of an augmented program. Figure 2(a) is a robot
program written in AL3 that tells the robot to grasp and lift an object. The corresponding
AP is given in Figure 2(b). Each state in the AP contains no more than one robot
operation; the waiting time between state transitions usually corresponds to waiting
time between the initiation and completion of a robot motion. The AP has two extra
states: one for successful completion (state 5 in the example) and one to enter if an
error occurs (state 6 in the example).

Automaton representations have been popular for many years in a number of ap-
plications including lexical analysis, data comm~nications,~~ and interactive graphics, t’
as well as industrial process control.19 Automata are popular in applications with a
broad range of possible input sequences that must all be handled quickly and pre-
dictably. Systems with a small number of states can usually be analyzed and validated
simply by drawing and studying the state diagram. Another feature is that control
procedures described as automata can be implemented in a variety of ways: sequential
circuits, microcode, or software.17

Perhaps the only (or the most serious) drawback of an automaton representation is
that it may be hard for humans to comprehend. State diagrams are reasonably easy to
understand when there are a small number of states, but textual representations typically
reduce to a language with no control structure except IF p GOT0 q. A robot pro-

begin

open mlnlhand to 5:

move minlarm to frame (rot(rhat,-gO), veclor(4,20,2));

center mlnlarm:

move mlnlarm to frame (rot(xhat,-90), vector(14,20,12)):

end;

Figure 2(a). Short AL program that picks up a cube.

Smith and Gini: Reliable Real-Time Robot Operation 289

(retq grab.ap

'([I ((robot-do open minl 5.0))

((open mlni 5.0) 2)

((hand-error mlnl) S)]

[2 ((robot-do move mlnl (-90 90 90 4 20 2)))

((reach mini (-90 90 90 4 20 2)) 3)

((joint-error mlni) 6)

13 ((expect graep mini obLblock) (robot-do center mini))

((center mlni) 4)

((hand-error mini) S)]

[4 ((imply grasp mlnl obj-block) (expect carry mlnl obLblock)

(robot-do move minl (-90 90 90 14 20 12)))

((reach mlnl (-90 90 90 14 20 12)) 5)

((jolnt-error mlni) 6)

((a-untouch mlni) 6)

((b-untouch mlnl) S)]

[5 ((Imply Idle mlnl) (Imply done) (robot-do end))]

[S ((Imply error) (robot-do end))]))

Figure 2(b). Augmented program representation of the short AL program.

gramming language designed like this would not represent progress. For this reason,
the automaton is used as an inrernal representation generated from a procedural pro-
gramming language, in our case, AL.

The mapping of the AL program into an automaton is as follows:

0 Statements in the original program are split and regrouped into actions that are
executed when the automaton makes the appropriate state transition.
Sensor readings that verify the completion of an action are used to trigger state
transitions by the automaton. If a sensor reading verifies successful completion
of an action, the transition leads the AP Processor to the next instruction in the
program. If the sensor reading indicates that the action failed, the transition leads
the AP Processor into an error state.

0 When entering a new state, the AP Processor executes the actions associated with
that state. It then sits idle in that state until it detects one of the sensor readings
it is waiting for. The AP Processor then performs another state transition.

Consider the automaton diagram (Fig. 3) that represents the first few instructions
of the example program from Figure 2. Significant sensor readings are indicated by
predicates such as (reach rob pos) and (open rob wid). A transition, then, is caused
when a continuously tested predicate such as those becomes true. We generalize the

290

(reach mini 14,20,2)

Journal of Robotic Systems-1 986

Figure 3. State diagram for the example AP.

form of these predicates so that transitions may also be caused by testing user-defined
variables in the original program. This makes it a simple matter to represent the control
structures that occur in typical procedural programming languages.

The syntax for augmented programs is given in Figure 4. Augmented Programs are
represented as Lisp forms. Each state is represented by a state clause that corresponds
to the state’s circle in the state diagram and the arcs leaving that state. The state clause
is prefixed by a number representing that state. Next is a list of actions to do when
the state is entered. This list of actions may contain a robot command and some
computation. The rest of the state clause is a list of event predicates. Each event
predicate consists of a predicate and an AP state number. The predicates describe
sensors to check while in the enclosing state. All such predicates are tested concurrently
while the AP is in the enclosing state. If a predicate tests true, the AP Processor enters
the new state specified by the state number at the end of the event predicate.

