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Performancef a DistributedRoboticSystem
Using SharedCommunication€hannels

Paul E. Rybski,Sascha&. StoeterMaria Gini, DeanF. Hougen,andNikolaosPapanilolopoulos

Abstract—We have designedand built a setof miniatur erobots,
called Scouts,and have developeda distrib uted software systemto
control them. This paper addresseghe fundamental choiceswe
madein the designof the control software, describesexperimental
resultsin a surveillance task, and analyzesthe factors that affect
robot performance.

Spaceand power limitations on the Scoutsseverely restrict the
computational power of their on-board computers, requiring a
proxy-processingschemein which the robots depend on remote
computersfor their computing needs.While this allowsthe robots
to be autonomous,the fact that robots’ behaviors are executedre-
motely intr oducesan additional complication — sensordata and
motion commandshave to be exchangedusing wir elesscommu-
nications channels. Communications channelscannot always be
shared, thus requiring the robots to obtain exclusive accessto
them.

We presentexperimental resultson a surveillancetask in which
multiple robots patrol an areaand watch for motion. We discuss
how the limited communicationsbandwidth affectsrobot perfor-
mance in accomplishing the task and analyze how performance
dependson the number of robotsthat share the bandwidth.

Index Terms—Multiple robots, Mobile robots, Distrib uted soft-
ware architecture, Resource allocation.

I. INTRODUCTION

Controlling a groupof miniaturemobile robotsin a coordi-
natedfashioncanbe a very challengingtask. The limited vol-
ume of miniaturerobotsgreatly limits the kinds of on-board
computersand sensorprocessingsystemsthey canuse. One
way to overcometheselimitationsis to usea communications
link with a more powerful off-board processarUnfortunately
therobots’smallsizealsolimits thebandwidthof theircommu-
nicationssystemandpreventsthe useof large capacitycommu-
nicationshardware (suchas a wirelessEthernet). Scheduling
accesgo the sharedbandwidthbecomescritical for effective
operation.

We describea casestudy of a group of miniature robots
which mustusevery low capacityradio frequeng (RF) com-
municationssystemsdue to their small size. The size limita-
tions of theserobotsalsorestrictthe amountof on-boardcom-
putationalpower they cancarry, forcing themto rely on off-
boarddecisionprocessesThus,all the sensordataare broad-
castto aremotecomputeror a larger robot, andactuatorcom-
mandsarerelayedbackto the miniaturerobots. The operation
of theserobotsis completelydependenbnthe RF communica-
tionslinks they employ. In orderto handlehighdemandor this
low capacitycommunicationsystemanovel processnanage-
ment/schedulingystemhasbeendeveloped.
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In the experimentswe describe the robotsare deployed to
createa sensometwork in an indoor ervironmentand patrol
theareawatchingfor motion. We shov how sharingbandwidth
affectsthe performanceof the robotswhenthey areusedin a
suneillancetask.

Il. MINIATURE ROBOTIC SYSTEMS

We have developeda set of small robotic systems,called
Scoutg[1], which aredesignedor reconnaissancandsuneil-
lancetasks.TheScout,shavnin Figurel, is acylindrical robot
11.5¢cm in lengthand4cm in diameter Scoutslocomotein
two ways. They canusetheir wheelsto travel over smooth
surfaces(even climbing a 20 ° slope)andthey are capableof
jumpingover objects30 cm in heightusingtheir spring-loaded
tails. Figure2 shavs the Scoutjumpingup a step.

Fig.1. TheScoutrobotshavn next to aruler (in cm) for scale.

The Scoutscantransmitvideo from a small camerato a re-
mote sourcefor processing. They can also transmitand re-
ceive digital commandsover a separatecommunicationsink
thatusesanadhoc pacletizedcommunicationgrotocol. Each
Scouthasa unique network ID, allowing a single radio fre-
gueng to carry commandgor multiple robots. By interleav-
ing paclets destinedfor differentrobots, multiple Scoutscan
be controlledsimultaneously

Due to the Scouts limited volume and power constraints,
the two on-boardmicroprocessorsire only powerful enough
to handlecommunicationgndactuatorcontrols. Thereis very
litle memoryfor arny high-level decisionprocessandno ability
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Fig.2. A Scoutusingits spring-loadedail to jump up a stair

to processvideo. In orderfor the Scoutsto accomplishary-
thing useful,they mustbe pairedwith anoff-boardcomputeror
ahumanteleoperatar

Video datais broadcasbver a fixed-frequeng analogradio
link and mustbe capturedby a video recever andfed into a
framegrabberfor digitizing. Becausehe video is a continu-
ous analogstream,only one robot can broadcasion a given
frequeng at atime. Signalsfrom multiple robotstransmitting
on the samefrequeng disrupteachotherandbecomeuseless.
We will usethetermsvideofrequeng andvideochannelinter-
changeablyhroughouthis paper

The RF limitations of the Scoutposetwo fundamentalif-
ficultieswhentrying to control several Scouts.First, the com-
mandradio hasa fixed bandwidth. This limits the numberof
commandst cantransmitpersecondandthereforehenumber
of Scoutsthatcanbe controlledsimultaneouslyCurrently our
inter-robot communicationsietwork operateson a single car
rier frequeng, with a commandthroughputof 20-30 paclets
persecond.

Secondtherearegenerallynot enoughcommerciafrequen-
ciesavailableto allow for alarge numberof simultaneousina-
log transmissions.With the currentScouthardwarethereare
only two videofrequencieswvailable! As aresult,videofrom
more than two robots can be capturedonly by interlearing
the time eachrobot’s transmitteris on. Thus, an automated
schedulingsystemis required. Sharingthe bandwidthamong
robotsaffectsthe performanceaswe will seein thedescription
of our experimentakesultsin SectionV.

I1l. DYNAMIC RESOURCE ALLOCATION

Thedecisionprocessethatcontrolthe actionsof the Scouts
needto beableto connecto all theresourcesecessaryo con-
trol the physicalhardware. We have designeda softwarearchi-
tecture[2] which connectsgroupsof decisionprocessesvith
resourcecontrollersthat have the responsibilityof managing
thephysicalresourcedn thesystem.

This distributed software architecturedynamically coordi-
nateshardware resourcestransparentlyacrossa network of
computersand shareghem betweenclient processesThe ar-
chitectureincludesvarioustypes of userinterfacesfor robot
teleoperatiorand various sensorinterpretationalgorithmsfor
autonomouscontrol. The architectureis designedto be ex-
tremelymodular allowing for rapid additionof behaiors and
resourceso createnew missions.

LThiswastruewhenthis papemwasoriginally written. Sincethen thenumber
of availablecommerciafrequencie$asincreasedo six.

Accessto robotic hardware and computationalresources
is controlled through processe<alled Resouce Controllers
(RCs).Every physicalresourcehasits own RC. Any time abe-
havior or anotherdecisionprocesseedsa particularresource,
it mustbe grantedaccesgo theappropriateRC. Somephysical
hardware canonly be managedy having simultaneousccess
to groupsof RCs. This groupingis handledby a secondayer
calledAggregate Resouce Contwllers (ARCs). Every ARC is
anabstracrepresentatioof the groupof RCsthatit manages.
An ARC providesa specializednterfaceinto the groupof RCs
thatit manages.

A. AnExampleof ARCsandRCs

In orderfor aprocesgo controlasingleScout,severalphys-
ical resourcesirerequired.First, arobotwhichis notcurrently
in useby anothemprocessnustbe selected.Next, a command
radiowhich hasthe capacityto handlethe demand®f the pro-
cessis needed. (Referto Sectionlll-C for a discussionof
theradio’s capacity) If the Scoutis to transmitvideo, exclu-
sive accesdo a fixed video frequeny is required,aswell as
a framegrabberconnectedo a tunedvideo recever. Eachin-
stanceof thesefour resourcess managedy its own RC.

