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Performanceof aDistributedRoboticSystem
UsingSharedCommunicationsChannels

PaulE. Rybski,SaschaA. Stoeter, Maria Gini, DeanF. Hougen,andNikolaosPapanikolopoulos

Abstract—Wehavedesignedand built a setof miniatur erobots,
calledScouts,and havedevelopeda distrib uted softwaresystemto
control them. This paper addressesthe fundamental choiceswe
madein the designof the control software,describesexperimental
resultsin a surveillance task, and analyzesthe factors that affect
robot performance.

Spaceand power limitations on the Scoutsseverely restrict the
computational power of their on-board computers, requiring a
proxy-processingschemein which the robots depend on remote
computersfor their computing needs.While this allowsthe robots
to be autonomous,the fact that robots’ behaviors are executedre-
motely intr oducesan additional complication – sensordata and
motion commandshave to be exchangedusing wir elesscommu-
nications channels. Communications channelscannot always be
shared, thus requiring the robots to obtain exclusive accessto
them.

Wepresentexperimental resultson a surveillancetask in which
multiple robotspatrol an areaand watch for motion. We discuss
how the limited communicationsbandwidth affects robot perfor-
mance in accomplishing the task and analyze how performance
dependson the number of robotsthat share the bandwidth.

Index Terms—Multiple robots,Mobile robots,Distrib uted soft-
ware architecture,Resourceallocation.

I . INTRODUCTION

Controlling a groupof miniaturemobile robotsin a coordi-
natedfashioncanbea very challengingtask. The limited vol-
ume of miniaturerobotsgreatly limits the kinds of on-board
computersand sensorprocessingsystemsthey can use. One
way to overcometheselimitations is to usea communications
link with a morepowerful off-boardprocessor. Unfortunately,
therobots’smallsizealsolimits thebandwidthof theircommu-
nicationssystemandpreventstheuseof largecapacitycommu-
nicationshardware (suchasa wirelessEthernet). Scheduling
accessto the sharedbandwidthbecomescritical for effective
operation.

We describea casestudy of a group of miniature robots
which mustusevery low capacityradio frequency (RF) com-
municationssystemsdueto their small size. The size limita-
tionsof theserobotsalsorestricttheamountof on-boardcom-
putationalpower they can carry, forcing them to rely on off-
boarddecisionprocesses.Thus,all the sensordataarebroad-
castto a remotecomputeror a larger robot,andactuatorcom-
mandsarerelayedbackto theminiaturerobots.Theoperation
of theserobotsis completelydependenton theRFcommunica-
tionslinks they employ. In orderto handlehighdemandfor this
low capacitycommunicationssystem,anovel processmanage-
ment/schedulingsystemhasbeendeveloped.
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In the experimentswe describe,the robotsaredeployed to
createa sensornetwork in an indoor environmentand patrol
theareawatchingfor motion.Weshow how sharingbandwidth
affectsthe performanceof the robotswhenthey areusedin a
surveillancetask.

I I . M INIATURE ROBOTIC SYSTEMS

We have developeda set of small robotic systems,called
Scouts[1], which aredesignedfor reconnaissanceandsurveil-
lancetasks.TheScout,shown in Figure1, is acylindrical robot�������	��


in length and � �
 in diameter. Scoutslocomotein
two ways. They can usetheir wheelsto travel over smooth
surfaces(even climbing a ����� slope)andthey arecapableof
jumpingover objects��� �
 in heightusingtheir spring-loaded
tails. Figure2 shows theScoutjumpingupastep.

Fig. 1. TheScoutrobotshown next to a ruler (in ��� ) for scale.

TheScoutscantransmitvideo from a small camerato a re-
mote sourcefor processing. They can also transmitand re-
ceive digital commandsover a separatecommunicationslink
thatusesanadhocpacketizedcommunicationsprotocol.Each
Scouthasa uniquenetwork ID, allowing a single radio fre-
quency to carry commandsfor multiple robots. By interleav-
ing packetsdestinedfor different robots,multiple Scoutscan
becontrolledsimultaneously.

Due to the Scout’s limited volume and power constraints,
the two on-boardmicroprocessorsare only powerful enough
to handlecommunicationsandactuatorcontrols.Thereis very
little memoryfor any high-level decisionprocessandnoability
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Fig. 2. A Scoutusingits spring-loadedtail to jumpupastair.

to processvideo. In order for the Scoutsto accomplishany-
thinguseful,they mustbepairedwith anoff-boardcomputeror
ahumanteleoperator.

Videodatais broadcastover a fixed-frequency analogradio
link andmustbe capturedby a video receiver and fed into a
framegrabberfor digitizing. Becausethe video is a continu-
ous analogstream,only one robot can broadcaston a given
frequency at a time. Signalsfrom multiple robotstransmitting
on thesamefrequency disrupteachotherandbecomeuseless.
Wewill usethetermsvideofrequency andvideochannelinter-
changeablythroughoutthispaper.

The RF limitations of the Scoutposetwo fundamentaldif-
ficultieswhentrying to controlseveralScouts.First, thecom-
mandradio hasa fixed bandwidth. This limits the numberof
commandsit cantransmitpersecond,andthereforethenumber
of Scoutsthatcanbecontrolledsimultaneously. Currently, our
inter-robot communicationsnetwork operateson a singlecar-
rier frequency, with a commandthroughputof 20-30 packets
persecond.

Second,therearegenerallynot enoughcommercialfrequen-
ciesavailableto allow for a largenumberof simultaneousana-
log transmissions.With the currentScouthardware thereare
only two videofrequenciesavailable.1 As a result,videofrom
more than two robots can be capturedonly by interleaving
the time eachrobot’s transmitteris on. Thus, an automated
schedulingsystemis required. Sharingthe bandwidthamong
robotsaffectstheperformance,aswewill seein thedescription
of ourexperimentalresultsin SectionV.

I I I . DYNAMIC RESOURCE ALLOCATION

Thedecisionprocessesthatcontrol theactionsof theScouts
needto beableto connectto all theresourcesnecessaryto con-
trol thephysicalhardware.Wehavedesigneda softwarearchi-
tecture[2] which connectsgroupsof decisionprocesseswith
resourcecontrollersthat have the responsibilityof managing
thephysicalresourcesin thesystem.

This distributed software architecturedynamically coordi-
nateshardware resourcestransparentlyacrossa network of
computersandsharesthembetweenclient processes.The ar-
chitectureincludesvarious typesof user interfacesfor robot
teleoperationand varioussensorinterpretationalgorithmsfor
autonomouscontrol. The architectureis designedto be ex-
tremelymodular, allowing for rapid additionof behaviors and
resourcesto createnew missions.
�
Thiswastruewhenthispaperwasoriginally written. Sincethen,thenumber

of availablecommercialfrequencieshasincreasedto six.

Access to robotic hardware and computationalresources
is controlled through processescalled Resource Controllers
(RCs).Everyphysicalresourcehasits own RC.Any timeabe-
havior or anotherdecisionprocessneedsa particularresource,
it mustbegrantedaccessto theappropriateRC.Somephysical
hardwarecanonly bemanagedby having simultaneousaccess
to groupsof RCs. This groupingis handledby a secondlayer
calledAggregateResourceControllers (ARCs). Every ARC is
anabstractrepresentationof thegroupof RCsthat it manages.
An ARC providesaspecializedinterfaceinto thegroupof RCs
thatit manages.

A. AnExampleof ARCsandRCs

In orderfor aprocessto controlasingleScout,severalphys-
ical resourcesarerequired.First,a robotwhich is notcurrently
in useby anotherprocessmustbeselected.Next, a command
radiowhich hasthecapacityto handlethedemandsof thepro-
cessis needed. (Refer to SectionIII-C for a discussionof
the radio’s capacity.) If the Scoutis to transmitvideo, exclu-
sive accessto a fixed video frequency is required,as well as
a framegrabberconnectedto a tunedvideo receiver. Eachin-
stanceof thesefour resourcesis managedby its own RC.