Smith and Gini: Reliable Real-Time Robot Operation 29 1

<AP>
<state clause>

(<state clause> { <state clause>))

(<state number> <actions> { <event predicate> }) ::=

<state number> ::= integer

<event predicate> ::= (<predicate> <state number>)

<actions> ..- ([(compute formu)]

{ (Imply orpa) 1
{ (expect ergs) 1

[(robot-do orgu)])

Figure 4. Syntax of an augmented program.

The (actions) section of a state may contain any of the following forms. The only
significant restriction is that there must be only one robot-do form specifying a single
robot action.

compute Gives a list of forms that are evaluated at execution time. These forms usually
contain on-line computations that control the robot’s activities. For example,
if the robot has to store objects in a sequence of positions, we would use
compute forms to specify the arithmetic that computes new object positions.
Specifies facts about the workspace that are implied by the original program.
Such facts are usually derived from intentions recognized during the pre-
processing phase. Typically these forms identify when a particular robot arm
is carrying a particular kind of object.
Specifies what we expect to happen by the end of the current state if all goes
correctly. These usually match the contents of imply clauses appearing in
the next state we expect to enter.

imply

expect

robot-do Specifies commands to be given to the robot.

The history of the robot’s activities is stored in the Event Trace. The AP Processor
generates the Event Trace automatically from data stored in the AP as the process
goes from state to state. Each trace entry is prefixed with the time at which the entry
was generated. When an event predicate tests true, the following information goes
into the Event Trace:

0 The sensor readings implied by the successful predicate are added to the Event

0 The number identifying the new AP state entered is written to the Event Trace

0 If the event predicate contains an imply form, the contents of the form are added

0 If the event predicate contains an expect form, its contents are placed in a list

0 The expected result of the action performed in a robot-do form are added to the

Trace.

in the form (ttt new-state nnn).

to the Event Trace.

of expectations in the Event Trace, prefixed by the keyword expect.

list of expectations that appear in the Event Trace.

292 Journal of Robotic Systems-1986

(retq event-trace

‘((0 Initialize)

(0 new-state 1)

(0 oxprct (open mini 6.0))

(10 sense open mini 6.0)

(10 new-itate 2)

(10 expect (reach mlnl (-90 90 90 4 20 2)))

(27 sense reach mini (-DO 90 90 4 20 2))

(27 new-state 3)

(27 expect (grasp mini obLblock) (center mini))

(36 sense center mini)

(36 sense open mini 4.0)

(36 new-state 4)

(36 Imply grasp mini obj-block)

(36 expect (carry mini obl_block) (reach mini (-90 90 90 14 20 12)))

(48 ienss reach mlnl (-DO 90 90 14 20 12))

(48 new-state 5)

(48 Imply idle minl)

(48 Imply done)))

Figure 5. Event Trace from successful execution of the example AP.

Figure 5 shows what the event trace would look like after successfully performing
the task described in Figure 2. A trace of an unsuccessfully executed program would
look similar except that an (rrt imply error) entry would appear near the end of the
trace after the last state transition. This is discussed in more detail in a later section.

This trace illustrates some important points about the AP and the AP Processor.
For example, notice how the clock times match up between various trace entries because
state transitions are seen as instantaneous events. Also notice how the sense entries
do not always exactly match the corresponding event predicates in the AP, particularly
between states 3 and 4. This is because the hand width is an extra piece of information
we get from performing a center operation and is reported separately from the com-
pletion of the center itself. We see something similar happen if an error predicate
such as (frt sense untouch-a rob) became true, since such a predicate needs to report
the hand’s location as well as the sensor change.

VII. AP PROCESSOR STRUCTURE

The AP Processor is responsible for controlling the execution of the robot’s task
and for interfacing with the error recovery system. Its primary activity is to collect
position and sensor data and map it into events that cause state transitions. This requires
some form of economical multiprogramming to support multiple robots and sensors.
All activities must be handled rapidly enough to provide real-time response to state
transition events. The AP Processor must also maintain history of robot’s operation

Smith and Gini: Reliable Real-Time Robot Operation 293

and, if an error occurs, interface to Recoverer for modification and restart after an
error.

A diagram of the AP Processor is given in Figure 6. Boxes represent programs or
tasks and ovals represent data passed between tasks. Everything involved in the real-
time operation of the robot is shown in the diagram. The AP specifies the operations
the robot is to perform and the sensor readings necessary to verify success. The robot’s
task (and related subtasks, if required) generate commands given to the robot and
sensor expectations passed to the sensorjlter tasks. The sensor filters then monitor
the sensor readings for significant readings as specified in the expectations. Significant

PROGRAM Y

Figure 6. AP Processor structure!.