Figure3 illustratestheinterconnectionbetweerthe compo-
nentsin thesystem.In this example,a hierarcly of behaiorsis
responsibldor controllingtwo robotsanda userinterfacetele-
operationconsolelets a usercontrol a third. Eachcomponent
hasits own ARC which attemptdo gain accesso theappropri-
ateresourcesTherearethreeScoutrobots,all of whichsharea
singlevideofrequeng. A singlevideoreceveris attachedo a
video processingard,anda Scoutcommandradiois attached
to aserialport. The ARCsmustsharethe videofrequeng and
framegrabberRCs. The ARC ownedby theteleoperatiorcon-
soledoesnot needthe framegrabberbut still needscontrol of
thevideofrequeng to operateIn thissituation,only oneof the
threeARCswill beableto sendcommanddgo its robotatatime
andthusthe ARCsmusthave their accesscheduled.

B. TheResouce Sceduler

Accesgo RCsmustbe scheduledvhentherearenotenough
RCs to satisfy the requirementsof the ARCs. The central
componentwhich overseeghe distribution and accesgo the
ARCs andRCsis the RESOURCE CONTROLLER MANAGER.
The RESOURCE CONTROLLER MANAGER maintainsa master
scheduleof all active ARCs andgrantsaccesdo eachof their
RCswhenit is their turn to run. Whenrequestingaccesgo a
setof RCs,an ARC mustspecifya minimum amountof time
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Fig. 3. An instanceof thearchitecture ThreeScoutsarecontrolledby a combinationof behaiors anda teleoperatiorconsole.All threesharethe samevideo
frequeng, soonly onerobotcanbe controlledat a giventime. Solid linesindicateactive connectiongwheredatacanflow betweencomponentsyvhile dashed
linesindicateconnectionghatarenot currentlyactive but may becomeactive later.

thatit mustrunto getary usefulwork done.This value,which
is generallyon the order of second4o minutes,is calledthe
minimumruntimevalue.

The RESOURCE CONTROLLER MANAGER’s schedulingal-
gorithm tries to grant simultaneousaccesgo as mary ARCs
aspossible.ARCs aredividedinto setsdependingon the RCs
they request. ARCs that askfor independensetsof RCsare
putinto differentgroups.Thesegroupswill runin parallelwith
eachothersincethey donotinteractin ary way. The ARCsthat
have someRCsin commonare examinedto determinewhich
ARCscanoperatan parallelandwhich aremutuallyexclusive.
ARCswhichrequestnon-sharabl&C cannotrun atthesame
timeandmustbreaktheirtotal operatingimeinto slices.ARCs
whichhave asharabldRCin commonmaybeableto runsimul-
taneouslyassuminghatthe capacityrequestdor thatsharable
RC do not exceedits total capacity

ARCswith higherprioritiesaregivenprecedencever ARCs
with lower priorities. The RESOURCE CONTROLLER MAN-
AGER attemptsto generatea schedulewhich allows all ARCs
of the highestpriority to run asoftenasthey areableto. Any
ARC of alower priority which canrun at the sametime with-
outincreasinghewait time of ary of the higherpriority ARCs,
is alsoallowedto run. Lower priority tasksthat cannotbe so
scheduledanustwait (possiblyindefinitely)for thehigherprior-
ity tasksto complete.

Oncethe schedulehas beengeneratedthe scheduleman-
ageriteratesover it in a simpleround-robinfashion.ARCsare
startedand stoppedaccordingto the length of their minimum
runtimesuntil the controllingbehaiors requesthatthey bere-
movedfrom the scheduleat which pointthe RESOURCE CON-
TROLLER MANAGER recalculateshe new schedule As anex-
ample,in Figure 3, the sequencdhat the three ARCs would
beruninis (1,2,3,1,2,3,.. ). For a moredetaileddiscussion
on the schedulingalgorithmaswell asexamples,pleaserefer
to [3].

C. ShamableResouces

SharableRCs,suchasthe Scoutradio, have to manageheir
own schedulego ensurethat eachof the ARCs usingthemis
givena chanceo sendpacletsto their robotat their requested
rate. Whenrequestingaccesgo a sharableRC, an ARC must
specifyausageparametewhich defineshow oftenit will make
requestsand,if relevant, whatkinds of requestswill be made.
In orderto streamlinethe schedulingprocesscommandssent
to sharableRCsmusthave a constanintenal betweennvoca-
tions. In addition, eachrequestmustbe completedbeforethe
next requests made. However, becausdhe CPU load of ary
givencomputewill vary dependingon how mary components
arerunningonit, therun-timeof ary givenrequesmayvary.

Sharable RCs use a simple rate monotonic algorithm
(RMA) [4] to scheduleaccessOthermorecomplex algorithms
couldbe used,suchasthe algorithmfor proportionalsharere-
sourceallocation[5] or the algorithm proposedn [6] for fair
allocationof a singleresourceo a setof tasks.In our system,
we rely on usersetpriorities for sharingresourcesso we are
notasconcerne@boutfairnessandmoreconcerneabouteffi-
cieng/ andsimplicity.

Requestsvith higherfrequencieshave precedencever re-
guestswith lower frequencies Onceagain, however, the user
setpriorities mustbe maintained. Thus, higheruserset prior-
ity ARCs have precedencever lower usersetpriority ARCs
regardlessof the frequeng of the requests.This cancausea
disruptionin theway requestarehandledby theschedulingal-
gorithmandmay producea schedulevhichis suboptimain its
usageftheRCs.Only whenall of thehigherpriority RCshave
beenscheduleavill thelowerpriority RCsbeallowedaccessl|f
asharableRC cannotscheduleall the ARCs, the responsibility
for handlingrequestss givento the RESOURCE CONTROLLER
MANAGER.

Oncethe requestdor accesshave beengranted,the ARCs
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canusethemin ary way they seefit. Until they make arequest
for a specificcommando be sentto theradio,for instancethe
timeslicesdevotedto thoseARCsareemptyandtheradiodoes
nothing.

As illustratedin Figure 4, several ARCs have beengranted
accesgo aradio,whichis asharableRC. ARC1 hasrequested
onehalf of theavailablebandwidthandthusis givenevery other
timeslot. ARC2 andARC3 have requestednequarterandone
eighth of the available bandwidthrespectiely. Thereis still
enoughbandwidthfor anotherARC to requestthe remaining
oneeighthof theavailablebandwidthof thisRC. This schedule
couldnotexistin theexampleshowvn in Figure3 becausghose
ARCs cannotrun simultaneously If they eachhadtheir own
VideoFrequeng andFramgrabberARCs,thenthis RadioRC
schedulavould be possible.

Time | ARCID
1 ARC1
ARC2
ARC1
ARC3
ARC1
ARC2
ARC1

EmptySlot

O N[O O BWN

Fig.4. A typicalscheduldor asharableRC suchasaRadioRC shaving what
timeslotsareavailableto thescheduledARCs.

IV. A DISTRIBUTED SURVEILLANCE TASK

The Scoutsareusedin a distributedsuneillancetaskwhere
they aredeployedinto anareato watchfor motion. Thisis use-
ful in situationswhereit is impracticalto placefixed cameras
becausef difficultiesrelatingto power, portability, or eventhe
safetyof the operator In this task,the Scoutscaneitherbe de-
ployedinto their erwvironmentby a humanor anotherobot, or
they canautonomouslyind theirway into usefulareas.

