1

Development of the Internet has spurred a number of attempts to create a virtual mar-
ketplace where agents, both human-controlled and equipped with intelligent algorithms,
participate in trading of physical and electronic goods, as well as stocks and other invest-

Toward a Virtual Marketplace:
Architectures and Strategies

Maksim B. Tsvetovatyy and Maria Gini

Department of Computer Science, University of Minnesota
4-192 EE/CSci Building
200 Union Street S.E., Minneapolis, MN 55455

tsvetova@cs.umn.edu, gini@Qcs.umn.edu

Abstract

In recent years, many researchers as well as commercial companies have attempted
to create intelligent agent-based markets or retail outlets. So far, these systems have
fallen short of changing the way commerce is done over the Internet. An incomplete
implementation of the market metaphor, lack of automated purchasing, and lack of
agent cooperation algorithms are, in our opinion, the major reasons of this shortfall.

In this research, we attempt to address these problems by designing an open
marketplace architecture that includes all elements required for simulating a real
market (i.e., communications, goods storage and transfer, banking, administration
and policing, etc.). We also address the issues of automated purchasing and agent
cooperation by devising strategies and algorithms for them.

This paper also reports findings that resulted from implementing and conduct-
ing experiments with a free-market agent architecture (MAGMA). MAGMA is an
extensible architecture that provides all services essential to agent-based commercial
activities. These services are available through an open-standard messaging API,
which allows use of a heterogeneous set of agents independently of platform and
language.

Introduction

ments.

The purpose of this research is to propose an architecture for such a marketplace,

including required infrastructure, communications, security and business aspects.

In our research, we focused on the following topics:

e What infrastructure elements are needed to serve an agent-based marketplace, and

how they can be implemented?

e How a purchase-for-use marketplace can be transformed into an investment mar-
ketplace, and how can automated decision algorithms be designed to serve such a
market?

e What are good strategies for creating alliances of such agents?

To answer these questions, we implemented a prototype of an agent marketplace archi-
tecture, called MAGMA (Minnesota AGent Marketplace Architecture), and completed a
series of experiments with it, determining its strengths and weaknesses, as well as directions
for future development.

Currently there are several intelligent agent-based online shopping services. The most
prominent are Bargain Finder, developed by Andersen Consulting, FireFly, from FireFly,
Inc, and ShopBot, from the University of Washington. Curiously, Bargain Finder and
FireFly only include shopping for music CDs and tapes.

Bargain Finder [5] (see http://bf.cstar.ac.com) is an agent that searches several
online music stores for lowest prices on CDs and cassettes. Unfortunately, even though it
has been described as a revolutionary system, it is not much more than a database search
engine. Shopping is limited to retailers that subscribe and pay for the customer referrals.
Also, customers have to know and spell correctly the name of the artist and album, so the
system is more oriented toward a user that knows what he wants and not a casual browser.

FireFly (see http://www.agents-inc.com/) is an agent-based mail order outlet. The
system attempts to establish the user’s preferences in music styles and artists through
surveys and ratings, and then offers the user a list of CDs that conform to these preferences.
This system worked very well after a few minutes of training (entering and rating CDs),
returning a complete set of Miles Davis albums after we entered a reference to John Coltrane
(both jazz artists). This system is a fine collection browser, even though it is still limited
to one retailer and does not have any way of comparison-shopping.

ShopBot [4] is a domain independent comparison shopping agent that explores home
pages of several vendors on the World Wide Web and learns how to shop.

All these systems are interesting shopping experiences, but they do not go all the way
in providing a virtual free market metaphor. The system that most closely resembles our
approach to designing a virtual marketplace is Kasbah [3]. Kasbah allows users to create
agents that buy and sell goods on behalf of the user. The main difference between Kasbah
and MAGMA is that MAGMA is designed to be a distributed system written on top of an
open messaging API. In this paper, we discuss our attempt to create a agent-based virtual
marketplace, as well as describe our working prototype of MAGMA.

2 Architecture for Agent-Based Marketplace

An agent-based marketplace needs to exhibit many properties attributed to physical mar-
ketplaces [1]. There has to be a banking system, some communication infrastructure,
systems that enable agents to transport and store goods securely, as well as administrative
and police systems.

2.1 Banking

In order for an agent-based marketplace to become anything more than a toy, it has to
be able to communicate with existing banking and financial services. Thus, the design of

a banking system, as well as agent-to-bank communications has to be built on an open
standard, allowing traditional banks to integrate a marketplace interface into their legacy
systems.

