
Facilitating Real-time Collaboration and Learning in Search
Environments for Multi-Robot Systems via Real-time

Evolutionary Algorithm
Angel Sylvester

University of Minnesota

Twin Cities, United States

sylve057@umn.edu

Maria Gini

University of Minnesota

Twin Cities, United States

gini@umn.edu

ABSTRACT
This work draws inspiration from social insects exploring an unfa-

miliar environment to develop general search strategies. It specifi-

cally draws from discoveries in evolutionary and behavioral adapta-

tion for foraging/exploration in ants. The solution seeks to encour-

age real-time adaptations that aid in search efficiency, removing the

computationally intensive pre-training necessary in many learning

architectures. Inter-agent communication is exploited to continu-

ously adopt the parameter values that best complement the current

exploration strategy in each robot. In contrast to the traditional

genetic algorithm architecture, this form of unsupervised, heuristic-

based online learning strives to optimize the controller parameters

exclusively via local interactions, which are intended to offer fine-

grain control to the low -level thresholds and constants employed

for the exploration strategies expressed while reconciling the sys-

tem’s implicit (environment familiarity) and explicit goals (object

acquisition).

KEYWORDS
Genetic algorithm, unsupervised learning, dynamic learning, swarm

robotics, multi-agent systems, online learning

ACM Reference Format:
Angel Sylvester and Maria Gini. 2023. Facilitating Real-time Collaboration

and Learning in Search Environments for Multi-Robot Systems via Real-

time Evolutionary Algorithm. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 10 pages.

1 INTRODUCTION
Swarm robotics is a field of robotics that derives insight from bio-

logical entities such as bees, beetles and foraging ants. At the agent

level, the internal mechanisms are primarily primitive and based

on current interactions with the environment. However, these be-

haviors fundamentally contribute to the emergence of complex

macroscopic events. For instance, the behaviors can enable the

synchronization of agents in some formations or in the swift ac-

quisition of objects from the environment (i.e., foraging). These

individual behaviors are embodied within the controller algorithm

of each agent but the mechanisms may be based on heuristics or op-

timization methods inspired by real organism behavior (i.e., particle

swarm optimization, ant colony optimization).

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

These algorithms are fine-tuned to the current environment, with

no direct focus on creating generalizable search strategies that could

be applied to similar situations. This work, however, strives to adopt

the strategies utilized by biological organisms to develop dynami-

cally changing behaviors in response to incentives and punishments

in a ’food’ and possibly obstacle-laden environment. Besides the

strategies expressed, we also incorporate an evolutionary algorithm

with parameters intended to guide how the strategies themselves

occur. It has been shown that animals learn via Bayesian updating,

which when applied to animal behavior, is based on the assumption

that animals have an expectation of the world (i.e., patch quality,

quality of mates) or “posterior opinion” which gets updated as new

information is encountered [19]. Coupled with this intuition, we

modify the controller parameters in each agent using its real-time

performance. This is especially applicable when an agent needs to

instantaneously update itself in response to unforeseen events or

elements in the environment. The purpose of this approach is to

adopt the framework of genetic algorithms to support real-time

(and thus less training-intensive) adaptation to the environment.

2 RELEVANTWORK
Many solutions for improving aspects of emergent behaviors found

in foraging-based scenarios draw inspiration from social or bio-

logical phenomena or via unsupervised learning models such as

reinforcement learning [20]. However, the computational burden

caused by memory-intensive learning frameworks or lack of gener-

ality across similar scenarios merit further exploration. In order to

avoid these shortcomings, insights from heuristics applied in social

insects are utilized [16, 18, 20, 25]. Algorithmic approaches inspired

by social insects include the artificial bee colony algorithm (ABC)

[9], artificial bacterial foraging [12], ant colony optimization [4],

and particle swarm optimization [8, 16, 25], which have been used

for optimization problems. This work addresses the use of genetic

algorithms in online (embodied) evolution [11] and biology-inspired

techniques [19, 31] to examine real-time learning for foraging tasks

where prior knowledge of the environment is not available.

A genetic algorithm (GA) is a stochastic search technique in-

tended to mimic natural evolution [15]. The potential solutions

to a given problem are represented as chromosomes (mimicking

genes in natural organisms) that are updated after each generation

to improve the solutions as the problem space is explored more

thoroughly. The solutions generated are ranked by a fitness func-

tion that retains the most promising solutions, which later undergo

crossover and mutation to diversify the solution set. This process is

repeated until an optimal or near-optimal solution is identified. The

process of finding a solution happens before assessing it. Online

implementations, on the other hand, do this process in real-time as

progress is made over time. Since the optimal search problem is NP-

hard [27], computational methods such as GAs are a potential way

to produce high-quality solutions with reduced time complexity.

GAs have been used in path planning, task coordination, and

multi-objective control [29] In multi-robot settings, this approach

allows for alternations in controller parameters [24], levels of inter-

activity with other robots [30], or collision avoidance [35] via the

genetic encoding of these settings that are updated over many itera-

tions. The genetic material is generally represented as a vector that

is transformed via crossover or mutation to develop new solutions

to be assessed [10]. However, our work specifically differentiates

itself from others through its increased focus on existing biological

exploration and learning strategies (i.e., using bayesian updating

[31], optimal foraging theory [19]) as an alternative to explicit forms

of long-termmemory as applied to the foraging scenario. The intent

is abstraction of the general environment in real-time rather than

parameter fine-tuning for specific environmental configurations.

This would be relevant in cases where complete visibility or prior

knowledge of the environment itself is unavailable.