Figure3 illustratestheinterconnectionsbetweenthecompo-
nentsin thesystem.In thisexample,ahierarchy of behaviors is
responsiblefor controllingtwo robotsanda userinterfacetele-
operationconsolelets a usercontrol a third. Eachcomponent
hasits own ARC whichattemptsto gainaccessto theappropri-
ateresources.TherearethreeScoutrobots,all of whichsharea
singlevideofrequency. A singlevideoreceiver is attachedto a
videoprocessingcard,anda Scoutcommandradio is attached
to a serialport. TheARCsmustsharethevideofrequency and
framegrabberRCs. TheARC ownedby theteleoperationcon-
soledoesnot needthe framegrabberbut still needscontrol of
thevideofrequency to operate.In thissituation,only oneof the
threeARCswill beableto sendcommandsto its robotata time
andthustheARCsmusthave theiraccessscheduled.

B. TheResourceScheduler

Accessto RCsmustbescheduledwhentherearenotenough
RCs to satisfy the requirementsof the ARCs. The central
componentwhich overseesthe distribution and accessto the
ARCs andRCsis the RESOURCE CONTROLLER MANAGER.
TheRESOURCE CONTROLLER MANAGER maintainsa master
scheduleof all active ARCs andgrantsaccessto eachof their
RCswhenit is their turn to run. Whenrequestingaccessto a
setof RCs,an ARC mustspecifya minimum amountof time
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Fig. 3. An instanceof thearchitecture.ThreeScoutsarecontrolledby a combinationof behaviors anda teleoperationconsole.All threesharethesamevideo
frequency, soonly onerobotcanbecontrolledat a given time. Solid lines indicateactive connections(wheredatacanflow betweencomponents)while dashed
linesindicateconnectionsthatarenot currentlyactivebut maybecomeactive later.

thatit mustrun to getany usefulwork done.This value,which
is generallyon the orderof secondsto minutes,is called the
minimumruntimevalue.

The RESOURCE CONTROLLER MANAGER’s schedulingal-
gorithm tries to grant simultaneousaccessto as many ARCs
aspossible.ARCsaredivided into setsdependingon theRCs
they request.ARCs that ask for independentsetsof RCsare
put into differentgroups.Thesegroupswill run in parallelwith
eachothersincethey donot interactin any way. TheARCsthat
have someRCsin commonareexaminedto determinewhich
ARCscanoperatein parallelandwhicharemutuallyexclusive.
ARCswhich requestanon-sharableRCcannotrunat thesame
timeandmustbreaktheir totaloperatingtimeinto slices.ARCs
whichhaveasharableRCin commonmaybeableto runsimul-
taneously, assumingthatthecapacityrequestsfor thatsharable
RC donot exceedits total capacity.

ARCswith higherprioritiesaregivenprecedenceoverARCs
with lower priorities. The RESOURCE CONTROLLER MAN-
AGER attemptsto generatea schedulewhich allows all ARCs
of thehighestpriority to run asoftenasthey areableto. Any
ARC of a lower priority which canrun at thesametime with-
out increasingthewait timeof any of thehigher-priority ARCs,
is alsoallowed to run. Lower priority tasksthat cannotbe so
scheduledmustwait (possiblyindefinitely)for thehigherprior-
ity tasksto complete.

Oncethe schedulehasbeengenerated,the scheduleman-
ageriteratesover it in a simpleround-robinfashion.ARCsare
startedandstoppedaccordingto the lengthof their minimum
runtimesuntil thecontrollingbehaviors requestthatthey bere-
movedfrom theschedule,atwhichpoint theRESOURCE CON-
TROLLER MANAGER recalculatesthenew schedule.As anex-
ample, in Figure 3, the sequencethat the threeARCs would
be run in is (1,2,3,1,2,3,

����
). For a moredetaileddiscussion

on the schedulingalgorithmaswell asexamples,pleaserefer
to [3].

C. SharableResources

SharableRCs,suchastheScoutradio,have to managetheir
own schedulesto ensurethat eachof the ARCs usingthemis
givena chanceto sendpacketsto their robotat their requested
rate. Whenrequestingaccessto a sharableRC, an ARC must
specifyausageparameterwhichdefineshow oftenit will make
requestsand,if relevant,whatkinds of requestswill be made.
In orderto streamlinethe schedulingprocess,commandssent
to sharableRCsmusthave a constantinterval betweeninvoca-
tions. In addition,eachrequestmustbe completedbeforethe
next requestis made. However, becausethe CPU load of any
givencomputerwill vary dependingon how many components
arerunningon it, therun-timeof any givenrequestmayvary.

Sharable RCs use a simple rate monotonic algorithm
(RMA) [4] to scheduleaccess.Othermorecomplex algorithms
couldbeused,suchasthealgorithmfor proportionalsharere-
sourceallocation[5] or the algorithmproposedin [6] for fair
allocationof a singleresourceto a setof tasks.In our system,
we rely on user-setpriorities for sharingresources,so we are
notasconcernedaboutfairnessandmoreconcernedabouteffi-
ciency andsimplicity.

Requestswith higher frequencieshave precedenceover re-
questswith lower frequencies.Onceagain, however, theuser-
setpriorities mustbe maintained.Thus,higheruser-setprior-
ity ARCs have precedenceover lower user-setpriority ARCs
regardlessof the frequency of the requests.This cancausea
disruptionin thewayrequestsarehandledby theschedulingal-
gorithmandmayproduceaschedulewhich is suboptimalin its
usageof theRCs.Only whenall of thehigher-priority RCshave
beenscheduledwill thelowerpriority RCsbeallowedaccess.If
a sharableRC cannotscheduleall theARCs,theresponsibility
for handlingrequestsis givento theRESOURCE CONTROLLER

MANAGER.
Oncethe requestsfor accesshave beengranted,the ARCs
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canusethemin any way they seefit. Until they make a request
for a specificcommandto besentto theradio,for instance,the
timeslicesdevotedto thoseARCsareemptyandtheradiodoes
nothing.

As illustratedin Figure4, several ARCs have beengranted
accessto a radio,which is a sharableRC.ARC1 hasrequested
onehalf of theavailablebandwidthandthusis giveneveryother
timeslot.ARC2 andARC3 have requestedonequarterandone
eighth of the available bandwidthrespectively. Thereis still
enoughbandwidthfor anotherARC to requestthe remaining
oneeighthof theavailablebandwidthof thisRC.Thisschedule
couldnotexist in theexampleshown in Figure3 becausethose
ARCs cannotrun simultaneously. If they eachhadtheir own
VideoFrequency andFramegrabberARCs,thenthisRadioRC
schedulewould bepossible.

Time ARC ID
1 ARC1
2 ARC2
3 ARC1
4 ARC3
5 ARC1
6 ARC2
7 ARC1
8 EmptySlot

Fig.4. A typicalschedulefor asharableRCsuchasaRadioRCshowing what
timeslotsareavailableto thescheduledARCs.

IV. A DISTRIBUTED SURVEILLANCE TASK

TheScoutsareusedin a distributedsurveillancetaskwhere
they aredeployedinto anareato watchfor motion.This is use-
ful in situationswhereit is impracticalto placefixed cameras
becauseof difficultiesrelatingto power, portability, or eventhe
safetyof theoperator. In this task,theScoutscaneitherbede-
ployed into their environmentby a humanor anotherrobot,or
they canautonomouslyfind theirway into usefulareas.

Several simplebehaviors have beenimplementedto do the
task.All thebehaviorsusethevideocamera,whichcurrentlyis
theonly environmentalsensoravailableto theScout.Usingthe
video camerapresentsseveral problems. Oneproblemis the
Scout’s proximity to thefloor, which severelyrestrictsthearea
it canview.