Several simple behaiors have beenimplementedo do the
task.All thebehaiors usethevideocamerawhich currentlyis
theonly ervironmentalsensomvailableto the Scout.Usingthe
video camerapresentsseveral problems. One problemis the
Scouts proximity to the floor, which severelyrestrictsthe area
it canview.

Sincethevideois broadcasbtver anRF link to aworkstation
for processingits quality oftendegradesiueto noisecausedy
the Scouts motors, multi-pathreflectionscausedoy obstacles
aroundthe robot, or weak signalscausedby proximity to the
groundand excessdistancebetweentransmitterand recever.
Figure5 illustrateshow noisecanaffect the quality andclarity
of returnedmages.

In earlierwork, we useda simpleframeaveragingalgorithm
to reducethe effectsof noise[7]. Thisapproactonly dealtwith
the problemof spurioushorizontallines andwhite noise(Fig-
ures5(b) and 5(c), respectiely). If the image becamesatu-
rated/irverted(Figures5(e) and 5(f), respectrely), or if verti-
calsynchronizationwaslost (Figure5(d)), averagingonly com-
poundedheproblem.

(a) Acceptableémage

(c) Weaksignal (d) Lossof synchronization

(e) Saturation

(f) Inversion

Fig.5. Effectsof RF noisein Scoutvideo.

Currently the grayscaléhistogramof the Scoutvideois nor-
malized (Figure 6(b)) in orderto accentuateéhe contrastsbe-
tweenlight anddarkareas However, this hasthe sideeffect of
enhancingRF noise.To compensateye applya x 5 median
filter (Figure6(c)) over theimageto smooththe data. The me-
dianfilter is fasterthanapplyinga Gaussiarcorvolution mask
anddoesa fairly goodjob of remaving muchof themostcom-
mon noise. We have implementedseveral heuristicfilters to
remove the datacorruptedby RF noise. Thesefilters weregen-
eratedby handafter analyzinghow the video is corruptedby
RF noise. Often, whenthe video transmittedfrom a Scoutis
severely corrupted,the bestchoiceto reducethe noiseis to
repositionthe Scout.Figure6(d) shavstheresultof performing
framedifferencingandconnectedegionextraction. Thisimage
wasgeneratedby rotatingthe Scoutcounterclockwisen place.
The white regionsare connectedegionsthat are differentbe-
tweenthetwo images.Thetwo grayrectanglesighlight blobs
thatarelikely causedby the Scouts motion. All of the other
blobsareconsideredausedy randomRF noise(the decision
depend®ntheir shapeandarea)andarethusignored.

Thebehaiors we have implementedor this taskare:
Locate-Goal: Determiningthelocationof thedarkest(or light-
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(a) Rav image

(c) Medianfiltered

Fig.6. Scoutimageprocessinglgorithms.

est)areaof theroomis accomplishedy spinningthe Scoutin
a circle and checkingthe meanvalue of the pixelsin the im-
age.Thecircularscanis accomplishedn a numberof discrete
movements. The Scoutcapturesan image, rotatesfor half a
secondtakesa new image,andsubtractghe new imagefrom
theold one. A largedifferencan theimagesndicateshe Scout
moved. Thisapproactcanfail if theimagequalityis solow that
motionin theimagecannotbe distinguishedrom noise. If the
robotis operatingn anareaof very low light or uniform color,
theremay not be enoughdetail in the imagesto generatesig-
nificant differences.Normalizing the histogram,as described
earlier helpsto increasehe contrastbetweerdifferentobjects
in theimage,allowing the objectsto standout whenthe Scout
moves.

Drive-Toward-Goal: Identifying a dark areato move toward
is a simple matterof analyzinga strip in the imagealongthe
horizonanddeterminingthe horizontalposition of the darkest
area.The Scoutcomputeghe darkestregion andtriesto seno
in thatdirection. The Scoutwill stopwhenits camerais either
pressedip agpinstadarkobject,or if it is in shadaevs. If either
of thesetwo methoddfail, this behaior will time out and quit
aftera minuteor two of operation.Scoutmotionin this behar-
ior is continuousandthe Scoutdoesnot checkits movements
by frame differencingbecauset doesnot move very quickly.
Thedifferencebetweersubsequerframescapturedduringfor-
ward motionis oftenminimal, makingit difficult for the Scout
to detectits own motion.

Detect-Motion: Detectingmoving objectsis accomplishedis-
ing framedifferencing. The Scoutstaysstill and subtractsse-
gquentialimagesn thevideostreamanddeterminesvhetherthe
scenechangest all (causedby movementin the image.) RF
noisecanalsocausea greatdealof perceved motion between
frames. This is filtered out by analyzingthe shapesandsizes

(b) Normalizedhistogram

(d) Differenceof two frames

of the blobsandignoring blobsthat arecausedy noise. Cur-
rently, a hand-tunedilter is usedfor this decisionprocess.
Handle-Collisions: If theScoutdrivesinto anobstacleall mo-
tion in theimageframewill stop.If no motionis detectedhfter
the Scoutattemptsto maove, it will invoke this behaior and
startmoving in randomdirectionsin anattemptto freeitself. In
additionto freeingthe Scout,this randommotion hasthe addi-
tional effect of changingthe orientationof the antennawhich
mightimprove reception.

V. EXPERIMENTAL RESULTS

The Scouts’ability to accomplishthe surweillancetaskwas
examinedwith a seriesof experimentalruns. Theseexper
imentswere designedto testthe individual and team perfor
mance®f the Scoutsandthe controllingarchitecturén anum-
berof differentsituationsandgroupconfigurationsin particu-
lar, we wereinterestedn evaluating:

« theeffectivenes®f thevision-basedbehaiorsfor navigat-

ing the Scoutsto usefulpositions;

« the performanceof the schedulingsystemwith multiple
Scoutsusingthe limited bandwidthRF video channeldo
detectmotion;

« theperformancef theroboticteamgivena setof specific
constraintdor the systemandtheervironment.

Threeexperimentswererun to evaluatethe Scouts’perfor
mance:

A) Visual Senwing. A Scouthasto locatea dark areaand
moveto it.

Hiding andViewing a Room. One or more Scoutshave
to hidein adarkareaandturnto view abrightarea.
DetectingMotion. Oneor more Scoutshave to detecta
moving object.

B)

C)
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ExperimentA: Visual Serwing. Validation of the Locate-Goal and Drive-Toward-Goal behaiors. The left imageshavs a top-davn view of the

experiment.Therightimageshavs the averagedistancen pixelsof the Scoutfrom thetamget.

A. Misual Servoing

An initial experimentwas doneto determinehow well the
Scoutcould locateandmove to anarea,usingimagesfrom its
camera.The ervironmentconsistedf aroughly2.5m x 3m
enclosurewith uniformly-coloredwalls anda 1m x 0.5m
black rectangleon one side of the enclosureasthe tamget for
the Scout. The Scoutwas started1.5 m away from the cen-
ter of thetarget. This experimentwasdesignedo examinethe
Scouts Locate-Goal andDrive-Toward-Goal behaiors.

Nine trials wererun to seehow long it would take the Scout
to locatethe black target objectandmove to it. A camerawas
mountedon the ceiling of the room andwasusedto view the
progressof the Scoutfrom abore. This camerawas usedfor
datalogging purposesnly. The Scoutdid not usethis video
datato navigate with. A simpletrackingalgorithmwas used
to automaticallychart the progressof the Scoutasit moved
towardthetarget. Figure7(a)shavstheview from theoverhead
cameraswell asasuperimposeglot of the paththatthe Scout
took to reachits objective during oneof its ninetrials. In each
casethe Scoutsuccessfulljocatedthetargetandmovedto it.