3 ONLINE PROGRESSIVE IMPROVEMENT
GENETIC ALGORITHM (OPI-GA)

We propose a solution to the foraging problem based on making

progressive strategic improvements through real-time contextual

information and inter-robot interactions using a genetic algorithm

(GA). GAs use a fitness function to drive the evolution of certain

parameters toward an optimal solution for that objective. This is

initially done in a stochastic fashion until convergence towards

an optimal configuration. Many generations are needed to thor-

oughly explore the problem space. However, the real world may

be dynamically changing, so an optimal solution is not always at-

tainable. The intuition underlying our online GA is progressive

improvement rather than optimality. This is done by allocating a

certain amount of time to exploration (assigning agent parameters)

and comparing that outcome to past results, to determine whether

the current approach should be enforced or penalized. Specifically,

we propose a solution that combines strategic behavior learning

(behavioral component) with a GA dedicated to fine-tuning how

those behaviors are expressed (GA component).

3.1 Genetic algorithm overview
The behavioral component includes a probability distribution of the

exploration strategy (i.e., forward persistence, circular persistence,

correlated random). The hard parameters for fine-tuning those

behavioral strategies are represented as a chromosome 𝜃𝑡
𝑃𝑖

with

each component i associated with each hard parameter’s value

(which is initially stochastically generated).

The parameters we seek to fine-tune via the algorithm are listed

in Table 1. The speed parameter was selected since it is analogous to

the adapted morphology (longer legs = more straight line behavior,

shorter legs = tighter turn radius) found in ants to optimize search

behavior depending on the environmental terrain [23].

The reward and penalty are derived from optimal foraging the-

ory, which predicts behavioral strategies that maximize net energy

Table 1: Parameters in a chromosome

Parameter Range

speed (revolutions/sec) [0, 10]

reward [0, 30]

exploration penalty (per sec) [0,5]

object encounter threshold [0,5]

gain (from food collected) at the lowest penalty [26], and uses con-

straints on temporal, energetic, and cognitive aspects. We aim to

explicitly account for the temporal and energetic component in-

volved in determining this cost-benefit relationship through the

energetic reward and initial energy of the agent as well as the

penalty for exploration. Also, relative abundance (the cognitive fac-

tor) is indirectly accounted for by the agent’s reaction in response to

a lack of success in a local area and increased straight-line (forward-

persistence) exploration when the energy of the agent reaches zero.

The final component, the object encounter threshold, aims to in-

tegrate a naive Bayes classifier-like element when creating the

discrete probability distribution for the available strategic explo-

ration options: CRW (correlated random walk), circular, forward-

persistent. For instance, after 𝑁 collections, the discrete probability

distribution for each strategy is altered to depend only on the num-

ber of successes for each strategy divided by the sum of the number

of successes encountered. Bayes theorem calculates the conditional

probability of the occurrence of an event based on prior knowledge.

This threshold will determine how many successes are necessary

before the discrete probability distribution is only dependent on its

own personal experiences with each strategy. The benefit of this

approach is its scalability, low training data requirements, and lack

of sensitivity to potentially irrelevant features [1].

If a robot encounters another robot, they both exchange infor-

mation regarding their chromosome and current fitness, using an

LED and light sensor on each robot. Interactions between robots

are used to determine the subsequent chromosome an agent would

assume after a generation had passed. The chosen mate for this

process is based on the best-encountered agent during that genera-

tion, not the global best. The best is determined by choosing the

chromosome with the highest performance, using the following

fitness equation:

𝐹𝜃𝑡
𝑃𝑖

=


𝛼1 (𝑐𝑔) + 𝛼2 (

1

𝑒𝑔
), 𝑖 𝑓 𝑒𝑔! = 0

𝛼1 (𝑐𝑔), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

where 𝛼1 and 𝛼2 are weight constants of 2 and 1 respectively (to

encourage object collection over collision avoidance), while 𝑐𝑔 is

the total collected during that generation, and 𝑒𝑔 is the total number

of collisions encountered during that generation. If no fitter robots

are encountered, the chosen mate is its own chromosome.

If the encountered agent has a higher fitness, the original chro-

mosome for that agent is saved until the beginning of the next

generation. Once that generation begins, that saved chromosome

and current chromosome undergo crossover and mutation to create

a new chromosome (that is randomly selected from the children)

for that agent for that generation. If no agents are encountered

during that generation’s duration, the chromosome does crossover

and mutation with its original chromosome. The pseudo-code for

the GA component can be found in Algorithm 1.

Algorithm 1 GA component pseudo-code

1: procedure OPI-GA(N) ⊲ environment initialization

2: Generate N robots

3: Generate block distribution

4: while g < G do
5: if Generation g = 0 then ⊲ chromosome initialization

6: for Individual i in N do
7: Randomly generate chromosome 𝜃𝑡

𝑃𝑖
∼ U (𝑡𝑚𝑖𝑛 ,

𝑡𝑚𝑎𝑥)

8: else
9: for Individual i in N-1 do
10: Select Parent Index k
11: if encounter then
12: Select Parent Index k
13: Select counterpart Index l and evaluate fit-

ness

14: Store chromosome if F(𝐹 𝑡
𝑙
) > F(𝐹 𝑡

𝑘
)

15: Evaluate fitness 𝐹 𝑡
𝑖
using F(𝜃𝑡

𝑃𝑖
)

16: Select elite individual 𝑃
𝑔

𝑒𝑙𝑖𝑡𝑒

17: Cross-over and mutation 𝑃
𝑔

𝑒𝑙𝑖𝑡𝑒
with 𝑃𝑡

𝑖
18: g++

The process of crossover uses a binary representation of each

parameter. It assumes parameter independence. Meaning, each

parameter is represented as a binary string. The strings for each

parameter may have different lengths but are the same for the same

corresponding parameter. Cross-over assumes parameter indepen-

dence such that each parameter pair has a different single point

before being recombined into a new chromosome. The ’first’ child

from each recombination is the one chosen, this mirrors zygote

formation in biology [17]. Also, practically speaking, exhaustive

comparisons of each potential child generated would not be feasible

using the existing architecture with this emphasis on real-time, dy-

namic changes (the robot gets only one chromosome). The overall

intent is to ensure that beneficial trait parameters persist in general

through this process. A potential future direction could include

using forms of memory or association learning to develop ways to

abstract potential fitness so all children can be considered in this

real time scenario. This process is repeated for each parameter and

combined to generate a new child chromosome for the subsequent

generation. The process of mutation includes a scan of each binary

component of a parameter, with a 0.2 probability of that element

swapping (i.e., 0 to 1).