294 Journal of Robotic Systems-1 986

readings generate evenrs that then cause state transitions in the robot’s task. Commands
and events are placed in the event trace along with information from the AP about
objects and intents.

The AP may contain multiple parallel processes. We implement this by doing
nonpreemptive scheduling between active processes. Each time a process does a state
transition the process executes the transition actions to completion before another
transition may occur. Once the process completes its transition the scheduler seeks
another process ready to do work and dispatches it. Individual actions are purposely
kept short, similar to the strip software architecture in the Pluribus multiprocessor.”
All processes in the AP Processor, both those represented by APs and those that
process sensor data, are implemented as a sequence of striplike procedures. This
approach worked on the Pluribus and has worked in other environments such as a real
time speech recognition terminal.’l

Event predicates in the current state of the AP tell the sensor filters what kinds of
sensor readings are expected. The sensor filters insure that the appropriate sensors are
active and filter the resulting sensor data. If one of the expected sensor readings appears,
the sensor filter generates an event that can then cause a state transition in the robot’s
task.

Robot tasks specified by AP are dispatched in response to events. This typically
causes the task to perform an AP state transition, which takes place as follows:

0 Cancel all sensor expectations associated with the task’s previous state.
0 Use the event predicates in the new AP state to instruct the sensor filters about

0 Perform any numerical computations required in the current state.
0 Issue a command to the robot if required in this state.

the new state’s sensor expectations.

After performing these steps the task sits idle until one of its expected events occur.
When an event occurs, the dispatcher finds what task is waiting for it and causes the
task to perform the appropriate state transition.

VIII. AUTOMATIC ERROR RECOVERY

When an error occurs the AP Processor suspends its normal operation and passes
the event trace to the Recoverer. The Recoverer analyzes the error and determines the
steps necessary to perform forward recovery. The Recoverer then translates the steps
into AP states and appends them to the existing Augmented Program in the AP
Processor. The Recoverer then restarts the AP Processor with the initial recovery state
so that it performs the appropriate recovery actions and then proceeds with its original
task.

Figure 7 gives a graphical representation of the relationship between the states in
the original AP and the new states that perform the forward recovery. The original
states are unchanged. The new states are appended to the end of the original AP and
include transitions that lead into states of the original AP. Typically, the recovery
steps will perform a sequence of operations that undo any serious disruption in the
robot’s work cell and then proceed with the original AP right after the point of the

Smith and Gini: Reliable Real-Time Robot Operation 295

AUGMENTED PROGRAM

LAST VALID
STATE BEFORE

FORWARD
RECOVERY

STATE

CURRENT I

RECOVERING
RECOVERY AP

Figure 7. Recovering from a failure.

error. If an error occurs during the recovery, the error state in the original AP will be
entered.

Consider the following example. Assume that the robot is performing the program
described earlier in Figure 2 and that the object being gripped slips out as it is carried
to its destination. When the object leaves the gripper one of the touch sensors will
indicate that it is no longer in contact with the object and generate an untouch event.
Looking at the AP in Figure 2(b) we can see that the robot’s task would be in state
4 and that the untouch event will cause a transition to state 6, the error state. The
AP Processor then stops and passes its event trace to the recoverer. The event trace
corresponding to this error is given in Figure 8(a). The Recoverer takes the event trace
and combines it with information from the Task Knowledge Base to diagnose the
problem and plan the recovery.

To effect the recovery, the Recoverer provides the AP Processor with a new set of
state clauses to append to the existing AP. The AP Processor then proceeds by restarting

296 Journal of Robotic Systems-1986

at the first state added to the AP. The steps of the recovery procedure can reset variables,
move the robot arm, and respond to sensor readings the same as in the original parts
of the AP. Figure 8(b) shows the event trace of recovering from the dropped object,
leading ultimately to the completion of the original task.

IX. RECOVERY ANALYSIS AND PLANNING

Two important aspects of a forward recovery system are error analysis and recovery
planning. This is still an area of research and experimentation in our system. So far
we have restricted ourselves to simple techniques so that we could test other portions
of our system. Our approach tries not to unnecessarily restrict our capabilities for
analysis or planning.