Another crucial element in providing financial services over agent-based systems is
security. Consequently, the communication protocols for all communications, especially
agent-to-bank and bank-to-bank, need to include a layer of encryption, as well as other
safeguards.

One of the methods to make monetary transactions secure is to use wrappers that make
funds inaccessible to anyone except the intended recipient. Another way is to coordinate
every transaction with all parties to be sure that no fraudulent activity is occurring.

2.2 Communication Infrastructure

It is important to have an efficient and robust communication infrastructure built into the
core of the system. For example, such a system should not rely on a central hub to route
the messages, but instead have a mesh of redundant hubs, interconnected with each other.
This system would be somewhat similar to the Internet email system, and, in fact, could
even use the existing facilities.

A communication system has to be built on an open standard to enable developers to
produce platform-independent systems that plug into the marketplace architecture.

Even though the communication system is independent of agent architectures, there
are some design limitations and communication protocols that must be followed:

e Agents must be able to access global blackboards that contain offers to buy and sell
from other agents.

e Agents must use a common language for all outbound communications. Minimal
language must include posting and responding to offers, negotiating and executing
transactions. If agents work as a part of the team with managers and other agents,
they must be able to communicate with members of the team.

A sample algorithm that can be used in an automated agent is shown in Figure 1.

2.3 Transfer and Storage of Goods

An important aspect in an electronic market is the representation and handling of physical
goods. While these goods can be easily represented by software objects, these objects have
to exhibit some of the qualities of their physical counterparts.

For example, these objects have to be copy-protected to ensure that an object cannot
be in more than one place at the same time. To prevent theft, objects may be encoded by
the owner, making them accessible only to agents authorized by the owner.

Agents should also be able to arrange for physical shipment of items purchased or
provide a “raincheck” that will enable the buyer to have the item shipped at a later time.
Electronic items, such as software, results of database queries, or books from an online
library, can be downloaded directly to the buyer over one of the existing protocols (such
as FTP or HTTP).

Existence of the rainchecks can provide an interesting development similar to futures
trading in commodity markets. An agent can profit by buying a raincheck when the price
is low and selling it to another agent or shipping the item later, when the price has risen.

Check Market
Situation

Agents can use
different decizion
algarithmz ar prompt
uzer to make a
decizion

Mo Action

Make a Decizion
on further action

l By

Search for Mo Offers _ Ma Offers Search for
offers offers

¥

Fozt an offer

Counter-Offer

Sleep until counter-offer
received

Counter-Offer

Megotiate

Complete Abart
Transaction Transaction

Figure 1: A sample agent algorithm

2.4 Administration and Policing

In order for the system to be successful as a business, there must be a central administration
that monitors the activity of agents and makes sure that there are no illegal transactions.
Other functions of the administrator would be to collect sales taxes and commissions, and
maintain credit and service ratings for agents. Most likely, the administration of such a
system will have to be only partially automated, with a human operator controlling the
main aspects of a system’s operation.

3 From Buying for Use to Buying for Investment

As soon as the notion of a raincheck, or delayed shipment, is introduced, we can move from
a marketplace metaphor to an investment market metaphor. Instead of trading physical
goods, agents may buy and sell promissory notes, or futures, that secure such shipment.
So, instead of buying goods for consumption, agents may buy futures solely for resale at a
later date.

If such a market develops, it would be appropriate to automate the decision process
that controls buying and selling of futures. In the next section we will discuss several
strategies for such decision algorithms that we have investigated. We will implement them
in the next version of our prototype.

3.1 Decision Algorithms

The simplest form of trading strategy is Fized-Term Investment [2]. Agents using this
strategy purchase stocks at the lowest possible price at an arbitrary time, wait for the
amount of time set by the operator and sell at the highest possible price. This strategy
is not guaranteed to bring any profit, but is sometimes used in real stock markets for
investment in stable stocks (such as AT&T or IBM) when the economy is growing.

Another simple form of trading strategy would be to Follow Another Agent (i.e, hope-
fully, using a strategy other than following). Following can be either “dumb”, when the
agent follows only one trader no matter what happens, or “smart”, when the agent follows
agents that make the most profit (profit or loss can be disclosed at the end of each day).
Followers can constitute a large force in the market and have to be seriously considered by
other traders.

A third strategy, Monotonic Reactor (2], is a more adaptive and dynamic strategy that
is likely to bring profits in short-term investments. Agents using this strategy wait until
a stock exhibits a monotonic increase, and then make a purchasing decision. If the stock
in trading exhibits some form of sinusoidal fluctuations over time, this strategy will bring
very good results. However, functions that represent price fluctuations in the market are
far more complex than simple sinusoidal functions, so this algorithm will not be able to
predict long-term trends in stocks.