3.2 Behavioral Adaptation Component
In contrast, the exploration behaviors are updated instantly in

response to events impacting individual agent performance, as

described in Algorithm 2.

The system is initially set as an equally partitioned discrete

probability mass function IP(A) to sample a search strategy 𝐵𝑠 from.

Algorithm 2 Behavior component pseudo-code

1: procedure OPI-GA(N) ⊲ environment initialization

2: Generate N robots

3: Generate block distribution

4: while g < G do
5: Initialize E(0) = reward, penalty, speed, and encounter

threshold from 𝜃𝑡
𝑃𝑖

6: Initialize c = number successful collections for each

respective strategy

7: if Generation g = 0 then
8: Sample 𝐵𝑠 ∼ IP (A)

9: else
10: for t in g do
11: if E(t) = 0 then
12: IP(A) = || IP(A) x 𝑋𝐵,1|| , where 𝑋𝑖 = 1.2 if𝐴1,𝑖

= "forward-persistent", 𝑋𝑖 = 1.2, else 𝑋𝑖 = 0

13: if obj found then
14: E(t) = E(t) + E(0), C(𝐵𝑠) = C(𝐵𝑠) + 1

15: if num obj found < threshold then
16: IP(A) = || IP(A) x 𝑋𝐵,1|| , where 𝑥𝑖 = 1.2 if

𝐴1,𝑖 = 𝐵𝑠 , 𝑋𝑖 = 1.2, else 𝑋𝑖 = 0

17: resample 𝐵𝑠 ∼ IP (A), reset E(t) to E(0)
18: else ⊲ naive bayes intuition

19: IP (A) = || c || and resample 𝐵𝑠 ∼ IP(A)

20: E(t) = E(t) - penalty
21: g++

Throughout the simulation, however, the weight of each strategy is

updated based on the current performance of the agent using that

strategy. This weighting alters the probability function the agent

samples from to determine its subsequent exploration strategy

(i.e., forward persistence, circular persistence, correlated random)

during that generation in response to success or failure. The scaling

constant of 1.2 is intended to directly increase the probability of

selecting that search strategy by 20% of what it was originally.

This either occurs when the robot should enforce larger movement

away from a current spot using the forward-persistence strategy or

reinforce its current strategy. Forward persistence means that over

the course of the strategy time’s duration, the robot will proceed

in the forward direction The overall probability distribution gets

re-normalized after this manipulation.

On the other hand, circular persistence partitions the strategy
time into four bearings, the subsequent bearing due right or left

of the current heading. Finally, the correlated random is simply the

usage of a correlated random walk, a movement that follows a

Markov chain (with forward direction being most likely) and other

headings equally likely with respect to each other.

Over the course of the entire trial, relevant robot status informa-

tion includes the energy the agent has at that point in time (which

gets updated after an object is found or deducted for every second

spent exploring with no success), the current fitness, the number of

objects collected so far, the strategy currently being used, whether

the robot is homing or searching, and what robot’s chromosome

is best of those encountered so far. These values are represented

under the robot status. Examples of personal events include when

the agent’s energy reaches 0 or a successful collection occurs.

Instead of relying on centralized algorithms to determine an

agent’s subsequent destination (Particle Swarm Optimization) [6]

or post-hoc fine-tuned parameters [28], we use a probability dis-

tribution of general strategies based on purely personal and local

interactions. The behavioral probability distribution is accompanied

by hard parameters such as speed, reward, penalty, and encounter

threshold, which are listed in Table 1. These parameters come from

insights derived from ant literature, optimal foraging theory, and

elements of naive Bayes updating. Ants are an especially good anal-

ogy because of their success in foraging performance [8], which

have real-world relevance (i.e., in search-and-rescue operations).

It has been shown that the environment influences how a system

chooses search strategies, prioritizes objectives, and coordinates

local decisions [7], which makes real-time updating reasonable.

3.3 Determining the optimal learning time for a
given environment

In order to determine an optimal learning time (i.e., generation

duration) for each of the environment types, we assessed each

for 30 trials (each trial 600 sec long) for each potential generation

time. After the learning time 𝑡 has elapsed, the robot controller

does crossover and mutation to generate a new set of parameters

as it continues the foraging task. Based on the environment, the

level of success (number of objects collected, number of collisions

occurred) during that duration is used to determine whether the

robot will do crossover/mutation with the chromosome of another

robot encountered, if it has a better fitness, or its own chromosome

(reinforcing hyper-parameters already in place).

The environments we use include a 2 m × 2 m arena with objects

distributed in either a random, (RN) power-law (PL), or urban-

inspired (Urban) fashion. These environments were selected to

simulate natural distributions (i.e., random individual seed distri-

bution [14], food patches [19], static environment with obstacles

[33]). The environment during each trial is re-generated to avoid

randomly generating an environment that has a more favorable

object distribution, especially given the small number of trials used

to determine the learning time. During the exploration task, the

learning time influences the frequency of update as each robot

fine-tunes its hyper-parameters and develops a general strategy to

traverse an unknown area. Ultimately the best average collection

was selected (or equivalent based on p value with respect to best

and selected learning time).