Sincethevideois broadcastoveranRFlink to aworkstation
for processing,its qualityoftendegradesdueto noisecausedby
the Scout’s motors,multi-pathreflectionscausedby obstacles
aroundthe robot, or weaksignalscausedby proximity to the
groundand excessdistancebetweentransmitterand receiver.
Figure5 illustrateshow noisecanaffect thequality andclarity
of returnedimages.

In earlierwork, weusedasimpleframeaveragingalgorithm
to reducetheeffectsof noise[7]. Thisapproachonly dealtwith
theproblemof spurioushorizontallinesandwhite noise(Fig-
ures5(b) and 5(c), respectively). If the imagebecamesatu-
rated/inverted(Figures5(e) and5(f), respectively), or if verti-
calsynchronizationwaslost(Figure5(d)),averagingonly com-
poundedtheproblem.

(a) Acceptableimage (b) Motor RF noise

(c) Weaksignal (d) Lossof synchronization

(e) Saturation (f) Inversion

Fig. 5. Effectsof RF noisein Scoutvideo.

Currently, thegrayscalehistogramof theScoutvideois nor-
malized(Figure6(b)) in order to accentuatethe contrastsbe-
tweenlight anddarkareas.However, this hasthesideeffect of
enhancingRF noise.To compensate,we applya

�����
median

filter (Figure6(c)) over theimageto smooththedata.Theme-
dianfilter is fasterthanapplyinga Gaussianconvolution mask
anddoesa fairly goodjob of removing muchof themostcom-
mon noise. We have implementedseveral heuristicfilters to
remove thedatacorruptedby RFnoise.Thesefilters weregen-
eratedby handafter analyzinghow the video is corruptedby
RF noise. Often, whenthe video transmittedfrom a Scoutis
severely corrupted,the bestchoice to reducethe noise is to
repositiontheScout.Figure6(d)showstheresultof performing
framedifferencingandconnectedregionextraction.Thisimage
wasgeneratedby rotatingtheScoutcounterclockwisein place.
The white regionsareconnectedregionsthat aredifferentbe-
tweenthetwo images.Thetwo grayrectangleshighlight blobs
that are likely causedby the Scout’s motion. All of the other
blobsareconsideredcausedby randomRF noise(thedecision
dependson their shapeandarea)andarethusignored.

Thebehaviorswehave implementedfor this taskare:
Locate-Goal: Determiningthelocationof thedarkest(or light-
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(a) Raw image (b) Normalizedhistogram

(c) Medianfiltered (d) Differenceof two frames

Fig. 6. Scoutimageprocessingalgorithms.

est)areaof theroomis accomplishedby spinningtheScoutin
a circle andcheckingthe meanvalueof the pixels in the im-
age.Thecircularscanis accomplishedin a numberof discrete
movements. The Scoutcapturesan image,rotatesfor half a
second,takesa new image,andsubtractsthe new imagefrom
theold one.A largedifferencein theimagesindicatestheScout
moved.Thisapproachcanfail if theimagequalityis solow that
motionin theimagecannotbedistinguishedfrom noise.If the
robotis operatingin anareaof very low light or uniform color,
theremay not be enoughdetail in the imagesto generatesig-
nificant differences.Normalizing the histogram,asdescribed
earlier, helpsto increasethecontrastbetweendifferentobjects
in the image,allowing theobjectsto standout whentheScout
moves.
Drive-Toward-Goal: Identifying a dark areato move toward
is a simplematterof analyzinga strip in the imagealongthe
horizonanddeterminingthehorizontalpositionof thedarkest
area.TheScoutcomputesthedarkestregion andtriesto servo
in thatdirection.TheScoutwill stopwhenits camerais either
pressedup againsta darkobject,or if it is in shadows. If either
of thesetwo methodsfail, this behavior will time out andquit
aftera minuteor two of operation.Scoutmotionin this behav-
ior is continuousandthe Scoutdoesnot checkits movements
by framedifferencingbecauseit doesnot move very quickly.
Thedifferencebetweensubsequentframescapturedduringfor-
wardmotionis oftenminimal,makingit difficult for theScout
to detectits own motion.
Detect-Motion: Detectingmoving objectsis accomplishedus-
ing framedifferencing.The Scoutstaysstill andsubtractsse-
quentialimagesin thevideostreamanddetermineswhetherthe
scenechangesat all (causedby movementin the image.) RF
noisecanalsocausea greatdealof perceivedmotionbetween
frames. This is filtered out by analyzingthe shapesandsizes

of theblobsandignoringblobsthatarecausedby noise.Cur-
rently, ahand-tunedfilter is usedfor this decisionprocess.
Handle-Collisions: If theScoutdrivesinto anobstacle,all mo-
tion in theimageframewill stop.If nomotionis detectedafter
the Scoutattemptsto move, it will invoke this behavior and
startmoving in randomdirectionsin anattemptto freeitself. In
additionto freeingtheScout,this randommotionhastheaddi-
tional effect of changingthe orientationof theantenna,which
might improve reception.

V. EXPERIMENTAL RESULTS

The Scouts’ability to accomplishthe surveillancetaskwas
examinedwith a seriesof experimentalruns. Theseexper-
imentswere designedto test the individual and teamperfor-
mancesof theScoutsandthecontrollingarchitecturein anum-
berof differentsituationsandgroupconfigurations.In particu-
lar, wewereinterestedin evaluating:� theeffectivenessof thevision-basedbehaviorsfor navigat-

ing theScoutsto usefulpositions;� the performanceof the schedulingsystemwith multiple
Scoutsusingthe limited bandwidthRF videochannelsto
detectmotion;� theperformanceof theroboticteamgivenasetof specific
constraintsfor thesystemandtheenvironment.

Threeexperimentswererun to evaluatethe Scouts’perfor-
mance:

A) Visual Servoing. A Scouthasto locatea dark areaand
move to it.

B) Hiding andViewing a Room. Oneor moreScoutshave
to hidein adarkareaandturn to view abright area.

C) DetectingMotion. Oneor moreScoutshave to detecta
moving object.
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Fig. 7. ExperimentA: Visual Servoing. Validationof the Locate-Goal andDrive-Toward-Goal behaviors. The left imageshows a top-down view of the
experiment.Theright imageshows theaveragedistancein pixelsof theScoutfrom thetarget.

A. VisualServoing

An initial experimentwas doneto determinehow well the
Scoutcould locateandmove to anarea,usingimagesfrom its
camera.Theenvironmentconsistedof a roughly � ���	
�� � 

enclosurewith uniformly-coloredwalls and a

��
�� � ���	

black rectangleon onesideof the enclosureas the target for
the Scout. The Scoutwas started

�����	

away from the cen-

ter of thetarget. This experimentwasdesignedto examinethe
Scout’sLocate-Goal andDrive-Toward-Goal behaviors.

Nine trials wererun to seehow long it would take theScout
to locatetheblack targetobjectandmove to it. A camerawas
mountedon the ceiling of the room andwasusedto view the
progressof the Scoutfrom above. This camerawasusedfor
datalogging purposesonly. The Scoutdid not usethis video
datato navigatewith. A simple trackingalgorithmwasused
to automaticallychart the progressof the Scoutas it moved
towardthetarget.Figure7(a)showstheview from theoverhead
cameraaswell asasuperimposedplot of thepaththattheScout
took to reachits objective duringoneof its ninetrials. In each
case,theScoutsuccessfullylocatedthetargetandmovedto it.

Figure7(b) shows a plot of averagedistancefrom theScout
to the target vs. time for all of thesetrials. In the first 70-80
seconds,the Scoutusedits Locate-Goal behavior to find the
darkspot. Oncea suitablespotwaslocated,theScoutusedits
Drive-Toward-Goal behavior until it camein contactwith the
goal, somewherebetween150 and160 secondsafter the start
of thetrial.