Figure7(b) shawvs a plot of averagedistancefrom the Scout
to the tamget vs. time for all of thesetrials. In the first 70-80
secondsthe Scoutusedits Locate-Goal behaior to find the
dark spot. Oncea suitablespotwaslocated,the Scoutusedits
Drive-Toward-Goal behaior until it camein contactwith the
goal, someavherebetweenl50 and 160 secondsafter the start
of thetrial.

B. Hiding andViewinga Room

To testthe ability of the Scoutsto operatein a more real-
world ervironment,a testcoursewas setup in our lab using
chairs,lab benchesgabinets boxes, and miscellaneousther
materials.The goal of eachScoutin theseexperimentswvasto
find a suitabledark hiding place,move there,andturn around
to facealighted areaof theroom.

The ervironment, shavn later in Figure 8, was 6.09 m by
4.26 m andhada numberof secludedareasn which the Scout
could hide. The test coursehad 13.48 m? of open space,

7.99m? of obstructedspace,and4.55m? of potentialhiding
places. The Scoutswere startedat the centerof one of the 16
tiles (eachof which is 0.09 m?) in the centerof the room and
were pointedat one of eight possibleorientations. Both the
positionindex andorientationwerechoserfrom auniformran-
domdistribution.

The hiding and viewing experimentwas divided into three
casesgachusinga differentnumberof Scoutsor communica-
tionschannelsWithin eachcasetentrials wererun. The stop-
ping positionsand orientationsof the Scoutsfrom the end of
thetrials wereusedlaterfor the detectmotionexperiment(Ex-
perimentC). In thefirst case,a single Scouton a singlevideo
frequeng was usedto sere as a baseline. The secondcase
usedtwo Scoutghathadto shareasinglevideofrequeng. The
third caseusedtwo Scoutsgachonits own videofrequeng.

When Scoutsshareda single video frequeng, accessto
the video frequeng was scheduledby the RESOURCE CON-
TROLLER MANAGER. For theseexperimentseachScouts be-
havior requestedensecondntervalsof accesgo thevideofre-
queng. However, sincethe videotransmitterequires2-3 sec-
ondsof warm-uptime beforetheimagestabilizes Scoutseffec-
tively hadonly sevensecond®f usefulviewing time whenthey
weregrantedaccess.

Figure 8 shaws the hiding placesfound for all trials. Over
all the trials, the Scoutswere able to hide themseles 90 %
of the time. In the remaining10% of the time, the Scouts
reacheda 60 secondtime-outon the Drive-Toward-Goal be-
havior, and stoppedout in the openwherethey could be more
easily seenand bumpedinto. This time-outwasrequiredbe-
causethe Scoutsare unableto determinewith confidenceif
progressis being madein moving toward a hiding position.
This time-out was also encounteredn somesuccessfuhid-
ing trials, asthe Scoutcontinuedto try to progresdo a darker
hiding position,even after reachingcover. For this reasonthe
non-hidingtrials arenot considereautliersin thetime data.

Oncethe Scoutshad positionedthemseles, they attempted
to orientthemselesto view a lighted areaof the room. Fig-
ure 9 shaws the timesfor the Scoutsto reachtheir final poses
(positionsand orientations).In the caseswith two Scoutsthe
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Fig. 8. ExperimentB: Hiding andViewing. Positionsthatthe Scoutsfound
for themselesin the6.09 m by 4.26 m roomarerepresentedsdots.
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Fig. 9. ExperimentB: Hiding andViewing. The averagetime thatit took the
Scoutsto completeeachtrial, shavn for thethreedifferentcasesTheaverages
areover 10 trials per case. The timesare plotted using a box representation
wherethe centerline is the medianvalue, the top andbottomlines of the box
representhe upperandlower quartilevaluesrespectiely, andthe lines at the
top andbottomof eachplot representherestof the distribution. The notches
in the box represenain estimateof the distribution’s mean.

valueplottedis the averagetime. As canbe seenfrom the fig-
ure,two Scoutonasinglevideofrequeng tooklongerto reach
their final posesthana single Scout. This is to be expected—
the Scoutsaretime-multiplexing thevideofrequeng resource.
Thereis alsoa someavhat greateraveragetime for two Scouts
on two different video frequenciego reachtheir final poses
thanthereis for the singlescoutcase(for the first case, mean
= 212.50,0 = 44.55; for the third case,mean= 247.50,0 =
30.62), however, thesedifferencesare not statistically signifi-
cantatthe95 % confidencdevel (two-tailed,two-sample test,
p = 0.0555).

Oneinterpretatiornof theseresultsis thatone Scoutis better
thantwo on the samefrequeng (asthe taskis accomplished
more quickly by one) and that one Scoutand two on differ-
entfrequenciesareapproximatelyequalon this task. However,

thisignoresthefactthattwo Scoutscanpotentiallyaccomplish
morethanasingleScout.

Nonethelessevenif two Scoutscould accomplishtwice as
muchasoneafter reachingtheir final poses,one Scoutis still
better on average thantwo on the samefrequeng. Thetime
two Scoutsspenthiding is significantly greaterthantwice the
time one Scoutspent.This is becausavhenswitchingcameras
up to 30 % of thetime is lost waiting for the video transmitter
towarmup. For thisreasondeplgying two Scoutssequentially
would make moresensehandeploying themin parallelif the
Scoutsmustsharethevideofrequeng. An instant-ontransmit-
terwould eliminatethis advantagefor sequentiatleployment.
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Fig. 10. ExperimentB: Hiding andViewing. Thetotal areaghatthe Scouts
wereableto view.

Since the overall missionis suneillance, one measureof
Scoutperformanceafter deploymentis the openareaviewed.
Figure 10 shaws the total areaviewed by the Scoutsfor each
case.Consideringhe areaviewed,two Scoutson differentfre-
guenciesare betterthanone, asthe areaviewed is larger (for
oneScout,mean=4.73,0 = 2.89;for two Scoutswith two fre-
guenciesmean= 8.09,0 = 2.34)—thisdifferences significant
(one-tailedtwo-sample test,p = 0.0053).

C. DetectingMotion

A third experimentwasrun to testthe Scouts’detectmotion
abilities. Four different casesweretested,including a single
Scoutusingasinglevideofrequeng, two Scoutssharinga sin-
gle video frequeng, two Scoutsusingtwo differentvideo fre-
quenciesandfour Scoutssharingtwo differentvideofrequen-
cies.

For eachof thefour casesthe Scoutswereplacedin tendif-
ferentpositionsin the ervironment. Thesepositionswerethe
sameas the hiding positionsobtainedin the previous experi-
ment. In the caseusingfour Scouts,for which no hiding ex-
perimentwas run, the positionswere randomly sampledwith
replacementrom the resultsof the other hiding experiments.
In eachposition, five individual motion detectiontrials were
run, bringingthetotal numberof individual trials to 200.
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In theseexperimentsthe video frequengy was swappedbe-
tweentherobotsevery eightsecondsndthedelayfor the cam-
erato warm up was setto four seconds. Thesevalueswere
choserto givethe Scoutsalowerlatengy betweerobsenrations.
Thelongerwarm-uptime wasnecessarpecaus¢hedetectmo-
tion behavior is moresensitve to noisethanthe navigation be-
haviors.