To determine the learning time for the random distribution (RN)
environment, we counted the mean number of the objects collected.

The learning time that was ultimately selected was 20 seconds for

each generation because it had the largest mean of objects collected.

The times attempted can be found in Table 2. An example of the

distribution is in Fig. 1a. Based on the distribution of p-values done

via two-sample statistical t-test, the performance for learning times

of 30, 50, 90, and 110 are very similar (greater than 50 percent

chance of null hypothesis being true). The mean number of objects

collected decreases, being potentially indicative of a sub-optimal

learning time for an environment with randomly distributed objects.

The high degree of variability may also be indicative of lack of

(a) RN Scenario

(b) PL Scenario

(c) Urban Scenario

Figure 1: Snapshot of environments assessed

significance of a precise learning time per se, given how close the

learning times are with respect to each other.

For the power-law distribution (PL), we generated repeatedly

the environment (with the same object distribution) of 20 clusters

randomly distributed (each cluster ranging between 1 and 5). An

example of the distribution can be found in Fig. 1b. The learning

time selected was 30 sec, chosen from the best-performing candi-

date learning times. Based on the distribution of p-values done via

two-sample statistical t-test, the other candidate solutions that are

very similar (greater than 50 percent of null hypothesis being true)

include 20, 50, and 60. Besides the 100 learning time, as the learning

time increases, the average performance begins to decrease, with

the difference growing more significant as a result.

The final environment assessedwas the urban environment, which
consists of buildings (static obstacles) of varying dimensions spread

throughout the environment. This environment is of particular

interest because it reflects the reality in human-centered environ-

ments. The manner in which the objects are collected is similar

Table 2: OPI-GA mean learning time for RN (random distri-
bution of 20 objects over 30 trials)

Potential Time Mean (RN) Stdev (RN) p-val

20 1.90 1.348 -

30 1.73 1.172 0.611

40 1.17 1.117 0.025

50 1.67 1.516 0.531

60 1.53 1.167 0.265

70 0.97 0.999 0.004

80 1.43 0.971 0.130

90 2.10 1.626 0.606

100 1.37 1.129 0.102

110 2.07 1.388 0.639

Table 3: OPI-GA learning time for PL (20 clusters distributed
in the environment, over 30 trials)

Potential Time Mean (PL) Stdev (PL) p-val

20 2.40 1.567 0.871

30 2.33 1.605 -

40 1.97 1.586 0.377

50 2.06 1.530 0.512

60 2.17 1.555 0.684

70 1.83 1.206 0.178

80 1.63 2.076 0.150

90 1.20 1.126 0.003

100 2.00 1.912 0.468

110 1.47 1.383 0.029

Table 4: OPI-GA learning time for Urban (distribution similar
to RN, but with obstacles, over 30 trials)

Potential Time Mean (Urban) Stdev (Urban) p-val

20 1.60 1.354 0.402

30 1.13 1.042 0.019

40 1.60 1.453 0.418

50 1.90 1.398 -

60 1.57 1.357 0.353

70 1.87 1.279 0.924

80 1.40 1.329 0.161

90 1.23 1.073 0.043

100 1.10 0.803 0.009

110 1.17 1.177 0.032

to the RN scenario. An example of the distribution can be found

in Fig. 1c. Similar to the previous environmental distributions, the

placement of each element is consistent across different trials and

candidate learning times. The learning time selected was 50 seconds

because it has the highest mean performance. Based on the p-values

generated from the two-sample t-test, another similar candidate

solution was 70. However, besides this learning time, the p-value

appears to decrease, indicative of an increasing significance in the

difference between the performance of these learning times with

respect to the selected learning time. Furthermore, the number of

objects collected on average for the same environmental conditions

appear to roughly decrease at the potential time increases if you

exclude the 70 candidate solution as well.

3.4 Insights on chromosome composition
The chromosome composition of each chromosome draws inspira-

tion from optimal foraging theory, bayesian updating, and general

morphological traits that influence social insect performance in

different environmental conditions.

Figure 2: Snapshot of individual performance for urban en-
vironment trial (population size 15, number collected = 6)

In general, successive successes reinforce behaviors that improve

performance. Furthermore, it is apparent that in contrast to the

chromosomes that do not change, dynamic changes in the parame-

ters as time progresses contribute to enhanced performance.

For instance, examining agent 5 and 9’s (in Fig. 2) changes in

the controller parameters contribute to the improved number of

objects collected. This aligns with our understanding of the flexibil-

ity represented in ants as they make moment-to-moment updates

to adapt to their every-changing surroundings [13]. Furthermore,

it appears that some parameter types such as g1 (speed) and g3

(reward) are especially susceptible to increases when the fitness in-

creases. However, as simulation progresses, the degree of observed

variability in each of the parameters flattens towards generally the

same value, which could be indicative of increased homogeneity.

4 RESULTS AND DISCUSSION
4.1 Experimental Set-up
As mentioned before, these parameter attributes are intended to

guide the emergence of general search strategies for a given object

distribution within a shared environment. In order to assess the

efficacy of this approach, we used the Webots simulation software

[32] with the parameters listed in Table 5.

Each robot was equipped with three distance sensors in the front

for obstacle detection, a camera for object recognition, motors for

navigation, and LED lights/light sensors for inter-robot recognition.

The precise parameters used for the GA are listed in Table 6.