Initial work has been with simple recovery heuristics that depend on simple analysis
of single failures. One such failure is the safe variation failure in which the system
detects a transient error. Recovery from such failures does not require action by the
robot; the system simply has to restart the robot at some earlier state. A temporary
wobble of the robot gripper is one example. Another example is when a task involves
small parts acquired from a parts feeder and a part is dropped. The system can
essentially “backwards recover” by fetching a new part and ignoring the dropped one.

The failure recovery in Figure 8 involves a better but still simple heuristic applied
to dropped parts. The heuristic is that parts fall straight down, so a dropped part can
be found directly under the place where the gripper detected it drop. Figure 9 gives
the AP recovery steps used to perform this recovery attempt on the failure traced in
Figure &a). Figure 8(b) gives the resulting event trace.

These examples are useful for early experiments but do not yield useful insight into

(retq bofora-trace
‘((0 Initlailze)

(0 newrtatm 1)
(0 expect (open mini 6.0))
(10 renre open mini 6.0)
(10 new-rtatm 2)
(10 expect (reach mini (-90 90 90 4 20 2)))
(27 renrr reach mini (-90 DO 90 4 20 2))
(27 new-rtate 3)
(27 oxpect (grasp mini obLblock) (center mini))
(36 senre center mlnl)
(36 renre open mini 4.0)

(38 Imply grap mini obLblock)
(36 expect (carry mini obLbbck) (reach mlnl (-80 80 90 14 20 12)))
(43 renm unbuch-b mlnl)
(43 renrr reach mlnl (-90 90 90 8 19 6))
(43 new-rtate 6)
(43 imply error)))

(36 new-tt.1.4)

Figure 8(a). Event trace of the robot dropping the object.

Smith and Gini: Reliable Real-Time Robot Operation 297

(setq after-trace
‘((200 restart)

(200 new-state 7)

(200 expect (open minl 6.0))
(210 sense open mlni 6.0)
(210 new-state 8)
(210 expect (reach mlni (-90 90 90 8 19 2)))
(231 sense reach mlnl (-90 90 90 8 19 2))
(231 new-state 9)
(231 expect (grasp mlni oblblock) (center mlnl))
(243 sense center minl)
(243 sense open minl4.0)
(243 new-state 10)
(243 Imply grasp mlnl objblock)
(243 expect (carry mlnl obLblock) (reach mini (-90 90 80 14 20 12)))
(262 sense reach mlni (-90 90 90 14 20 12))
(262 new-8tate 6)
(252 Imply idle mlni)
(252 Imply done)))

Figure 8(b). Event Trace of the recovery.

the handling of more complex recovery problems. The simple approaches are simple
partially because error interpretation is closely tied to the recovery procedure. If we
diagnose a “safe variation” we immediately know what the recovery procedure is: we
do nothing. Recovery from the dropped part consists of simply inserting the gripper
location and correct destination into an AP similar to that in Figure 9. Actual failures

(setq patch.ap
‘(p ((robot-do open mlnl 5.0))

((open mini 6.0) 8)
((hand-error mlnl) 8)]

(8 ((robot-do move mini (-80 90 90 8 19 2)))
((reach minl (-90 90 90 8 19 2)) 9)
((lolnt-error mlni) 8)

[9 ((expect g rup mlnl objhlock) (robot-do conter mlnl))
((center mlni) 10)
((hand-error mlni) 6)]

[lo ((imply grasp mlni objhlock) (expect carry minl objhlock)
(robot-do move mlnl (-90 90 90 14 20 12)))

((reach minl (-90 90 90 14 20 12)) 6)
((jolnt-error mlnl) 6)
((a-untouch mini) 6)
((b-untouch minl) S)]))

Figure 9. Recovery steps added to the AP after the error.

298 Journal of Robotic Systems-1986

are seldom so well behaved and manifest themselves in a variety of ways. The Re-
coverer must be able to collect and reason about a broad range of facts and sensor
data.

For example, suppose that the robot was moving its arm and that the gripper’s touch
sensor unexpectedly came in contact with something. The Recoverer must use infor-
mation about the intent of the robot’s task to disambiguate the sensor reading. If the
robot’s intention was to try to grasp a part, then the sensor reading indicates several
possibilities including temporary wobble of robot gripper, misorientation of expected
part, or collision with an unexpected object. On the other hand if the robot was actually
carrying a cube, the sensor reading may imply that the gripper dropped the cube. The
context of the sensor reading plays an important role in classifying its meaning.