The moving targetthe Scoutshadto detectwasa Pioneerl
mobilerobot[8]. A Pioneemwaschoserfor its ability to repeat-
edlytravel overapathataconstanspeed.Thisreducedsomeof
thevariability betweenexperimentghatthe useof humansub-
jectsmight have caused. The Pioneerenteredthe room from
theright andmadeits way overto theleft, moving ata speedf
approximately0.57 m/s andtraversingtheroomin 8.5seconds
onaverage.Onceit hadmoved4.87 m into theroom, it turned
aroundandmovedbackoutagain. With a4 secondaverageurn
time, the Pioneemwasin theroomon averagefor 21 seconds.

Figure 11 illustratesthe fields of view seenby two Scouts
andthe areaof the Pioneers paththatthey cover. While the
views of theseScoutsdo not overlap,therewasa large amount
of overlapin someof the otherplacementsf Scouts.

Path Taken Visual Field Visual Field
by Pioneer of Sco\t 1  of Scout 2
\\ O§
N
\ >
7
N\ 7 7
=N\ 7
)
7

Fig. 11. ExampleScoutplacementn theroom.In thisinstancetherearetwo
Scoutghatview thepathof the Pioneerobot,shavn in darkgrayin themiddle
of theroom. Thefieldsof view of thetwo Scoutsdo nothapperto overlap.

Figurel12 shavsthetotal areasviewedby the Scoutsn each
of the four cases. The areaviewed by four Scoutsis signif-
icantly greater(at the 95% confidencelevel) than the areas
viewed in the othercasesput not by a factorof four over that
viewedby oneScoutnor by afactorof two over thatviewedby
two Scouts.Thesizeandconfigurationof the environmentwas
suchthattherewasusuallya greatdealof overlapin the areas
viewed by individual Scouts.Redundang wasprobablynot as
usefulin this environment(two or threeScoutsmight have suf-
ficed), but would probablybe more effective in larger or more
segmenteckrvironments.

2 Additional experimentatiorshoved thatthe Scoutswereat leastasgoodat
detectinghumanmotionasthey wereat detectingthe Pioneer

NO.Y, MONTH 2002
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Fig.12. ExperimentC: DetectingMotion. Theareaghatthe Scoutswereable
to view. Averagesare computedover 50 trials, five trials for eachof the ten
positionsof the Scouts.
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Fig. 13. ExperimentC: DetectingMotion. The actualtime that the Scouts

detectedhe motionof the Pioneer

Figure13 shavs thetotal amountof time thetargetwasseen
by the Scoutsin eachof the four cases.Therearetwo major
factorsthat affect the performanceof the Scoutsat detecting
motion: (1) the natureof the detectmotion algorithm,and(2)
the sharingof the bandwidth.

Thedetectmotionalgorithmis sensitve to thedistanceof the
moving objectfrom the Scoutandto the directionof movement
with respectto the optical axis of the Scout. Whenthe Pio-
neermoved perpendicularlyacrosshe Scouts optical axis, the
Scoutwasableto detectit easily However, whenthe Pioneer
movedparallelto the opticalaxis, the Scouthada difficult time
detectingt. Thisis dueto therelatively smallchangebetween
successie video frames. For the samereasonmovementsof
objectsfartheraway are harderto detect. More detailson this
arein SectionVI-A.

To make more explicit the effect of sharingthe video fre-
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queng, we shav theactualtime thatthe Pioneemwasseencom-
paredto the potentialtime it couldhave beenseen By plotting
the measuredarget detectiontime for the caseausinga single
frequeny (seeFigure14) andfor the casesusingtwo frequen-
cies(seeFigure 15, we seeclearly how sharingbandwidthre-
ducesperformance.)
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Fig. 14. ExperimentC: DetectingMotion. Singlefrequeng cases.The hori-

zontalaxisrepresentthemaximumpossibletime thePioneercouldbedetected
by theScoutsandtheverticalaxisrepresentthetimeit actuallywas. Thecloser
thesetwo valuesare,the betterthe performance.

Figurel4 shavstheplot of thecasewith asinglefrequeng
usingoneandtwo Scouts.As canbe seenthe oneScoutcase
hada muchhighersuccessatethanthe two Scoutcase. This
was expectedbecausehe robotsin the two Scoutcasewere
not ableto view the entireareaat onetime. Sincethey hadto
sharea videofrequeng, they hadto take turnsobservingtheir
respectie fields of view. Sincethe Pioneerwasmaoving rela-
tively quickly (over half a metera second)jt would be missed
if the Scoutdid not have accesgo the video frequeng at that
time.

Figure 15 shavs the actualtime the Pioneerwas detected
comparedo the potentialtime it could have beendetectedor
the experimentswith two andfour Scoutsusing two frequen-
cies.

To completeour analysis,we needto accountfor an addi-
tional factor Theareatraversedby the Pioneetthatwasvisible
to the Scoutsand the amountof time the Pioneerwas visible
weredifferentacrossxperiments.This wascausedy the fact
thattheScoutdid notalwayshidein thebestviewing positions.
In someexperimentspne Scoutwasfacingthewall insteadof
facingtheopenareaandsoit did notcontrikuteto thedetection
taskatall. In othercasestwo Scoutswerevery closewith their
viewing areasalmostcompletelyoverlapping.

Figurel6 andFigurel7 shaw respectrely theareatraversed
by the Pioneethatwasin thefield of view of the Scoutsandthe
time the Pioneerwasin the field of view of the Scoutsfor the
differentexperimentsThis givesanindicationof the comple-
ity of thetask. Thesmallertheareaandthe shorterthetime, the
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Fig. 15. ExperimentC: DetectingMotion. Double frequeng cases. The
horizontal axis representghe maximum possibletime the Pioneercould be
detectedy the Scoutsandthe vertical axisrepresentshetime it actuallywas.
Thecloserthesetwo valuesare,the betterthe overall performance.
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Fig. 16. ExperimentC: DetectingMotion. The areadraversedby the Pioneer
thatthe Scoutswereableto view.

smalleris the opportunityfor the Scout(s)o detectthe Pioneer
evenwhenthereis no frequeng swapping. Thefiguresalsoil-
lustratetheadwantage®f usingalargernumberof Scouts.Both
theviewableareatraversedby the Pioneerandthetime thatthe
Pioneerwasin view have highermeansandsmallervariances
whenmore Scoutswereused. This providesa justificationfor
the useof more Scoutsthan strictly neededo cover the area.
Giventhechancethe Scoutswill nothidein goodplacesusing
more Scoutsreduceghe variability in the resultsandprovides
moreopportunitiedor the detectionof motion.

However, we shouldcautionthatthe differencesverenotal-
ways statistically significantat the 95 % confidenceevel. In
particular four robotswerefoundto be significantlybetterthan
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Fig. 17. ExperimentC: DetectingMotion. The potentialtime thatthe Scouts
could have beenableto view the Pioneer This is calculatedasthe amountof

time the Pioneemwasin the field of view of a Scoutevenif the Scoutwasnot

active atthetime.

onein thesemeasureshut four robotswere not found to be
significantlybetterthantwo on differentfrequenciedor either
measureandtwo robotsonthe samefrequeng werenotfound

to besignificantlybetterthanonefor Pioneetpathareaviewed.

This is dueto the overall betterplacementof two Scoutsus-
ing two differentfrequencieghantwo Scoutson the samefre-

queng. If the two robotresults(cases? and 3) arepooledto

give alargersamplesize,thentwo Scoutsaresignificantlybet-
teronthesemeasurethanone,andfour aresignificantlybetter
thantwo. Poolingtheseresultss justified,asthedifferencede-
tweentheir meansarenot significantlydifferent,but we cannot
rule out the slight possibility that theseresultsare real effects
of thedifferencesdn robotinteractiondn thesetwo casestather
thansimplerandomnoise.