The population range was selected to assess the performance of

this approach using a variety of different population densities. The

other constants were fitted post-hoc and generalized to all scenarios

Table 5: Simulation Parameters in Webots

Parameter Constant

Arena Size 2m 𝑡𝑖𝑚𝑒𝑠 2m

Robot type Khepera

Maximum Speed 0.813 m/s

Robot Radius 0.275 mm

Turning Radius 0 90 180 270

Proximity Sensor Detection Range 0.1 m

Collision Distance 0.033 mm

Table 6: GA Parameters

Parameter Constant

Time step 32 ms

Robot strategy duration 25.6 sec

Number of Trials 50

Trial Duration 600 sec

Population Sizes 5 10 15

after preliminary work determined reasonable time constraints to

collect an object and gain information from the environment and

other robots. The turning radius represents the available headings

a robot can turn to, the time step represents the duration for each

forward movement, and the robot strategy duration represents the

duration for each strategy selected. If no object is found during this

time, the probability of that strategy being selected decreases by

0.02, and the distribution is re-normalized. If success is observed,

the probability increases by 0.02 and is re-normalized.

Once the learning time was approximated for each environment,

we compared our algorithm with other bio-inspired algorithms

on the same task. The algorithms included Correlated Random

Walk [21], Levy [2], LAS [34], and SCAAM [18] algorithms which

have demonstrated potential in foraging tasks without requiring

memory-intensive computations [3, 5, 22].

The CRWand Levy algorithms arememoryless and are heuristics

that determine subsequent robot orientation or step size. CRW tends

to maintain the current heading but can also move in any other

heading as well. The Levy walk is a random walk that samples

from the Levy distribution to determine the size of a given robot’s

step before moving in that given direction. LAS and SCAAM, on

the other hand, incorporate a learning automata-based strategy

influenced by prior successes in the environment. The area is broken

into cells and the LAS algorithm uses a probability distribution that

gets updated with more successes to reinforce robot returns to those

corresponding cells. The SCAAM algorithm uses an inverted ant-

pheromone approach, enforcing areas that have not been traversed

by agents yet.

4.2 Object collection performance
Oncewe found an acceptable learning time, we compared the perfor-

mance of each algorithm to OPI-GA in three different environments

(RN, PL, and urban) and different population sizes (5, 10, 15).

For the RN scenario (Fig. 3), 20 objects are randomly strewn

throughout the environment. The OPI-GA algorithm performs the

worst at the lowest population size but significantly improves as

the population size (and thus perhaps the number of potential

interactions) increase. With increased interactions, it is possible

that agents with particularly high fitness values are better able

to disseminate information via crossover and mutation regarding

parameters that are conducive to exploration. The algorithm that

performs particularly well in this scenario is the Levy flight. This

may be due to the heterogeneous dissemination of objects which

allows this algorithm to benefit due to the variable step sizes from

the Levy long-tail distribution.

Figure 3: RN collection statistics, averaged over 50 trials

For the PL scenario (Fig. 4), the OPI-GA performance is almost pre-

cisely like the LAS algorithm. LAS uses an automata-based frame-

work that reinforces local areas that have been successful in the

past (there is a higher probability of returning to that location) [34].

This would make sense since there is a clustering of collectable

items. The fact that OPI-GA behaves very similarly would imply the

emergence of strategic behaviors, especially as the population sizes

increase. Deeper analysis on the number of interactions encoun-

tered as well as their nature (i.e., locating an agent with a higher

fitness value) would be necessary to further characterize these in-

teractions and understand to what extent they can be beneficial vs

impeding further productivity as the population size increases.

For the Urban scenario (Fig. 5), similarly to the RN scenario, 20

objects are randomly strewn throughout the environment. Addi-

tional static obstacles are included to mimic an urban environments

via the inclusion of heterogeneous ’building’ objects disseminated

in a similar fashion to a real city. As the population increases, the

performance of OPI-GA also improves with respect to the other

algorithms compared. This could be due to the increased number

of collisions, especially for the SCAAM and LAS algorithms as the

pheromone based flocking behavior may contribute to congestion.

4.3 Generalization performance
In order to determine the extent to which the evolved strategies in

OPI-GA can be generalized to new environments (same number of

items, but distributed slightly differently), the fine-tuned parameters

Figure 4: PL collection Statistics, averaged over 50 trials

Figure 5: Urban environment collection statistics, averaged
over 50 trials

from the initial environment (seed 11) were applied to the trial

with the updated environment (seed 15) for 50 trials. The seed

value represents the seed used to originally generate the position

of the objects in the environment, to ensure that the distribution

is the same across trials and algorithms. For algorithms that also

utilize a form of memory or learning (i.e., LAS and SCAAM), those

saved parameters were applied to the newly generated environment.

Since the derived strategies are heuristics-based, we hope to see an

improvement since explicit forms of memory (i.e., exact location of

elements) aren’t utilized in this case.

In the RN environment (Fig. 6), the GA algorithm performs better

with respect to the other algorithms for both seed values/alternate

object distributions. In general, all algorithms (even those that do

not use memory) do improve their average collection performance

in the second trial. This may be due to a generally more favorable

distribution of objects with this particular seed. The LAS algorithm

represents the best improvement between the two scenarios. The

genetic algorithm, on the other hand, exhibits a slight improvement,

which may mean that the fine-tuned chromosome and behavioral

probability distribution from seed 11 presents only a marginal ad-

vantage in collection performance, if at all.

Figure 6: Overall average collection statistics in RN (popula-
tion size 15) for two block distributions (seed 11 and seed 15)

Figure 7: Overall average collection statistics in PL (popula-
tion size 15) for two block distributions (seed 11 and seed 15)

As seen in the power law environment (Fig 7), the genetic algo-
rithm does not perform as well across most of the other algorithms

compared. This may be due to the inherent stochasticity and lack of

recognition of patches in an unknown environment. Stochasticity

is inherent in the behavioral strategies utilized by the agents in

the genetic algorithm as it traverses over time. Repeated successes

won’t necessarily mean that an agent will explore the same spot, but

rather, would use the same navigation strategy after successfully

returning an item to the nest. For the LAS algorithm in particu-

lar, this appears to be the contrary, which makes sense this this

algorithm reinforces returns to local areas with particular success.