B. Hiding andViewinga Room

To test the ability of the Scoutsto operatein a more real-
world environment,a test coursewas setup in our lab using
chairs,lab benches,cabinets,boxes,andmiscellaneousother
materials.Thegoalof eachScoutin theseexperimentswasto
find a suitabledarkhiding place,move there,andturn around
to facea lightedareaof theroom.

The environment,shown later in Figure 8, was  � �"! 
 by
� � �� 
 andhada numberof secludedareasin which theScout
could hide. The test coursehad

� � � �$# 
&% of open space,

'$� !�! 
&% of obstructedspace,and � �����(
&% of potentialhiding
places.The Scoutswerestartedat the centerof oneof the 16
tiles (eachof which is � � �"! 
&% ) in the centerof the room and
were pointedat one of eight possibleorientations. Both the
positionindex andorientationwerechosenfrom auniformran-
domdistribution.

The hiding andviewing experimentwas divided into three
cases,eachusinga differentnumberof Scoutsor communica-
tionschannels.Within eachcase,tentrials wererun. Thestop-
ping positionsandorientationsof the Scoutsfrom the endof
thetrials wereusedlaterfor thedetectmotionexperiment(Ex-
perimentC). In the first case,a singleScouton a singlevideo
frequency was usedto serve as a baseline. The secondcase
usedtwo Scoutsthathadto shareasinglevideofrequency. The
third caseusedtwo Scouts,eachon its own videofrequency.

When Scoutsshareda single video frequency, accessto
the video frequency was scheduledby the RESOURCE CON-
TROLLER MANAGER. For theseexperiments,eachScout’s be-
havior requestedtensecondintervalsof accessto thevideofre-
quency. However, sincethevideotransmitterrequires2-3 sec-
ondsof warm-uptimebeforetheimagestabilizes,Scoutseffec-
tively hadonly sevensecondsof usefulviewing timewhenthey
weregrantedaccess.

Figure8 shows the hiding placesfound for all trials. Over
all the trials, the Scoutswere able to hide themselves !��*)
of the time. In the remaining

� �*) of the time, the Scouts
reacheda 60 secondtime-outon the Drive-Toward-Goal be-
havior, andstoppedout in theopenwherethey couldbemore
easilyseenandbumpedinto. This time-outwasrequiredbe-
causethe Scoutsare unableto determinewith confidenceif
progressis being madein moving toward a hiding position.
This time-out was also encounteredon somesuccessfulhid-
ing trials, astheScoutcontinuedto try to progressto a darker
hiding position,evenafter reachingcover. For this reason,the
non-hidingtrialsarenotconsideredoutliersin thetime data.

Oncethe Scoutshadpositionedthemselves,they attempted
to orient themselvesto view a lighted areaof the room. Fig-
ure 9 shows the timesfor the Scoutsto reachtheir final poses
(positionsandorientations).In the caseswith two Scoutsthe
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Fig. 8. ExperimentB: Hiding andViewing. Positionsthat theScoutsfound
for themselvesin the +-, .�/0� by 12, 34+5� roomarerepresentedasdots.
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Fig. 9. ExperimentB: Hiding andViewing. Theaveragetime that it took the
Scoutsto completeeachtrial, shown for thethreedifferentcases.Theaverages
areover 10 trials per case. The timesareplottedusinga box representation
wherethecenterline is themedianvalue,the top andbottomlinesof thebox
representtheupperandlower quartilevaluesrespectively, andthe linesat the
top andbottomof eachplot representtherestof thedistribution. Thenotches
in thebox representanestimateof thedistribution’s mean.

valueplottedis theaveragetime. As canbeseenfrom thefig-
ure,two Scoutsonasinglevideofrequency tooklongerto reach
their final posesthana singleScout. This is to be expected—
theScoutsaretime-multiplexing thevideofrequency resource.
Thereis alsoa somewhat greateraveragetime for two Scouts
on two different video frequenciesto reachtheir final poses
thanthereis for thesinglescoutcase(for thefirst case, mean
= 212.50, 6 = 44.55; for the third case,mean= 247.50, 6 =
30.62),however, thesedifferencesarenot statisticallysignifi-
cantat the ! � ) confidencelevel (two-tailed,two-sample7 test,8 = 0.0555).

Oneinterpretationof theseresultsis thatoneScoutis better
than two on the samefrequency (as the task is accomplished
more quickly by one) and that one Scoutand two on differ-
entfrequenciesareapproximatelyequalon this task.However,

this ignoresthefactthattwo Scoutscanpotentiallyaccomplish
morethanasingleScout.

Nonetheless,even if two Scoutscould accomplishtwice as
muchasoneafter reachingtheir final poses,oneScoutis still
better, on average,thantwo on the samefrequency. The time
two Scoutsspenthiding is significantlygreaterthantwice the
time oneScoutspent.This is becausewhenswitchingcameras
up to ����) of the time is lost waiting for thevideo transmitter
to warmup. For this reason,deploying two Scoutssequentially
would make moresensethandeploying themin parallelif the
Scoutsmustsharethevideofrequency. An instant-ontransmit-
ter would eliminatethisadvantagefor sequentialdeployment.
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Fig. 10. ExperimentB: Hiding andViewing. The total areasthat theScouts
wereableto view.

Since the overall mission is surveillance, one measureof
Scoutperformanceafter deployment is the openareaviewed.
Figure10 shows the total areaviewed by the Scoutsfor each
case.Consideringtheareaviewed,two Scoutson differentfre-
quenciesarebetterthanone,as the areaviewed is larger (for
oneScout,mean= 4.73, 6 = 2.89;for two Scoutswith two fre-
quencies,mean= 8.09, 6 = 2.34)—thisdifferenceis significant
(one-tailed,two-sample7 test,8 = 0.0053).

C. DetectingMotion

A third experimentwasrun to testtheScouts’detectmotion
abilities. Four different caseswere tested,including a single
Scoutusingasinglevideofrequency, two Scoutssharingasin-
gle video frequency, two Scoutsusingtwo differentvideo fre-
quencies,andfour Scoutssharingtwo differentvideofrequen-
cies.

For eachof thefour cases,theScoutswereplacedin tendif-
ferentpositionsin the environment. Thesepositionswerethe
sameas the hiding positionsobtainedin the previous experi-
ment. In the caseusingfour Scouts,for which no hiding ex-
perimentwasrun, the positionswere randomlysampledwith
replacementfrom the resultsof the otherhiding experiments.
In eachposition, five individual motion detectiontrials were
run,bringingthetotal numberof individual trials to 200.
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In theseexperiments,the video frequency wasswappedbe-
tweenthe9 robotseveryeightsecondsandthedelayfor thecam-
era to warm up was set to four seconds.Thesevalueswere
chosento givetheScoutsalowerlatency betweenobservations.
Thelongerwarm-uptimewasnecessarybecausethedetectmo-
tion behavior is moresensitive to noisethanthenavigationbe-
haviors.

Themoving target theScoutshadto detectwasa Pioneer1
mobilerobot[8]. A Pioneerwaschosenfor its ability to repeat-
edlytraveloverapathataconstantspeed.Thisreducedsomeof
thevariability betweenexperimentsthattheuseof humansub-
jectsmight have caused.2 The Pioneerenteredthe room from
theright andmadeits wayover to theleft, moving ataspeedof
approximately� ���"':
<;2= andtraversingtheroomin 8.5seconds
on average.Onceit hadmoved � � # '(
 into theroom,it turned
aroundandmovedbackoutagain. With a4 secondaverageturn
time, thePioneerwasin theroomon averagefor 21 seconds.

Figure 11 illustratesthe fields of view seenby two Scouts
and the areaof the Pioneer’s path that they cover. While the
views of theseScoutsdo not overlap,therewasa largeamount
of overlapin someof theotherplacementsof Scouts.

Path Taken
by Pioneer

Visual Field
of Scout 1

Visual Field
of Scout 2

> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > >

? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ?

@ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @

A A A A A A A A A AA A A A A A A A A AA A A A A A A A A AA A A A A A A A A AA A A A A A A A A AA A A A A A A A A AA A A A A A A A A AA A A A A A A A A AA A A A A A A A A A

B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B B B B B B B B
C C C C C C C C C C C C C C C C C C C C C CC C C C C C C C C C C C C C C C C C C C C CC C C C C C C C C C C C C C C C C C C C C CD D D DD D D DD D D DD D D DD D D DD D D DD D D DD D D DD D D DD D D D

E E E EE E E EE E E EE E E EE E E EE E E EE E E EE E E EE E E E

FF
FF
FF
F

GG
GG
GG
G

H HH H
H HH H
H HH H

I II I
I II I
I II I

Fig. 11. ExampleScoutplacementin theroom.In this instance,therearetwo
Scoutsthatview thepathof thePioneerrobot,shown in darkgrayin themiddle
of theroom.Thefieldsof view of thetwo Scoutsdonothappento overlap.

Figure12shows thetotalareasviewedby theScoutsin each
of the four cases. The areaviewed by four Scoutsis signif-
icantly greater(at the ! � ) confidencelevel) than the areas
viewed in theothercases,but not by a factorof four over that
viewedby oneScoutnorby a factorof two over thatviewedby
two Scouts.Thesizeandconfigurationof theenvironmentwas
suchthat therewasusuallya greatdealof overlapin theareas
viewedby individual Scouts.Redundancy wasprobablynot as
usefulin thisenvironment(two or threeScoutsmighthavesuf-
ficed),but would probablybemoreeffective in largeror more
segmentedenvironments.

J
Additional experimentationshowedthattheScoutswereat leastasgoodat

detectinghumanmotionasthey wereatdetectingthePioneer.
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Fig. 12. ExperimentC: DetectingMotion. TheareasthattheScoutswereable
to view. Averagesarecomputedover 50 trials, five trials for eachof the ten
positionsof theScouts.
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Fig. 13. ExperimentC: DetectingMotion. The actualtime that the Scouts
detectedthemotionof thePioneer.

Figure13shows thetotalamountof time thetargetwasseen
by the Scoutsin eachof the four cases.Therearetwo major
factorsthat affect the performanceof the Scoutsat detecting
motion: (1) thenatureof thedetectmotionalgorithm,and(2)
thesharingof thebandwidth.

Thedetectmotionalgorithmis sensitiveto thedistanceof the
moving objectfrom theScoutandto thedirectionof movement
with respectto the optical axis of the Scout. When the Pio-
neermovedperpendicularlyacrosstheScout’s opticalaxis,the
Scoutwasableto detectit easily. However, whenthePioneer
movedparallelto theopticalaxis,theScouthadadifficult time
detectingit. This is dueto therelatively smallchangebetween
successive video frames. For the samereasonmovementsof
objectsfartheraway areharderto detect.More detailson this
arein SectionVI-A.

To make more explicit the effect of sharingthe video fre-
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quency, weshow theactualtimethatthePioneerwasseencom-
paredtoK thepotentialtime it couldhavebeenseen.By plotting
themeasuredtargetdetectiontime for thecasesusinga single
frequency (seeFigure14) andfor thecasesusingtwo frequen-
cies(seeFigure15, we seeclearlyhow sharingbandwidthre-
ducesperformance.)
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Fig. 14. ExperimentC: DetectingMotion. Singlefrequency cases.Thehori-
zontalaxisrepresentsthemaximumpossibletimethePioneercouldbedetected
by theScoutsandtheverticalaxisrepresentsthetimeit actuallywas.Thecloser
thesetwo valuesare,thebettertheperformance.

Figure14showstheplot of thecaseswith asinglefrequency
usingoneandtwo Scouts.As canbeseen,theoneScoutcase
hada muchhighersuccessratethanthe two Scoutcase.This
was expectedbecausethe robotsin the two Scoutcasewere
not ableto view theentireareaat onetime. Sincethey hadto
sharea videofrequency, they hadto take turnsobservingtheir
respective fields of view. Sincethe Pioneerwasmoving rela-
tively quickly (over half a metera second),it would bemissed
if the Scoutdid not have accessto the video frequency at that
time.

Figure 15 shows the actual time the Pioneerwas detected
comparedto thepotentialtime it couldhave beendetectedfor
the experimentswith two andfour Scoutsusingtwo frequen-
cies.

To completeour analysis,we needto accountfor an addi-
tional factor. Theareatraversedby thePioneerthatwasvisible
to the Scoutsandthe amountof time the Pioneerwasvisible
weredifferentacrossexperiments.This wascausedby thefact
thattheScoutsdidnotalwayshidein thebestviewingpositions.
In someexperiments,oneScoutwasfacingthewall insteadof
facingtheopenarea,andsoit did notcontributeto thedetection
taskatall. In othercases,two Scoutswereveryclosewith their
viewing areasalmostcompletelyoverlapping.

Figure16andFigure17show respectively theareatraversed
by thePioneerthatwasin thefield of view of theScoutsandthe
time thePioneerwasin thefield of view of the Scoutsfor the
differentexperiments.Thisgivesanindicationof thecomplex-
ity of thetask.Thesmallertheareaandtheshorterthetime,the
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Fig. 15. ExperimentC: DetectingMotion. Double frequency cases. The
horizontalaxis representsthe maximumpossibletime the Pioneercould be
detectedby theScoutsandtheverticalaxisrepresentsthetime it actuallywas.
Thecloserthesetwo valuesare,thebettertheoverall performance.
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Fig. 16. ExperimentC: DetectingMotion. Theareastraversedby thePioneer
thattheScoutswereableto view.

smalleris theopportunityfor theScout(s)to detectthePioneer
evenwhenthereis no frequency swapping.Thefiguresalsoil-
lustratetheadvantagesof usingalargernumberof Scouts.Both
theviewableareatraversedby thePioneerandthetime thatthe
Pioneerwasin view have highermeansandsmallervariances
whenmoreScoutswereused.This providesa justificationfor
the useof moreScoutsthanstrictly neededto cover the area.
GiventhechancetheScoutswill nothidein goodplaces,using
moreScoutsreducesthevariability in the resultsandprovides
moreopportunitiesfor thedetectionof motion.

However, weshouldcautionthatthedifferenceswerenotal-
ways statisticallysignificantat the ! � ) confidencelevel. In
particular, four robotswerefoundto besignificantlybetterthan
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Fig. 17. ExperimentC: DetectingMotion. Thepotentialtime thattheScouts
couldhave beenableto view thePioneer. This is calculatedastheamountof
time thePioneerwasin thefield of view of a Scouteven if theScoutwasnot
activeat thetime.

one in thesemeasures,but four robotswere not found to be
significantlybetterthantwo on differentfrequenciesfor either
measure,andtwo robotson thesamefrequency werenot found
to besignificantlybetterthanonefor Pioneerpathareaviewed.
This is due to the overall betterplacementof two Scoutsus-
ing two differentfrequenciesthantwo Scoutson thesamefre-
quency. If the two robot results(cases2 and3) arepooledto
givea largersamplesize,thentwo Scoutsaresignificantlybet-
teron thesemeasuresthanone,andfour aresignificantlybetter
thantwo. Poolingtheseresultsis justified,asthedifferencesbe-
tweentheirmeansarenotsignificantlydifferent,but wecannot
rule out the slight possibility that theseresultsarereal effects
of thedifferencesin robotinteractionsin thesetwo cases,rather
thansimplerandomnoise.

VI. ANALYSIS

When deploying a group of Scoutsto createa sensornet,
we needto beableto predicttheir successat detectingmotion.
Ideally, wewould like to guaranteethatany motionin theenvi-
ronmentwill bedetected.This clearlydependson thenumber
of sensorsin thenetwork, theirplacement,thecommunications
bandwidth,andthesizeof theareacovered.