VI. ANALYSIS

When deploying a group of Scoutsto createa sensornet,
we needto beableto predicttheir successt detectingmotion.
Ideally, we wouldlik e to guarante¢hatarny motionin the ervi-
ronmentwill be detected.This clearly dependon the number
of sensorsn thenetwork, their placementthe communications
bandwidthandthesizeof theareacovered.

Thereis atradeof betweerplacingalargenumberof Scouts
andbeingableto procesgheirvisualinformation.Many Scouts
canview apotentiallylargerareaandprovide for redundangin
caseof failures. However, increasinghe numberof Scoutsin-
creasetheloadonthecommunicationshannelsWhenScouts
sharevideo channelsthe effectivenesf their detectionabil-
ities decreases Consequentlythe numberof available video
channelds the majorfactorwhich limits the numberof Scouts
thatcanbeusedeffectively.

The motion detectionproblemwe have presenteds similar
to the Art Gallery problem[9], [10], in which arobotattempts
to find a minimal numberof obsenation pointsallowing it to
suney acomple ervironment.Our problemis complicatedoy
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the fact that the Scoutshave a limited field of view, andthat
incidenceandrangeconstraintssignificantlyaffect their ability

to detectmotion. In [11], a randomizedalgorithmfor sensor
placemenis proposedwhich takesincidenceand rangecon-
straintsinto accountput notthefield of view.

More importantly we areinterestedn detectingmotion, not
justin coveringan area. As we will shaw, the peculiaritiesof
our motiondetectiomalgorithmcombinedwith thelimited field
of view of the Scoutsmake detectionof motion much more
complicated. In addition, we are not free to placethe Scouts
in their bestviewing position—thg have to find a hiding place
autonomously Finally, since Scoutscannotplacethemseles
in openareaswherethey arelikely to be seenor steppedon,
the size of the ervironmentsthey can cover is limited by the
maximumdistanceat which they candetectmotion.

We areinterestedn usingour extensive experimentakesults
to analyzethefactorsthataffectthe probabilitythatmotionwill
bedetectedandhow they affectit. Factorswe have considered
are: (1) distance backgroundand direction of motion which
affectsthemotiondetectioralgorithmand(2) sizeandshapeof
the ervironmentwhich affectsthe placemenbf the Scouts.

We have not consideredtherfactorsthat could affect per
formance,suchas taking into accountexplicit knowledge of
the motion of the moving object(s).Eventhoughin our exper
imentswe have useda single objectmoving at constantspeed
on a straightline, we do not useary of this informationin the
motiondetectionalgorithm.

A. Factors Affectingthe Motion DetectionAlgorithm

Our motion detectionalgorithm (describedearlier in Sec-
tion IV) worksby computingthe differencebetweersequential
framesof video. The algorithmfails if the motionis notlarge
enoughto be distinguishabldrom RF noise. Whenthe tamget
is too far away from the camera,the motion betweensubse-
gquentvideo framesis too small to be detected. Figure 18(a)
showvs how the probability of detectingmotiondecreaseasthe
taiget distanceincreases Additionally, whenthe target moves
almostparallelto the optical axis of the camerathenthereis
not enoughdifferencebetweernsubsequentideoframesto de-
tectmotion. Figure 18(b) shavs how the probability of detect-
ing motion changeswith the directionof the movementof the
target with respectto the Scout. An additionalfactorthat af-
fectsthe ability to detectmotionis the background.If the tar-
getis the samecolor (or intensity for grayscalevideo) asthe
backgroundthe motion detectionalgorithmwill fail to detect
arnything. We ignorethis factorin our calculations,sincewe
run our experimentsn anervironmentfull of clutterwherethe
targetis unlikely to blendinto the backgroundor muchof its
motion.

The experimentalevidencewe collectedon the effect of dis-
tanceandincidencein detectingmotionof anobjectaslargeas
a Pioneerl shavs thatthe Scoutcannotbefurtherthan4.87 m
from the moving object. Combiningthis with the factthatthe
Scoutsvideocameréhasafield of view of 48 © makesthemax-
imum areathatoneScoutcantheoreticallymonitor9.95 m?2.
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Fig. 18. How the tamget's distancefrom the Scoutand the direction of the
target's motionaffectshow well the Scoutcandetectit.

B. Factors Affectingthe Placemenbf the Scouts

To detectmotion, Scoutsmust be placedin areasof open
spacethroughwhich tamgetsarelikely to move. Thesespaces
shouldnot be longerthan the rangein which the Scoutscan
effectively track motion. Our problemis complicatedby the
factthat Scoutshave to autonomouslhyfind their hiding places
andthey cannotbe placedpreciselyto minimize the required
numberasin the Art Galleryproblem.In addition,Scoutshave
to hide to avoid beingseenor steppedn. Scoutstendto hide
on the peripheryof the openareafacingtoward it. Because
of this, the besttype of environmentfor themis a corvex one
which is no larger than approximatelys m across. Sinceary
motion will happenin the centralopenarea,the Scoutsplace
their backsidegtheir blind spots)next to the walls whereno
motion cantake place. Large complex ervironmentscan be
subdvided into smallerregions. Figure 19 illustratessucha
subdvision. For full coverage,eachcorvex region needsits
own setof Scouts.

C. Pathsof Motion

Apriori knowledgeaboutthemotionsexpectedn anareacan
helpin determiningthe numberof Scoutsneededthe sharing

11

Fig. 19. A top-davn view of acomplex (multi-room)environmentandhow it
couldbebrokeninto multiple smallercorvex regions. Eachregion would have
its own Scout(or setof Scouts)o monitorit.

of thebandwidth,andthe choiceof the motion detectionalgo-
rithm. For instanceassuminghereis a single moving target,
Lavalle [12] proposedstratgyies for maintainingthe visibility
of the moving tarmget with a moving obsenrer. Pursuit-@asion
hasbeenstudiedasa computationagjeometryproblem.Guibas
et al. [13] provide boundson the numberof pursuersneeded
to trackanevaderdependingon the geometricandtopological
compleity of theervironment.

We areinterestedn a moregeneralsetting,wherethereare
multiple obseners,eachwith limited motions,limited comput-
ing power, limited communicationchannels,and potentially
multiple targets.

In the resultsreportedhere,we useknowledgeaboutwhere
the motion occursonly to measurénow well the Scoutsdo the
taskandextrapolatefrom our experimentakesultshow well we
shouldexpectthemto do in a differentervironment.In all our
experimentsmotion occurred,andthe Scoutsdetectedt 92 %
of thetime. However, thisdoesnothelpusunderstangvhatfac-
tors affect the performance We know that motion occursonly
onapaththroughthecenterof theregion coveredby theScouts.
We assumehat every cell within that pathhasdetectablemo-
tion at somepoint during the time that the Scoutis observing
it. This reduceghe problemto determininghow muchof the
Scoutsfield of view intersectswith the pathtakenby thetarget
and computingthe probability that motion will be detectedn
thosecells.