For the scenario with 15 robots in the urban environment (Fig. 8),
the genetic algorithm outperforms the other algorithms for seed 10

(with a randomized starting chromosome) and for seed 15 (with the

fine-tuned chromosome). The fact that there is no significant de-

crease in performance across different environmental distributions

is potentially indicative of prior learning that facilitated the emer-

gence of fine-tuned parameters that encourage object collection

for similarly distributed urban environments. A similar behavior is

observable in the LAS algorithm where the previously beneficial

locations were more likely to be selected OPI-GA during the seed

15 scenario as well). The general improvement across all algorithms

also may indicate a preferable distribution of objects in general.

Figure 8: Overall average collection statistics in urban en-
vironment (population size 15) for two block distributions
(seed 11 and seed 15)

5 UNDERLYING INDIVIDUAL BEHAVIORS
We gathered information in order to better understand the trans-

formations observed in each robot and in the environment. Based

on Fig. 9, agents either have one search strategy which is chosen

preferentially or an equi-partitioned distribution. The parameters

also appears to stabilize towards similar corresponding values as

the agents continue to explore the environment.

Fig. 10 (a) shows that the number of encounters of robots with a

better fitness value during a given generation is highest towards the

beginning of the simulation. This makes sense since all the agents

begin in the center of the arena. However, the encounters remain at

0 for the majority of the time, which may imply fewer opportunities

for interaction or convergence towards similar fitness values.

Fig. 10 (b), shows that the agents tended to distribute themselves

in a manner where interactions were limited (towards the extremes

of the arena). This would provide greater explainability of the en-

counter statistics observed. Despite the lack of encounters in this

case, the use of distributed tactics proved fairly effective in limiting

collisions between agents. Further work is needed to characterize

the extent to which exclusionary vs collaborative tactics may be

useful, especially in different environments.

In order to confirm the role of interaction frequency in perfor-

mance, the size of the arena for the RN scenario was reduced by 30

percent to increase to probability of interaction. It was apparent

that for certain trials that performed well, the number of interac-

tions was markedly greater. Examples of this are referenced in Fig.

15. As the interactions between better performing robots increase,

especially later on in the exploration phase, the overall performance

of that respective robot improves. For the poor performing trial,

the frequency of these interactions throughout the entire explo-

ration phase is more isolated and not as consistent. It also indicates

promise in the potential for inter-robot communication in propa-

gating information that facilities effective exploration.

6 FUTUREWORK AND CONCLUSIONS
In general our findings indicate that our real-time genetic algorithm

approach is a promising direction for abstraction-based coordina-

tion strategies across different agents in a shared environment. As

(a) Behavior summary

(b) Parameter progression

Figure 9: Snapshot of urban environment trial (population
10, number of blocks collected 4) showing behavioral and
parameter changes

the population size increases, the performance of our algorithm

improves, compared to the other algorithms. Our approach was de-

signed to garner past knowledge via changes in strategy sampling

and the underlying fine-tuning parameters for those strategies,

(a) Number of more fit robots encountered

(b) Overview of each individual robot path taken, with each location
recorded after the end of every generation

Figure 10: Example of navigational and social information
in urban environment (population 10, number collected 4)

incorporating both morphological and behavioral shifts in a dy-

namically changing environment.

Further work will be done to further characterize the social inter-

actions between agents (i.e., task allocation, hierarchy, practicing

Figure 11: Encounter statis-
tics for RN scaled-down arena
(population 15) – good trial

Figure 12: Collection statis-
tics for RN scaled-down arena
(population 15) – good trial

Figure 13: Encounter statis-
tics for RN scaled-down arena
(population 15) – poor trial

Figure 14: Encounter statis-
tics for RN scaled-down arena
(population 15) – poor trial

Figure 15: Comparison between trials with high and low
encounters with better performing robots

restraint/foresight, a collective fitness vs individual fitness function,

collaborative vs competition-based higher-level strategies). There

will be a greater focus on the use of social dynamics to drive on-

line learning from organisms in biology. Additionally, work will be

done to explore more diverse urban environments with dynamic

obstacles that tend to stay on predictable paths (e.g., cars on roads,

people on sidewalks).

REFERENCES
[1] Mayank Banoula. 2023. Naive Bayes classifier - machine learning: Sim-

plilearn. https://www.simplilearn.com/tutorials/machine-learning-tutorial/

naive-bayes-classifier

[2] F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra, and G. M. Viswanathan. 2002.

Optimizing the encounter rate in biological interactions: Lévy versus Brownian

strategies. Phys. Rev. Lett. 88 (Feb 2002), 097901. Issue 9. https://doi.org/10.1103/
PhysRevLett.88.097901

[3] Martina Dal Bello, Alfonso Pérez-Escudero, Frank C Schroeder, and Jeff Gore.

2021. Inversion of pheromone preference optimizes foraging in C. elegans. eLife
10 (July 2021). https://doi.org/10.7554/elife.58144

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz. 2000. Inspiration for optimization

from social insect behaviour. Nature 406, 6791 (July 2000), 39–42. https://doi.