Thereis a tradeoff betweenplacinga largenumberof Scouts
andbeingableto processtheirvisualinformation.Many Scouts
canview apotentiallylargerareaandprovidefor redundancy in
caseof failures.However, increasingthenumberof Scoutsin-
creasestheloadonthecommunicationschannels.WhenScouts
sharevideo channels,the effectivenessof their detectionabil-
ities decreases.Consequently, the numberof availablevideo
channelsis themajorfactorwhich limits thenumberof Scouts
thatcanbeusedeffectively.

The motion detectionproblemwe have presentedis similar
to theArt Galleryproblem[9], [10], in which a robotattempts
to find a minimal numberof observation pointsallowing it to
survey acomplex environment.Ourproblemis complicatedby

the fact that the Scoutshave a limited field of view, and that
incidenceandrangeconstraintssignificantlyaffect their ability
to detectmotion. In [11], a randomizedalgorithmfor sensor
placementis proposed,which takes incidenceandrangecon-
straintsinto account,but not thefield of view.

More importantly, we areinterestedin detectingmotion,not
just in coveringan area.As we will show, the peculiaritiesof
ourmotiondetectionalgorithmcombinedwith thelimited field
of view of the Scoutsmake detectionof motion much more
complicated. In addition,we arenot free to placethe Scouts
in their bestviewing position—they have to find a hidingplace
autonomously. Finally, sinceScoutscannotplacethemselves
in openareas,wherethey arelikely to be seenor steppedon,
the sizeof the environmentsthey cancover is limited by the
maximumdistanceatwhich they candetectmotion.

Weareinterestedin usingourextensiveexperimentalresults
to analyzethefactorsthataffect theprobabilitythatmotionwill
bedetected,andhow they affect it. Factorswehaveconsidered
are: (1) distance,background,anddirectionof motion which
affectsthemotiondetectionalgorithmand(2) sizeandshapeof
theenvironmentwhichaffectstheplacementof theScouts.

We have not consideredother factorsthat could affect per-
formance,suchas taking into accountexplicit knowledgeof
themotionof themoving object(s).Eventhoughin our exper-
imentswe have useda singleobjectmoving at constantspeed
on a straightline, we do not useany of this informationin the
motiondetectionalgorithm.

A. FactorsAffectingtheMotionDetectionAlgorithm

Our motion detectionalgorithm (describedearlier in Sec-
tion IV) worksby computingthedifferencebetweensequential
framesof video. Thealgorithmfails if themotion is not large
enoughto be distinguishablefrom RF noise. Whenthe target
is too far away from the camera,the motion betweensubse-
quentvideo framesis too small to be detected.Figure18(a)
showshow theprobabilityof detectingmotiondecreasesasthe
targetdistanceincreases.Additionally, whenthe targetmoves
almostparallel to the optical axis of the camera,thenthereis
not enoughdifferencebetweensubsequentvideoframesto de-
tectmotion. Figure18(b)shows how theprobabilityof detect-
ing motionchangeswith thedirectionof themovementof the
target with respectto the Scout. An additionalfactor that af-
fectstheability to detectmotion is thebackground.If the tar-
get is the samecolor (or intensity for grayscalevideo) as the
background,the motion detectionalgorithmwill fail to detect
anything. We ignore this factor in our calculations,sincewe
runourexperimentsin anenvironmentfull of clutterwherethe
target is unlikely to blendinto thebackgroundfor muchof its
motion.

Theexperimentalevidencewe collectedon theeffect of dis-
tanceandincidencein detectingmotionof anobjectaslargeas
a Pioneer1 shows thattheScoutcannotbefurtherthan � � # ':

from themoving object. Combiningthis with the fact that the
Scout’svideocamerahasafield of view of �$# � makesthemax-
imum areathatoneScoutcantheoreticallymonitor ! � ! �	
&% .
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Scoutwill detectit.

Fig. 18. How the target’s distancefrom the Scoutand the directionof the
target’s motionaffectshow well theScoutcandetectit.

B. FactorsAffectingthePlacementof theScouts

To detectmotion, Scoutsmust be placedin areasof open
spacethroughwhich targetsarelikely to move. Thesespaces
shouldnot be longer than the rangein which the Scoutscan
effectively track motion. Our problemis complicatedby the
fact that Scoutshave to autonomouslyfind their hiding places
andthey cannotbe placedpreciselyto minimize the required
number, asin theArt Galleryproblem.In addition,Scoutshave
to hide to avoid beingseenor steppedon. Scoutstendto hide
on the peripheryof the openareafacing toward it. Because
of this, the besttype of environmentfor themis a convex one
which is no larger thanapproximately

�	

across.Sinceany

motion will happenin the centralopenarea,the Scoutsplace
their backsides(their blind spots)next to the walls whereno
motion can take place. Large complex environmentscan be
subdivided into smallerregions. Figure 19 illustratessucha
subdivision. For full coverage,eachconvex region needsits
own setof Scouts.

C. Pathsof Motion

Apriori knowledgeaboutthemotionsexpectedin anareacan
help in determiningthe numberof Scoutsneeded,the sharing
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Fig. 19. A top-down view of a complex (multi-room)environmentandhow it
couldbebrokeninto multiplesmallerconvex regions.Eachregion would have
its own Scout(or setof Scouts)to monitorit.

of thebandwidth,andthechoiceof themotiondetectionalgo-
rithm. For instance,assumingthereis a singlemoving target,
Lavalle [12] proposedstrategies for maintainingthe visibility
of the moving target with a moving observer. Pursuit-evasion
hasbeenstudiedasacomputationalgeometryproblem.Guibas
et al. [13] provide boundson the numberof pursuersneeded
to trackanevaderdependingon thegeometricandtopological
complexity of theenvironment.

We areinterestedin a moregeneralsetting,wherethereare
multipleobservers,eachwith limited motions,limited comput-
ing power, limited communicationschannels,and potentially
multiple targets.

In the resultsreportedhere,we useknowledgeaboutwhere
themotionoccursonly to measurehow well theScoutsdo the
taskandextrapolatefrom ourexperimentalresultshow well we
shouldexpectthemto do in a differentenvironment.In all our
experimentsmotion occurred,andthe Scoutsdetectedit !��L)
of thetime. However, thisdoesnothelpusunderstandwhatfac-
torsaffect theperformance.We know thatmotionoccursonly
onapaththroughthecenterof theregioncoveredby theScouts.
We assumethatevery cell within thatpathhasdetectablemo-
tion at somepoint during the time that the Scoutis observing
it. This reducesthe problemto determininghow muchof the
Scout’sfield of view intersectswith thepathtakenby thetarget
andcomputingthe probability that motion will be detectedin
thosecells.

D. ProbabilisticModelof MotionDetection

Wemaketwo assumptions.First, thesizeof theenvironment
is known. If this is not thecase,thenexplorationmustbedone
to acquirethemissinginformation.Second,adetectablemotion
couldoccurin any locationandat any time. We discretizethe
spaceusinga grid andassumethatmotionwill occurwith the
sameprobabilityin any cell.
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Wewill usethefollowing binaryrandomvariables:

M$N 7PORQTS the U -th robotdetectsmotionin the V -th cell,W O S thecameraof the U -th robotis on,X Q S motionoccursin the V -th cell

Weknow that Y�Z M[N 7PO\Q^]`_ W OPabSc� sincenothingcanbedetected
by a robotwhenthecamerais not on. So,we have

Y�Z M$N 7PO\Q[d X Q2aLScY�Z M$N 7PORQ[d X Q�] W OPa�Y�Z W Oea
Y�Z M[N 7PO\Q[d X Q^] W OPa is theprobabilitythe U -th robotdetectsmotion
in the V -th cell, giventhatmotionoccursin the V -th cell andthe
cameraof the U -th robotis on. f�O\Q is definedas:

fgORQhSiY�Z M$N 7PO\Q$d X Qj] W OPa �
This is thequantitywemeasuredin ourexperiments.