The Recoverer uses a technique calledfuilure reason analysis to help relate sensor
readings to errors in the robot’s program. This technique was originally described in,’3
and we have developed an enhanced version of it. l6 This technique allows the Recoverer
to use available information to locate all possible origins of an error in a systematic
way. Our enhanced version also takes propagation of errors into account.

The failure reason model we describe only applies to the objects and situations
directly related to the sensor reading indicating the error. For example, consider a task
where a robot moves cubes from a feeder to a shipping pallet, 12 at a time. What
might happen if the cube falls from the gripper and lands on the pallet, knocking
another object off? In a simple failure reason model the robot only associates an error
with a part if it uses its sensors on the part and finds an error. The lost part won’t be
missed until someone down the line tries to unload the pallet and finds it one part
short.

A promising approach to such problems is to apply techniques of qualitative rea-
soning about physical space and r n o t i ~ n . ~ ~ . ~ ~ Qualitative techniques give us a more
powerful way of deducting possible problems in the work cell implied by sensor
readings. These techniques also give us the tools to decide where and how we might
use sensors to find out exactly what has happened in the work cell.

General solutions to problems of space and motion are complex and often intractable.
We look for effective results by restricting the problem in two ways. First, we deal
with problems in the constrained environment of a robot work cell. Information is
available at many levels of detail about the objects in the work cell. The number and
locations of objects is constrained by the task at hand. The second restriction is that
we are not trying to get exact solutions. The physical reasoning techniques simply tell
the system what to look for; sensors are then used to find more exact information
about location and orientation.

Our approach revolves around a qualitative structural model of the robot work cell.
The model starts with the empty work cell described by the Task Knowledge Base
and uses the Event Trace to determine the work cell’s current contents and configu-
ration. Sensor readings from the Event Trace are used to constrain the probable locations
of objects. Models of idealized work cell objects from the Task Knowledge Base
provide assumptions that fill in additional details about the workspace. Intentions given
in the Event Trace let the model represent the differences, if any, between expected
and actual sensor readings. Physical laws (i.e., gravity, friction, conservation of en-
ergy) help identify uncertainties in the work cell, particularly when errors are detected.

Smith and Gini: Reliable Real-Time Robot Operation 299

Given information from the failure reason analysis and from qualitative reasoning
about the work cell the Recoverer should have sufficient data to plan a recovery strategy.
The available information will indicate the current condition of the work cell and the
differences between its current condition and that required to continue with the robot’s
task. The Recoverer will also know where the AP Processor stopped and be able to
determine the intent of its activities at the time of the failure. From this information
it will be able to plan the recovery process.

If a recovery plan fails, the recovery process begins again. In a sense the Recoverer
doesn’t have to differentiate between a normal failure and a failure during recovery
except that it must not lose sight of the intent of the task that originally failed. In
many cases recovery may be easier the second time through since there may be more
information about the state of the work cell. Repeated failures may serve as a technique
for the Recoverer to experiment with the condition of the work cell and collect in-
formation with which to plan a thorough recovery.

X. SUMMARY AND ACKNOWLEDGMENTS

We have presented a method of implementing intelligent robot recovery within a
framework that permits real-time robot operation. Recovery is effected by analyzing
the state of the robot work cell and planning a sequence of operations that allows the
robot to continue its original task after the point of failure, i.e., forward recovery.
The system segregates automated reasoning in the system so that it is applied when
time constraints are not a problem.

We have developed prototype and simulated components of the system in Franz
Lisp on the Unix timesharing system at the Artificial Intelligence Laboratory at the
University of Minnesota. We are presently developing a working implementation at
the Robotics Laboratory at the University of Minnesota. This implementation uses a
LMI Lambda processor for automated reasoning applications and a separate, stand-
alone microcomputer to host the AP Processor. The robots controlled include an IBM
7565 and several smaller educational robots. Partial support for this work is gratefully
acknowledged to the Graduate School and to the Productivity Center of the University
of Minnesota.

References
1.
2.