org/10.1038/35017500

[5] Arjun Chandrasekhar, James A. R. Marshall, Cortnea Austin, Saket Navlakha,

and Deborah M. Gordon. 2021. Better tired than lost: Turtle ant trail networks

favor coherence over short edges. PLOS Computational Biology 17, 10 (Oct. 2021),

e1009523. https://doi.org/10.1371/journal.pcbi.1009523

[6] Cecilia Di Chio, Riccardo Poli, and Paolo Di Chio. 2006. Extending the particle

swarm algorithm tomodel animal foraging behaviour. InAnt Colony Optimization

https://www.simplilearn.com/tutorials/machine-learning-tutorial/naive-bayes-classifier
https://www.simplilearn.com/tutorials/machine-learning-tutorial/naive-bayes-classifier
https://doi.org/10.1103/PhysRevLett.88.097901
https://doi.org/10.1103/PhysRevLett.88.097901
https://doi.org/10.7554/elife.58144
https://doi.org/10.1038/35017500
https://doi.org/10.1038/35017500
https://doi.org/10.1371/journal.pcbi.1009523

and Swarm Intelligence. Springer Berlin Heidelberg, Brussels, Belgium, 514–515.

https://doi.org/10.1007/11839088_58

[7] Stefanie M. Countryman, Martin C. Stumpe, Sam P. Crow, Frederick R. Adler,

Michael J. Greene, Merav Vonshak, and Deborah M. Gordon. 2015. Collective

search by ants in microgravity. Frontiers in Ecology and Evolution 3 (March 2015).

https://doi.org/10.3389/fevo.2015.00025

[8] M. Dorigo, V. Maniezzo, and A. Colorni. 1996. Ant system: optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 26, 1 (1996), 29–41. https://doi.org/10.1109/3477.484436

[9] Chengli Fan, , Qiang Fu, Guangzheng Long, and Qinghua Xing. 2018. Hybrid

artificial bee colony algorithm with variable neighborhood search and memory

mechanism. Journal of Systems Engineering and Electronics 29, 2 (April 2018),
405–414. https://doi.org/10.21629/jsee.2018.02.20

[10] Stephanie Forest. 1993. Principles of natural selection applied to computation.

Science 261, 5123 (Aug. 1993), 872–878.
[11] Marco Galassi, Nicola Capodieci, Giacomo Cabri, and Letizia Leonardi. 2016. Evo-

lutionary strategies for novelty-based online neuroevolution in swarm robotics. In

2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE,
Budapest, Hungary, 002026–002032. https://doi.org/10.1109/smc.2016.7844538

[12] Fei Gao, Hongrui Gao, Yibo Qi, and Qiang Yin. 2010. Bacterial foraging oriented by

differential evolution strategy. In 2010 2nd International Conference on Information
Engineering and Computer Science. IEEE, Wuhan, China, 1–4. https://doi.org/10.

1109/iciecs.2010.5677664

[13] Deborah M. Gordon. 2010. Ant Encounters: Interaction Networks and Colony
Behavior. Princeton University Press, Princeton, NJ, USA. http://www.jstor.org/

stable/j.ctt7rpzh

[14] Deborah M. Gordon. 2016. The Evolution of the Algorithms for Collective

Behavior. Cell Systems 3, 6 (Dec. 2016), 514–520. https://doi.org/10.1016/j.cels.

2016.10.013

[15] John H. Holland. 1975. Adaption in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, Michigan.

[16] Hiroto Inahara and Naoki Motoi. 2021. Research on search slgorithm by PSO

with virtual pheromone and dynamical niche for swarm robots. In 2021 IEEE 30th
International Symposium on Industrial Electronics (ISIE). IEEE, Kyoto, Japan, 1–6.
https://doi.org/10.1109/isie45552.2021.9576188

[17] Amy Lee and Ann A. Kiessling. 2016. Early human embryos are naturally

aneuploid—can that be corrected? Journal of Assisted Reproduction and Genetics
34, 1 (Nov. 2016), 15–21. https://doi.org/10.1007/s10815-016-0845-7

[18] Danielli A. Lima and Gina M. B. Oliveira. 2019. Stochastic Cellular Automata Ant

memory model for swarm robots performing efficiently the garbage collection

task. In 2019 19th International Conference on Advanced Robotics (ICAR). IEEE,
Belo, Horizonte, Brazil, 708–713. https://doi.org/10.1109/icar46387.2019.8981560

[19] John M. McNamara, Richard F. Green, and Ola Olsson. 2006. Bayes’ theorem

and its applications in animal behaviour. Oikos 112, 2 (Feb. 2006), 243–251.

https://doi.org/10.1111/j.0030-1299.2006.14228.x

[20] Syed Irfan Ali Meerza, Moinul Islam, and Md. Mohiuddin Uzzal. 2019. Q-Learning

based particle swarm optimization algorithm for optimal path planning of swarm

of mobile robots. In 2019 1st International Conference on Advances in Science,
Engineering and Robotics Technology (ICASERT). IEEE, Dhaka, Bangladesh, 1–5.
https://doi.org/10.1109/icasert.2019.8934450

[21] Melanie E. Moses, Judy L. Cannon, Deborah M. Gordon, and Stephanie Forrest.

2019. Distributed adaptive search in T cells: lessons from ants. Frontiers in
Immunology 10 (June 2019). https://doi.org/10.3389/fimmu.2019.01357

[22] Grégoire Pasquier and Christoph Grüter. 2016. Individual learning performance

and exploratory activity are linked to colony foraging success in amass-recruiting

ant. Behavioral Ecology 27 (2016), 1702, 1709. https://doi.org/10.1093/beheco/

arw079

[23] Jessica M.C. Pearce-Duvet, Coen P.H. Elemans, and Donald H. Feener. 2011.