A more complex strategy, PMax with Adaptive Extensions, will attempt to predict
trends by estimating the effects of supply and demand on prices. PMax is an adaptive
algorithm that uses a neural network and a system of automatically adjusted thresholds to
predict price fluctuations over the short run and make purchasing decisions accordingly. In
its prediction, PMax considers not only the current market situation (supply and demand
for the stock, and its volatility) but the effects of its own actions and actions of its followers
on the market. PMax also calculates the probability of external events altering the market
situation, and adjusts its thresholds for more cautious or more aggressive trading.

One of PMax’s advantages is that most of its decision-making is adjusted automatically
when a change occurs. Although PMax has a learning curve during which it will make
very bad decisions, it is aware of this and restrains itself until a significant percentage of
decisions are successful.

One of PMax’s biggest disadvantages is that, if given authority over high-volume trad-
ing, it will actually create price fluctuations instead of merely responding to them. For
example, if such a PMax agent decides that the price of the stock will fall, and sells all of

its holdings, while triggering its followers to do the same, the volume might be big enough
to create a downturn in the price.

3.2 Multiagent Systems

When multiple agents operate in the same market, there are interesting possibilities for
them forming firms and alliances [6], [7]. We briefly examine some of the different organi-
zations that multiagents systems can take.

3.2.1 Top-Down Managed Firm

This arrangement consists of many trading agents subservient to one or more management
agents. The system can include more than one level of management, with different levels
responsible for different types of decisions. All money available to traders is distributed
centrally (the agent receives money from its direct manager, which, in turn, is allocated
money from its manager, and on to the highest executive).

Managers allocate money to traders according to their projections and trading history,
and have to approve buying or selling decisions. If a manager decides to use a different
strategy on a certain stock, it can reallocate agents. If a trader has shown its ability over
time, it can be allowed to trade more freely without reporting every transaction to the
manager. The advantages of this approach are that the manager is aware of everything
that is going on and has enough information to make “big picture” decisions. This scheme
also facilitates use of a tree-like vertical structure with high administrators making general
policy decisions and lower level managers and traders making more and more detailed
decisions.

However, the system requires increasingly complex manager programs, deeply rooted
in economic theories. Even though there is a niche for predicting trends in the market
and determining their cause-and-effect relationship, it is an extremely complex problem in
itself. Also, managers need to be aware of the way lower agents work and are architecture-
dependent, thus making this the least flexible of the organization structures.

3.2.2 Competitive alliance

This system employs independent trading agents. Agents are free to make their own
decisions, can share information or join or leave the alliance at their discretion. This
arrangement uses a blackboard to publicize information to member agents. When need
arises (for example, for sale or loan negotiation), agents can open private communication
channels secured by encryption to exchange information directly.

Each agent receives its money from the human owners through a link between physical
and virtual banking systems. If an agent needs extra money for a transaction but does
not have any available, it can post a loan request to the blackboard. Agents that have
available money can enter loan negotiations — depending on their general policies.

Also, each agent posts its profit/loss report to the blackboard. This report serves as
the agent’s “credit history” that other agents can use to grant or refuse loans or adjust
interest rates.

This system is completely architecture-independent, and can employ agents written
in different languages, and running on different systems. The system could even include

human traders working side-by-side with electronic agents or providing them with advice
via the blackboard.

3.2.3 Cooperative Alliance

This system is technically similar to the competitive alliance, but here the alliance of agents
is one team whose goal is to bring profit to the whole team, not to each individual agent,
as in the competitive alliance. Agents are free to make their own trading decisions, choose
their trading strategies and share information and funds. Each agent is free to keep tabs
on other agents but is not required to.

We can also introduce credit banks, that could either be non-profit “Credit Union”
agents that pay interest to lenders and charge the same rate from borrowers, or for-profit
“Bank” agents that keep a portion of interest to receive profit and cover operating costs.
The system needs no central administration and will ultimately be self-regulating. If a
trading agent has accumulated enough capital, it can also provide banking services to
other agents.

Although it is not necessary, the system might use an “adviser” agent (which might be
electronic or human) providing help in viewing the ‘big picture’ of the market and trends.

3.2.4 Hybrid

The forms of administration and alliances described above can coexist in a hybrid setting,
which could ultimately provide the most flexible trading environment.

4 Architecture of the MAGMA System

The MAGMA (Minnesota AGent Marketplace Architecture) system is a prototype of the
virtual free market. MAGMA is written in Allegro Common Lisp with CLOS and CLIM
X-Windows libraries.