T. Lozano-Perez, “Robot Programming,” Proc. IEEE, No. 7, 71, 821-841 (1983).
J. D. Millar, “Request for Assistance in Preventing the Injury of Workers by Robots,”
DHHS (NIOSH) Publication No. 85-103, National Institute of Occupational Safety and
Health, Cincinnati, Ohio, December, 1984.
M. S. Mujtaba and A. Goldman, “AL Users’ Manual,” Memo AIM-323, Stanford Artificial
Intelligence Laboratory, Stanford, California, 1979.
B. E. Shimano, C. C. Geschke, and C. H. Spalding 111, “VAL 11: A New Robot Control
System for Automatic Manufacturing,” Proceedings of the IEEE International Conference
on Robotics, Atlanta, Georgia, March, 1984, pp. 278-279.
G. Larson and M. Donath, “Animated Simulation of Intelligent Robot Workcells,” Pro-
ductivity Center, Department of Mechanical Engineering, University of Minnesota, Min-
neapolis, Minnesota, 1985.

3.

4.

5 .

300 Journal of Robotic Systems-1 986

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M. S. Pickett, R. B. Tilove, and V. Shapiro, “Roboteach: An Off-line Robot Programming
System Based on GMSolid,” Research Publication GMR-4465, General Motors Research
Laboratory, Warren, Michigan, October, 1983.
A. P. Ambler and others, “An experiment in the offline programming of robots,” Pro-
ceedings of the 12th International Symposium on Industrial Robots, Paris, France, June,

G . Gini and M. Gini, “Dealing with World Model Based Languages,” ACM Trans. on
Programming Languages, vol. 7, no. 2, pp. 334-347, April 1985.
B. Randell, P. A. Lee, and P. C. Treleaven, “Reliability Issues in Computing System
Design,’’ Computing Surveys, Vol. 10, no. 2, pp. 123-165, June 1978.
E. Sacerdoti, A structure for plans and behavior, American Elsevier Publ. Company,
1977.
R. E. Fikes and N. J. Nilsson, ‘‘STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving,” Artificial Intelligence, Vol. 2, pp. 189-208. 1971.
L. Friedman, “Robot Learning and Error Correction,” Proceedings of the 5th International
Joint Conference on ArtiJicial Intelligence, Cambridge, Massachusetts, p. 736, 1977.
S. Srinivas, “Error Recovery in Robot Systems,” Ph.D. Thesis, California Institute of
Technology, Pasadena, California, 1977.
M. Gini and G. Gini, “Towards Automatic Recovery in Robot Programs,” Proceedings
of the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, West Ger-
many, August 1983, pp. 821-823.
M. Gini, R. Doshi, M. Gluch, R. Smith, and I. Zualkernan, “The Role of Knowledge in
the Architecture of a Robust Robot Control,” Proceedings of the 1985 IEEE Conference
on Robotics and Automation, St. Louis, Missouri, March, 1985.
M. Gini, R. Doshi, S. Garber, M. Gluch, R. Smith, and I. Zualkernan, “Symbolic
Reasoning as a Basis for Automatic Error Recovery in Robots,’’ Technical Report No.
85-24, Computer Science Department, University of Minnesota, Minneapolis, Minnesota,
August 1985.
D. Bjorner, “Finite state automaton-Definition of Data Communication Line Control
Procedures,” Proceedings of the AFIPS 1970 Fall Joint Computer Conference, Vol. 37,
AFIPS Press, Montvale, New Jersey, 1970, pp. 477-491.
B. H. Barnes, “An Automata Theoretic Approach to Interactive Computer Graphics Com-
mand Languages,” in Applied Computation Theory: Analysis, Design, Modelling, Ray-
mond T . Yeh, ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1978.
J. V. Landau, “State Description Techniques Applied to Industrial Process Control,”
Computer, 12(2), 3 2 4 0 1979.
S. M. Ornstein, W. R. Crowther, M. F. Kraley, R. D. Bressler, and A. Michel, “Pluribus-
A Reliable Multiprocessor,” Proceedings of the MIPS I975 National Computer Confer-
ence, AFIPS Press, Montvale, New Jersey, 1975.
A. Stowe, S. Glazer, and R. Smith, “A Language and Multi-Tasking Operating System
to Support an Eight-Channel Speech Input Terminal,” paper given at the 50th Anniversary
Meeting, Acoustical Society of America, Cambridge, Massachusetts, 1979.
D. G. Bobrow, Qualitative Reasoning about Physical Systems, MIT Press, Cambridge,
Massachusetts, 1985.
K. D. Forbus, “A Study of Qualitative and Geomerric Knowledge in Reasoning about
Motion,” M.S. Thesis, AI-TR-615, MIT Artificial Intelligence Laboratory, Cambridge,
Massachusetts, February 1981.

1982, pp. 491-504.