Walking the line: search behavior and foraging success in ant species. Behavioral
Ecology 22, 3 (2011), 501–509. https://doi.org/10.1093/beheco/arr001

[24] Jim Pugh and Alcherio Martinoli. 2007. Parallel learning in heterogeneous

multi-robot swarms. In 2007 IEEE Congress on Evolutionary Computation. IEEE,
Singapore, 3839–3846. https://doi.org/10.1109/cec.2007.4424971

[25] J. Pugh, A. Martinoli, and Yizhen Zhang. 2005. Particle swarm optimization for

unsupervised robotic learning. In Procs IEEE Swarm Intelligence Symposium, SIS
2005. IEEE, Pasadena, CA, USA, 92–99. https://doi.org/10.1109/sis.2005.1501607

[26] G.H. Pyke. 2010. Optimal Foraging Theory: Introduction. In Encyclopedia of
Animal Behavior. Elsevier, Sydney, Australia, 601–603. https://doi.org/10.1016/

b978-0-08-045337-8.00210-2

[27] Ioannis Rekleitis, Ai Peng New, Edward Samuel Rankin, and Howie Choset.

2008. Efficient boustrophedon multi-robot coverage: an algorithmic approach.

Annals of Mathematics and Artificial Intelligence 52, 2-4 (2008), 109–142. https:

//doi.org/10.1007/s10472-009-9120-2

[28] Nicolas D. Griffiths Sanchez, Patricia A. Vargas, and Micael S. Couceiro. 2018. A

Darwinian swarm robotics strategy applied to underwater exploration. In 2018
IEEE Congress on Evolutionary Computation (CEC). IEEE, Rio de Janeiro, Brazil,

1–6. https://doi.org/10.1109/cec.2018.8477738

[29] Pu Shi and Yujie Cui. 2010. Dynamic path planning for mobile robot based on

genetic algorithm in unknown environment. In 2010 Chinese Control and Decision
Conference. IEEE, Xuzhou, China, 4325–4329. https://doi.org/10.1109/ccdc.2010.

5498349

[30] Woo sung Moon, Jin Won Jang, and Kwang Ryul Baek. 2008. Evolutional interac-

tivity in a swarm of robots. In 2008 Int’l Conf. on Control, Automation and Systems.
IEEE, Seoul, South Korea, 118–122. https://doi.org/10.1109/iccas.2008.4694535

[31] Courtney Turrin, Nicholas A. Fagan, Olga Dal Monte, and Steve W. C. Chang.

2017. Social resource foraging is guided by the principles of the Marginal Value

Theorem. Scientific Reports 7, 1 (Sept. 2017), 11274. https://doi.org/10.1038/s41598-
017-11763-3

[32] Webots. [n.d.]. http://www.cyberbotics.com. Open-source Mobile Robot Simula-

tion Software.

[33] Hao Wei, Jon Timmis, and Rob Alexander. 2017. Evolving test environments to

identify faults in swarm robotics algorithms. In 2017 IEEE Congress on Evolutionary
Computation (CEC). IEEE, Donostia, Spain, 929–935. https://doi.org/10.1109/cec.

2017.7969408

[34] JunQi Zhang, Peng Zu, and Huan Liu. 2021. Learning automata-based multi-

target search strategy using swarm robotics. In 2021 11th International Conference
on Information Science and Technology (ICIST). IEEE, Chengdu, China, 416–421.
https://doi.org/10.1109/icist52614.2021.9440567

[35] Yuxin Zhao and Wei Zu. 2009. Real-time obstacle avoidance method for mobile

robots based on a modified particle swarm optimization. In 2009 International
Joint Conference on Computational Sciences and Optimization. IEEE, Sanya, China,
269–272. https://doi.org/10.1109/cso.2009.196

https://doi.org/10.1007/11839088_58
https://doi.org/10.3389/fevo.2015.00025
https://doi.org/10.1109/3477.484436
https://doi.org/10.21629/jsee.2018.02.20
https://doi.org/10.1109/smc.2016.7844538
https://doi.org/10.1109/iciecs.2010.5677664
https://doi.org/10.1109/iciecs.2010.5677664
http://www.jstor.org/stable/j.ctt7rpzh
http://www.jstor.org/stable/j.ctt7rpzh
https://doi.org/10.1016/j.cels.2016.10.013
https://doi.org/10.1016/j.cels.2016.10.013
https://doi.org/10.1109/isie45552.2021.9576188
https://doi.org/10.1007/s10815-016-0845-7
https://doi.org/10.1109/icar46387.2019.8981560
https://doi.org/10.1111/j.0030-1299.2006.14228.x
https://doi.org/10.1109/icasert.2019.8934450
https://doi.org/10.3389/fimmu.2019.01357
https://doi.org/10.1093/beheco/arw079
https://doi.org/10.1093/beheco/arw079
https://doi.org/10.1093/beheco/arr001
https://doi.org/10.1109/cec.2007.4424971
https://doi.org/10.1109/sis.2005.1501607
https://doi.org/10.1016/b978-0-08-045337-8.00210-2
https://doi.org/10.1016/b978-0-08-045337-8.00210-2
https://doi.org/10.1007/s10472-009-9120-2
https://doi.org/10.1007/s10472-009-9120-2
https://doi.org/10.1109/cec.2018.8477738
https://doi.org/10.1109/ccdc.2010.5498349
https://doi.org/10.1109/ccdc.2010.5498349
https://doi.org/10.1109/iccas.2008.4694535
https://doi.org/10.1038/s41598-017-11763-3
https://doi.org/10.1038/s41598-017-11763-3
https://doi.org/10.1109/cec.2017.7969408
https://doi.org/10.1109/cec.2017.7969408
https://doi.org/10.1109/icist52614.2021.9440567
https://doi.org/10.1109/cso.2009.196

	Abstract
	1 Introduction
	2 Relevant Work
	3 Online Progressive Improvement Genetic Algorithm (OPI-GA)
	3.1 Genetic algorithm overview
	3.2 Behavioral Adaptation Component
	3.3 Determining the optimal learning time for a given environment
	3.4 Insights on chromosome composition

	4 Results and discussion
	4.1 Experimental Set-up
	4.2 Object collection performance
	4.3 Generalization performance

	5 Underlying individual behaviors
	6 Future Work and Conclusions
	References