D. ProbabilisticModelof Motion Detection

We malke two assumptionskirst, the sizeof theervironment
is known. If thisis notthe casethenexplorationmustbe done
to acquirethemissinginformation.Secondadetectablenotion
couldoccurin ary locationandat ary time. We discretizethe
spaceusinga grid andassumehat motionwill occurwith the
sameprobabilityin any cell.
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We will usethefollowing binaryrandomvariables:
det;; = thei-throbotdetectamotionin the j-th cell,
c; = thecamereof thei-th robotis on,

m; = motionoccursin the j-th cell

Weknow thatP(det;; A—c;) = 0 sincenothingcanbedetected
by arobotwhenthecameras noton. So,we have

P(detij |m]) = P(detij|m]- A Ci)P(Cz’)

P(det;;|m; Ac;) is theprobabilitythei-th robotdetectanotion
in the j-th cell, giventhatmotionoccursin the j-th cell andthe
camereof thei-th robotis on. s;; is definedas:

Sij = P(detij|mj A Ci).

Thisis the quantitywe measuredn our experiments.

When multiple robotsare usedthereare two complicating
factors: (1) their camerasmight sharethe samecommunica-
tions channel,(2) their fields of view might partially overlap.
We are primarily interestedin the probability that motion is
seenby at leastonerobot. In the caseof two robots,assuming
they bothseethe samej-th cell, thisis expressedsfollows:

P(detlj \Y detgj |m])
= P(d6t1j|m]’) + P(det2j|mj) — P(detlj N d€t2]‘ |m])
= s15P(c1) + 52, P(c2)

— P(detlj A\ det2j|mj A C1 A Cg) . P(Cl N C2)
= s1;P(c1) + s2;P(c2)

— P(d6t1j|m]’ N Cl) . P(d6t2j|m]‘ N 62) . P(Cl A\ 62)
= Sle(Cl) + SQjP(CQ) — SljSQjP(Cl A\ 62)

If thetwo robotsshareasinglechannethenP(c; A ¢z) = 0.
If therobotsareon two differentchannelgshen P(c; A ¢2) =
P(Cl) = P(Cz).

In general,givenn robots,looking at all possiblecombina-
tions of detectionand cameraavailability canbe prohibitively
expensve. In our system all video channelschangefrom one
Scoutto the next at exactly the sametime. Thus,determining
which Scoutsare simultaneouslyactive reducessignificantly
the numberof combinationsto be considered. For instance,
if four Scoutsshareonechannelandsix Scoutssharea second
channelwe canseein Figure20which Scoutson eachchannel
areactive at ary giventime. Thereareonly 12 pairsof robots
thatcanhave their camerasctive atary time.

E. Comparingthe Analysisto the Empirical Results

Thereare two difficulties that arisewhentrying to predict
the performanceof the Scoutsin an ervironment. First, the
performanceof the behaiors which placethe Scoutsin the
environmentis highly dependenbn the local structureof the
environmentandis difficult to properly generalize.Secondly
becaus¢he placementsf the Scoutsaredifficult to generalize,
theoverlapsbetweerthevideochannel®nthe Scoutrobotsare
alsodifficult to generalize.

We wantto answerthe question"How manyvideochannels
androbotsare neededo detectmotionin anervironmenwith a
givenlevelof confidence?"If we assumehattheernvironments
are no larger thanthe onesin which we ran our experiments,

thenfrom ourresults it would appeathattwo robotsusingtwo
video channelsvould probablysufiice sincethis configuration
hasa highermeandetectionmotiontime thanary of the other
casesasshavnin Figurel13. However, sincenothingis known
a priori aboutthe natureof the moving object,four robotswill
seemoreof the environmentthantwo robotsandhave a better
chanceof detectingmotionbecausehey will be morelikely to
seeit from arangeof differentanglesanddifferentdistances.
We canassigmavalueto s;; = P(det;;|m; A ¢;) by integrat-
ing over the distancesand anglesthat the Scoutsav motion.
Giventhedatashovn in Figures18(a)and18(b),s;; =38 %.
So, given the four experimentalcases the probability that
they will detectmotionin exactly onesquare P(deti; V ...V
det;j|m;), is givenasthefollowing:
Casel: Onerobot, one video channel. A single robot has
accesgo 100 % of the bandwidthof the channeland
S0P(c1)is 1.

P(d6t1j|m]‘) = Sle(Cl) =0.38

Case2: Two robots,onevideo channel.In the experiments,
becausehe camerarequireda few secondof warm-
uptime beforetheimageresohed, P(c¢;) wasactually
only 0.25. Thevalueof P(c; A c2) is 0 becauséghe
two cameragannotbe active atthe sametime.

P(detlj \Y det2j|mj) =
Sle(Cl) + SQjP(CQ) — S]jSQjP(Cl A CQ) =0.19

Case3: Two robots,two videochannels Eachrobothadac-
cessto 100 % of its own bandwidth,so like Casel,
P(c;) = 1fori = 1,2. Additionally, sincethe cam-
erasareindependentP(c; A cz) = 1 aswell.

P(detlj V det2j|mj) ==
Sle(Cl) + ngP(Cg) — SljSQjP(Cl N 02) =0.62

Cased: Four robots, two video channels. Eachrobot had
to shareaccesdo its video channel,so like Case2,
P(¢e;) = 0.25 fori = 1,...,4. Becausehereare
only two video channelspnly two robotswill be ac-
tively viewing atary time. Theschedulds determin-
istic, similar to whatis shaovn in Figure20, andsoit
is known which Scoutsareactive atary time. For the
sale of this example,we assumavithout lossof gen-
erality thatrobotsl & 3 areactive whenrobots2 & 4
arenot andvice versa. This pruningallows usto re-
move termswhich are0, greatlyreducingthenumber
of terms.In this case,P(¢; A ¢;) = 0.25 for i = 1,2
andj = 3,4 sincebothcamerasareon only 25 % of
thetime asin Case2.

P(detlj \Y detgj \Y detgj V d6t4j |TTL]) =
Sle(Cl) + 83]'P(C3) — 81j83jP(01 AN Cg)—l—
SQ]'P(CQ) + 84]'P(C4) — 82j84jP(02 AN C4) =0.31

This model suggestghat if the numberof robotsis
doubledbut thenumberof videofrequenciestaysthe



P.RYBSKI ET AL.: PERFORMANCEOF A DISTRIBUTED ROBOTIC SYSTEMUSING SHARED COMMUNICATIONS CHANNELS

13

Time: 1 2 3 4 5 6 7 8 9 10 11 12
Channell:| camg | camy | cams | cams | camg | camy | camso | cams | camg | camy | cams | cams
Channel2:| camy | cams | cameg | cam7 | camg | camg | camy | cams | camg | camy | camg | camg

Fig. 20. Multiple robotsharingtwo video channels.Four robots(0-3) sharevideo channell andsix robots(4-9) sharevideo channel2. This chartshowvs a
typical round-robinscheduleof which two robotsareactie at eachtime index. Thecycle repeatstself aftertime index 12.

sametheperformancef theteamto detectmotionin
asinglelocationin theernvironmentwill behalved.
Watchingan areawith two Scoutsmay have a 61 %
chanceo detectmotion,but if theScoutsarenotlook-
ing wherethemotionoccurs they will notdetectary-
thing. To decidehow mary Scoutsto use,the sizeof
theervironmentneedso betakeninto accountlf it is
likely thatasmallnumberof Scoutscancover mostof
the area,thenfewer robots(preferablywith different
video channels)yre desirable. However, if the ervi-
ronmentis very large, so that the percentagef the
areacoveredby the Scoutss muchsmaller thenmul-
tiple Scoutswould be preferred. This would be the
caseevenif theindividual chancedor detectingmo-
tion might be less. Formally, this is representecs
P(det1; V...V det;jlm;) - area, wherearea is the
percentag®f the areathatthe Scoutsareableto see
with their cameras.