When multiple robotsare usedthereare two complicating
factors: (1) their camerasmight sharethe samecommunica-
tions channel,(2) their fields of view might partially overlap.
We are primarily interestedin the probability that motion is
seenby at leastonerobot. In thecaseof two robots,assuming
they bothseethesameV -th cell, this is expressedasfollows:

Y�Z M[N 7lkmQ�n M[N 7 % Q5d X Q2a
SoY�Z M$N 7lkpQ[d X Q2arqsY�Z M$N 7 % Q[d X Q2a(tuY�Z M[N 7lkpQj] M$N 7 % Q5d X Q2a
Scf�kpQY�Z W k4arqvf % QY�Z W % a
twY�Z M[N 7lkpQj] M$N 7 % Q5d X Q�] W k	] W % a:x-Y�Z W k(] W % a

Scf�kpQY�Z W k4arqvf % QY�Z W % a
twY�Z M[N 7lkpQ[d X Q�] W kga:x-Y�Z M$N 7 % Q[d X Q�] W % ayx-Y�Z W k	] W % a

Scf�kpQY�Z W k4arqvf % QY�Z W % a(tzf�kmQ2f % QY�Z W k(] W % a
If thetwo robotsshareasinglechannelthen Y�Z W k{] W % abSc� .

If the robotsareon two differentchannelsthen Y�Z W k�] W % a|S
Y�Z W k4aLScY�Z W % a .

In general,given } robots,looking at all possiblecombina-
tions of detectionandcameraavailability canbe prohibitively
expensive. In our system,all videochannelschangefrom one
Scoutto thenext at exactly the sametime. Thus,determining
which Scoutsare simultaneouslyactive reducessignificantly
the numberof combinationsto be considered. For instance,
if four Scoutsshareonechannelandsix Scoutssharea second
channel,wecanseein Figure20whichScoutsoneachchannel
areactive at any given time. Thereareonly 12 pairsof robots
thatcanhave their camerasactiveat any time.

E. ComparingtheAnalysisto theEmpiricalResults

Thereare two difficulties that arisewhen trying to predict
the performanceof the Scoutsin an environment. First, the
performanceof the behaviors which place the Scoutsin the
environmentis highly dependenton the local structureof the
environmentandis difficult to properlygeneralize.Secondly,
becausetheplacementsof theScoutsaredifficult to generalize,
theoverlapsbetweenthevideochannelsontheScoutrobotsare
alsodifficult to generalize.

We wantto answerthequestion“How manyvideochannels
androbotsareneededto detectmotionin anenvironmentwith a
givenlevelof confidence?”If weassumethattheenvironments
areno larger thanthe onesin which we ran our experiments,

thenfrom ourresults,it wouldappearthattwo robotsusingtwo
videochannelswould probablysuffice sincethis configuration
hasa highermeandetectionmotion time thanany of theother
cases,asshown in Figure13. However, sincenothingis known
a priori aboutthenatureof themoving object,four robotswill
seemoreof theenvironmentthantwo robotsandhave a better
chanceof detectingmotionbecausethey will bemorelikely to
seeit from arangeof differentanglesanddifferentdistances.

Wecanassignavalueto f�O\Q`ScY�Z M$N 7PO\Q[d X Qy] W OPa by integrat-
ing over the distancesandanglesthat the Scoutsaw motion.
Giventhedatashown in Figures18(a)and18(b), fgORQhS|��#*) .

So, given the four experimentalcases,the probability that
they will detectmotion in exactly onesquare,Y�Z M$N 7lkmQ~n ���� nM[N 7PO\Q5d X Q2a , is givenasthefollowing:

Case1: One robot, one video channel. A single robot has
accessto

� ����) of thebandwidthof thechanneland
so Y�Z W k4a is 1.

Y�Z M$N 7lkmQ[d X Q2aLS�f�kpQY�Z W kgabSc� � ��#
Case2:Two robots,onevideochannel.In the experiments,

becausethecamerarequireda few secondsof warm-
uptimebeforetheimageresolved, Y�Z W OPa wasactually
only � � � � . Thevalueof Y�Z W k�] W % a is 0 becausethe
two camerascannotbeactiveat thesametime.

Y�Z M$N 7lkpQ�n M$N 7 % Q5d X Q2abS
f�kpQY�Z W k4arqvf % QY�Z W % a	tzf�kmQ2f % QY�Z W k(] W % abSc� ��� !

Case3:Two robots,two videochannels.Eachrobothadac-
cessto

� ����) of its own bandwidth,so like Case1,
Y�Z W OPa�S �

for U�S ��� � . Additionally, sincethecam-
erasareindependent,Y�Z W k(] W % aLS �

aswell.

Y�Z M$N 7lkpQ�n M$N 7 % Q5d X Q2abS
f�kpQY�Z W k4arqvf % QY�Z W % a	tzf�kmQ2f % QY�Z W k(] W % abSc� �  ��

Case4: Four robots, two video channels. Each robot had
to shareaccessto its video channel,so like Case2,
Y�Z W OPa�S�� � � � for U<S ��������� � . Becausethereare
only two videochannels,only two robotswill beac-
tively viewing at any time. Thescheduleis determin-
istic, similar to what is shown in Figure20, andso it
is known whichScoutsareactiveatany time. For the
sake of this example,we assumewithout lossof gen-
erality thatrobots1 & 3 areactivewhenrobots2 & 4
arenot andvice versa.This pruningallows us to re-
move termswhichare0, greatlyreducingthenumber
of terms.In this case,Y�Z W O{] W Q2a�S�� � � � for U*S ��� �
and V�S�� � � sincebothcamerasareon only � � ) of
thetime asin Case2.

Y�Z M$N 7lkpQ�n M$N 7 % Qjn M[N 7��PQjn M[N 7P��Q5d X Q2abS
f�kpQY�Z W k4arqvf�PQY�Z W �a	tzf�kmQ2f���QY�Z W k(] W �2a�q
f % QY�Z W % arqvf���QY�Z W �-a	tzf % Q2fg��QY�Z W % ] W ��abSc� � � �

This model suggeststhat if the numberof robotsis
doubledbut thenumberof videofrequenciesstaysthe
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Time: 1 2 3 4 5 6 7 8 9 10 11 12
Channel1:
� W4�$X�� W4�$X k W4�$X % Wg�"X � W4�$X�� W4�$X k W4�$X % W4�$X � W4�$Xw� Wg�"X k W4�$X % W4�$X �
Channel2: W4�$X � W4�$Xw� W4�$Xw� Wg�"X�� W4�$X�� W4�$Xw� W4�$X � W4�$Xw� W4�$Xw� Wg�"X�� W4�$X�� W4�$Xw�

Fig. 20. Multiple robot sharingtwo video channels.Four robots(0-3) sharevideo channel1 andsix robots(4-9) sharevideo channel2. This chartshows a
typical round-robinscheduleof which two robotsareactiveateachtime index. Thecycle repeatsitself aftertime index 12.

same,theperformanceof theteamto detectmotionin
a singlelocationin theenvironmentwill behalved.
Watchingan areawith two Scoutsmay have a  � )
chanceto detectmotion,but if theScoutsarenotlook-
ing wherethemotionoccurs,they will notdetectany-
thing. To decidehow many Scoutsto use,thesizeof
theenvironmentneedsto betakeninto account.If it is
likely thatasmallnumberof Scoutscancovermostof
the area,thenfewer robots(preferablywith different
video channels)aredesirable.However, if the envi-
ronmentis very large, so that the percentageof the
areacoveredby theScoutsis muchsmaller, thenmul-
tiple Scoutswould be preferred. This would be the
caseeven if the individual chancesfor detectingmo-
tion might be less. Formally, this is representedas
Y�Z M$N 7lkmQ�n ���� n M[N 7PO\Q[d X Q2abx �$� N � , where �$� N � is the
percentageof theareathat theScoutsareableto see
with their cameras.
As shown in Figure21,asthesizeof theenvironment
increases,theprobabilityof detectingmotionin each
of the four casesdecreases.An interestingeffect is
seenwhencomparingthe 1 Robot/1Freqcasewith
the4 Robot/2Freqcase.Whentheenvironmentsize
approaches � � '(
�% , the benefitsof having multiple
robots,eventhosethataresharingchannels,becomes
evident. The4 Robots/2Freqcasehasa higherprob-
ability of seeingthe target primarily becauseof the
additionalareathat they cansee.Theplateausin the
graphrepresentcaseswherethe Scoutscan seethe
entirearea. In this case,the probability of detecting
the target is just Y�Z M$N 7lkpQ`n ����� n M[N 7PO\Q5d X Q2a because�"� N � S ��� � .

VI I . RELATED WORK

Automaticsecurityandsurveillancesystemsusingcameras
and other sensorsare becomingmore common. Thesetypi-
cally usesensorsin fixed locations,either connectedad hoc
or, increasingly, throughthe sharedcommunicationslines of
“intelligent buildings” [14] or by wirelesscommunicationsin
“sensornetworks” [15], [16], [17]. Thesemay be portableto
allow for rapid deployment [18] but still requirehumaninter-
ventionto repositionwhennecessary. This shortcomingis ex-
acerbatedin casesin which thesurveillanceteamdoesnothave
full control of the areato be investigated. Our systemis de-
signedto requireaslittle humaninterventionaspossible.The
Scoutshave theability to repositionthemselvesif they initially
placethemselvesin a badlocation.Staticsensorshave another
disadvantage—they do not provide adaptabilityto changesin
theenvironmentor in thetask.In caseof poordataquality, for
instance,wecouldhaveour robotsmove.
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Fig. 21. Theaverageprobabilityof detectinga moving targetasa functionof
theroomsizeandthefour differentexperimentalcases.

Mobile robotssuchastheScoutscanovercometheproblems
with staticsensorsby giving thesensorwheelsandautonomy.
Roboticsresearchfor securityapplicationshastraditionallyfo-
cusedon single,large, independentrobotsdesignedto replace
a single humansecurityguardas he makes his rounds[19].
Suchsystemsarenow availablecommerciallyandarein place,
for example,in factory, warehouse,andhospitalsettings[20].
However, the single mobile agentis unableto observe many
placesat once—oneof thereasonswhy securitysystemswere
developed.

Becauseof their smallsizeandportability, many Scoutscan
be carriedinto an areafor deploymentby a humanor another
robot. Multiple Scoutscan simultaneouslymonitor a much
larger areathan a single robot could. Further, mobile robots
largerthantheScoutsareunableto concealthemselves,which
they mayneedto do in hostileor covert operations.They may
alsobetoo largeto exploretight areas.Theseareenvironments
which thesmall sizeof theScoutrobotsgivesthemanadvan-
tageoverasinglelargerrobot.Multiple mobilerobotsfor secu-
rity haverecentlybeeninvestigated[21]. In thiscase,therobots
weremeantto augmenthumansecurityguardsandfixedsensor
systemsin a known andsemi-tailoredenvironment.In thetask
we describein thispaper, theScoutsarefully autonomous.

Recentlytherehasbeena significant interestin miniature
robots. Constructingrobotsthat aresmall, easilydeployable,
andyet cando usefulwork andoperatereliably over long pe-
riod of timeshasproven to be very difficult. Many problems
suggesttheuseof miniaturerobots[22]. Mostminiaturerobots
havewheels[23], [24], othersroll [25].

Energy consumptionis a major problem [17] for small
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robots,aswell assensorsusedin sensornetworks.Dueto their
smallsize� andlimited power, mostminiaturerobotshaveto use
proxyprocessing,asin Inabaetal. [26], andcommunicatevia a
wirelesslink with theunit wherethecomputationis done.This
becomesa problemwhen the bandwidthis limited, as in the
caseof ourScoutrobots.Becauseof their limited size,notonly
is all processingfor the Scoutdoneoff-boardbut alsothe RF
communicationsis doneusingonly a few channels.This limits
severelytheability to controlmultiple robotsatonce.

Oursoftwarearchitectureprovidessupportfor distributionof
resourcesacrossrobots,useof sharedresources,andseamless
integrationof autonomousandhuman-supervisedcontrol [2].
We needto be able to write missionsfor teamsof heteroge-
neousrobots,aswell ashandleresourceallocationfor minia-
turerobots.Otherarchitecturesbasedon components,suchas
theonedescribedin [27], aremeantfor smalldeviceswith more
limited andwell definedtasks.

A numberof architectureshave beendevelopedfor robots,
many of themdescribedin [28]. Ourarchitecturehassomesim-
ilaritieswith CAMPOUT[29], adistributedhybrid-architecture
basedonbehaviors. Themajordifferenceis thatwefocusonre-
sourceallocationanddynamicscheduling,while CAMPOUTis
mostlydesignedfor behavior fusion. We rely on CORBA [30]
asthe underlyingtechnologyfor distributedprocessing,while
in CAMPOUT eachrobot runs an instanceof the architec-
ture and usessockets for communicationswith other robots.
Our architecturehassomesimilaritieswith ALLIANCE [31],
which providesdistributedcontrol for teamsof homogeneous
robots. Our systemhasbeendesignedfor teamsof heteroge-
neousrobotsanddoesnot imposeany restrictionson themeth-
odsusedfor robotcontrol(deliberativeor reactive).

Resourceallocationanddynamicschedulingareessentialto
ensurerobust execution. Our work focuseson dynamicallo-
cationof resourcesat executiontime, asopposedto analyzing
resourcerequestsoff-line, as in [32], [33], andmodifying the
planswhenrequestscannotbe satisfied.Our approachis spe-
cially suited to unpredictableenvironments,where resources
areallocatedin a dynamicway thatcannotbepredictedin ad-
vance.Werely onthewidebodyof algorithmsthatexistsin the
areaof real-timescheduling[34] andloadbalancing[35].

VI I I . SUMMARY AND FUTURE WORK

Visual behaviors for simple autonomousoperationsof a
groupof Scoutrobotshave beenpresented.Experimentalre-
sults illustrating the ability of the Scoutto position itself in a
locationidealfor detectingmotionandtheability to detectmo-
tion have also beenshown. Futurework is plannedto allow
theScoutsto useadditionalsensorinterpretationalgorithmsfor
morecomplex environmentalnavigation. Ultimately, we hope
to have theScoutsconstructa rudimentarytopologicalmapof
their surroundings,allowing otherrobotsor humansto benefit
from their explorations.

Wehavealsopresentedsomeimportantsystemissuesrelated
to thecontrolof multiple robotsovera low bandwidthcommu-
nicationschannel. We have describeda distributed software
control architecturedesignedto addresstheseissues. An es-
sentialfeatureof the architectureis the ability to dynamically

scheduleaccessto physicalresources,suchascommunications
channels,radios,etc. thathave to besharedby multiple robots.

We have demonstratedhow the communicationsbottleneck
affectsthe overall performanceof the robots. We have shown
initial resultsof how oursystemdegradesunderincreasedload.
The next step is to add more intelligenceinto the behaviors
which will allow them to dynamicallyadjust their requested
runtimesto reactto the situation. Additionally, we areexam-
ining otherkinds of RF communicationshardwareto increase
thenumberof videochannels.Thedifficulty lies in theScout’s
extremelysmallsizeandpower supply. Webelieve thata com-
binationof intelligent schedulingandmoreflexible hardware
will allow a largernumberof Scoutrobotsto operatesimulta-
neouslyin aneffectivemanner.
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[10] V. Chvátal, “A combinatorialtheoremin planegeometry,” J. Combin.
Th., vol. 18,pp.39–41,1975.
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