As shavn in Figure21, asthesizeof theervironment
increasesthe probability of detectingmotionin each
of the four casesdecreasesAn interestingeffect is
seenwhen comparingthe 1 Robot/1Freqcasewith
the 4 Robot/2Freqcase.Whenthe ervironmentsize
approache$.27 m?, the benefitsof having multiple
robots,eventhosethataresharingchannelsbecomes
evident. The 4 Robots/2Freqcasehasa higherprob-
ability of seeingthe target primarily becauseof the
additionalareathatthey cansee. The plateausn the
graphrepresentaseswherethe Scoutscan seethe
entirearea. In this case the probability of detecting
the targetis just P(dety; V ... V det;j|m;) because
area = 1.0.

VII. RELATED WORK

Automatic securityand suneillancesystemausing cameras
and other sensorsare becomingmore common. Thesetypi-
cally usesensorsn fixed locations, either connectedad hoc
or, increasingly throughthe sharedcommunicationdines of
“intelligent buildings” [14] or by wirelesscommunicationsn
“sensornetworks” [15], [16], [17]. Thesemay be portableto
allow for rapid deployment[18] but still requirehumaninter
ventionto repositionwhennecessaryThis shortcomings ex-
acerbatedh casesn whichthesuneillanceteamdoesnothave
full control of the areato be investigated. Our systemis de-
signedto requireaslittle humaninterventionaspossible.The
Scoutshave the ability to repositionthemselesif they initially
placethemselesin abadlocation. Staticsensordave another
disadantage—thg do not provide adaptabilityto changesn
theervironmentor in thetask. In caseof poordataquality, for
instancewe could have our robotsmove.
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Fig.21. Theaverageprobability of detectinga moving targetasa function of
theroomsizeandthefour differentexperimentakases.

Mobile robotssuchasthe Scoutscanovercomethe problems
with staticsensorsdyy giving the sensomwheelsandautonomy
RoboticsresearcHor securityapplicationshastraditionallyfo-
cusedon single,large, independentobotsdesignedo replace
a single humansecurity guard as he makes his rounds[19].
Suchsystemsarenow availablecommerciallyandarein place,
for example,in factory warehouseandhospitalsettings[20].
However, the single mobile agentis unableto obsere mary
placesat once—oneof the reasonsvhy securitysystemswvere
developed.

Becausef their small sizeandportability, mary Scoutscan
be carriedinto an areafor deploymentby a humanor another
robot. Multiple Scoutscan simultaneouslymonitor a much
larger areathan a single robot could. Further mobile robots
largerthanthe Scoutsareunableto conceathemseles,which
they may needto do in hostileor covert operations.They may
alsobetoolargeto exploretight areas Theseareernvironments
which the small size of the Scoutrobotsgivestheman advan-
tageoverasinglelargerrobot. Multiple mobilerobotsfor secu-
rity haverecentlybeeninvestigated[21]. In thiscasetherobots
weremeantto augmenhumansecurityguardsandfixedsensor
systemsn aknown andsemi-tailorecervironment.In thetask
we describen this paperthe Scoutsarefully autonomous.

Recentlythere has beena significantinterestin miniature
robots. Constructingrobotsthat are small, easily deployable,
andyet cando usefulwork andoperatereliably over long pe-
riod of timeshasprovento be very difficult. Many problems
suggestheuseof miniaturerobots[22]. Most miniaturerobots
have wheels[23], [24], othersroll [25].

Enegy consumptionis a major problem [17] for small
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robots,aswell assensoraisedin sensometworks. Dueto their
smallsizeandlimited power, mostminiaturerobotshave to use
proxy processingasin Inabaetal. [26], andcommunicateia a
wirelesslink with the unit wherethe computatioris done.This
becomesa problemwhen the bandwidthis limited, asin the
caseof our Scoutrobots.Becausef theirlimited size,notonly
is all processindgor the Scoutdoneoff-boardbut alsothe RF
communicationss doneusingonly afew channelsThis limits
severelytheability to controlmultiple robotsat once.

Oursoftwarearchitecturgrovidessupportfor distribution of
resourcescrosgobots,useof sharedresourcesandseamless
integration of autonomousand human-supervisedontrol [2].
We needto be able to write missionsfor teamsof heteroge-
neousrobots,aswell ashandleresourceallocationfor minia-
turerobots. Otherarchitecturedasedon componentssuchas
theonedescribedn [27], aremeantor smalldeviceswith more
limited andwell definedtasks.

A numberof architecturedave beendevelopedfor robots,
mary of themdescribedn [28]. Ourarchitecturdnassomesim-
ilaritieswith CAMPOUT [29], adistributedhybrid-architecture
basednbehaiors. Themajordifferences thatwefocusonre-
sourceallocationanddynamicschedulingwhile CAMPOUT is
mostly designedor behaior fusion. We rely on CORBA [30]
asthe underlyingtechnologyfor distributed processingwhile
in CAMPOUT eachrobot runs an instanceof the architec-
ture and usessoclets for communicationawith other robots.
Our architecturehassomesimilaritieswith ALLIANCE [31],

IEEE TRANSACTIONSON ROBOTICS AND AUTOMATION, VOL. XX, NO.Y, MONTH 2002

scheduleaccesgo physicalresourcessuchascommunications
channelsradios,etc. thathave to be sharedoy multiple robots.

We have demonstratedhow the communicationdottleneck
affectsthe overall performanceof the robots. We have shavn
initial resultsof how our systemdegradesunderincreasedoad.
The next stepis to add more intelligenceinto the behaiors
which will allow themto dynamically adjusttheir requested
runtimesto reactto the situation. Additionally, we are exam-
ining otherkinds of RF communicationdardwareto increase
thenumberof videochannelsThedifficulty liesin the Scouts
extremelysmallsizeandpower supply We believe thata com-
bination of intelligent schedulingand more flexible hardware
will allow a larger numberof Scoutrobotsto operatesimulta-
neouslyin aneffective manner
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which provides distributed control for teamsof homogeneous tionswe wereableto strengtherthe presentatiorandimprove

robots. Our systemhasbeendesignedor teamsof heteroge-
neousrobotsanddoesnotimposeary restrictionson the meth-
odsusedfor robotcontrol (deliberatve or reactve).
Resourcallocationanddynamicschedulingareessentiato
ensurerobust execution. Our work focuseson dynamicallo-
cationof resourcest executiontime, asopposedo analyzing
resourcerequestoff-line, asin [32], [33], and modifying the
planswhenrequestsannotbe satisfied. Our approachs spe-
cially suitedto unpredictableervironments,whereresources
areallocatedin a dynamicway that cannotbe predictedin ad-
vance. Werely onthewide bodyof algorithmsthatexistsin the
areaof real-timeschedulind34] andloadbalancing 35].

VIIl. SUMMARY AND FUTURE WORK

Visual behaiors for simple autonomousoperationsof a
group of Scoutrobotshave beenpresented.Experimentalre-
sultsillustrating the ability of the Scoutto positionitself in a
locationidealfor detectingmotionandtheability to detectmo-
tion have alsobeenshavn. Futurework is plannedto allow
the Scoutgo useadditionalsensointerpretatioralgorithmsfor
more comple environmentalnavigation. Ultimately, we hope
to have the Scoutsconstructa rudimentarytopologicalmap of
their surroundingsallowing otherrobotsor humansto benefit
from their explorations.

We have alsopresentedomeimportantsystenissuegelated
to thecontrolof multiple robotsover alow bandwidthcommu-
nicationschannel. We have describeda distributed software
control architecturedesignedto addresgheseissues. An es-
sentialfeatureof the architecturds the ability to dynamically

thetechnicalcontentof this paper
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