Currently, the system simulates a network-based marketplace by running multiple pro-
cesses inside one Lisp image (using Allegro’s multiprocessing libraries). The only commu-
nication permitted among agents and between agents and market infrastructure elements
is via messages that are similar to messages typically sent over the network [8].

Even though the current incarnation of MAGMA is proprietary, all parts of the system
are designed for an open-standard system. When the networked version (NetMAGMA) is
implemented, any agent that conforms to the messaging API can join the trading. Thus,
in the current design of MAGMA there is a heavy emphasis on security, as well as creating
redundant infrastructure and robust messaging API.

4.1 MAGMA Subsystems

MAGMA consists of several functionally independent subsystems, divided into general-
purpose agents and infrastructure subsystems. The infrastructure subsystems facilitate
transactions such as messaging, secure money and object transfer, bidding, commissions
and sales taxes, as well as a primitive form of advertising. These systems include banks,
offer-boards, cash-register and messaging facilities.

4.1.1 Widgets

Widget is a top-level class that includes all objects traded in MAGMA. The Widget class
includes a data structure with slots for widget name, description, and pointer to its con-
tents. Currently the contents are represented by a string, but later versions will include
specially coded URLs to pages where a buyer’s agent can secure shipping of a physical
object or download electronic information.

Although there is no separate facility to handle widget transfers, it is extremely impor-
tant that widgets behave like objects in the real world. Widgets cannot be owned by more
than one agent, cannot be in more than one place at the same time, and cannot be sold
twice. Although selling electronic information would involve making multiple copies of the
same file, for tracking purposes it is better to create single-use widget wrappers.

To ensure the “physical qualities” of widgets, we have created widget wrappers with
owner keys. A simple algorithm produces a unique and random 5-digit number, which is
the only way to access the contents of the widget. When a widget is sold, the new owner
receives the access key as well as the widget, and immediately changes the key (so if a
rogue agent wants to sell a widget twice, its key would be invalidated).

Even though this is a fairly secure protocol, there is still a several millisecond-long
window of opportunity for fraud, if the seller agent can change the key while the widget is
in transfer or send an invalid key.

4.1.2 Messaging Facilities

Messaging facilities provide all communications between agents and with other subsystems.
This completely isolates the agents from the top-level Lisp environment.

Each agent is assigned a mailbox and entered into a directory. When an agent or an
infrastructure subsystem needs to send a message to another agent, the message is passed
to the messaging system that takes care of delivering it.

Mailboxes are password-protected, and since passwords are stored in a process-specific
environment, they are inaccessible to anyone except the agent that they are assigned to.
All passwords are unique 8-digit randomly selected numbers.

In future versions we will develop redundant directories with parallelized searching.
This will provide faster and reliable message delivery under any system load.

4.1.3 Banks

A bank consists of a table of accounts and a set of routines that produce secure money
transmissions.

Accounts are password-protected and include a checking account balance and a credit
line. In this prototype, the credit line is only used by the register, but in future versions
there will be algorithms determining whether to grant or deny credit to an agent.

Money is transmitted in a secure wrapper, which we call a check. In fact, even though
the mode of transmission is similar to sending a check, all information is cross-checked
between accounts, which makes a check forgery-proof and single-use.

Each check is outfitted with a single-use unique key generated by a special algorithm.
This key, as well as other information on the check, is stored at the bank until the check
is deposited. If any of these fields do not match, the deposit fails. If the deposit succeeds,
this information is removed, making future use of the key impossible.

Currently, MAGMA includes one centralized bank, but a simple addition to the messag-
ing API will allow not only multiple banks, but also an open-standard bank system. This
will allow third-party developers to design links from existing “real-life” bank computer
systems to virtual market banks.

4.1.4 Offer Boards

Offer boards are places where both buyer and seller agents can post public offers. These
offers are later retrieved by agents that are interested in responding to them.

An offer board consists of offer tables and search facilities. The current prototype has a
flat table architecture, with entries indexed by their names. Each cell of the table contains
a list of similar items, sorted by price.

The table can be searched using the name of the item, and returns the lowest offers for
this item (the number of offers has to be supplied by the user).

In future versions, this flat structure will be changed to a tree or graph structure, with
a graphical browser interface.

4.1.5 Register

The register is used as an intermediate storage during transfer of a widget to ensure that
proper sales tax and commission is collected. It also serves as a security monitor to avoid
fraudulent transactions where the seller sends an unusable widget (i.e., widget with an
invalid key) or the buyer has insufficient funds to pay for the widget.

Widgets are stored in a table, indexed by a randomly generated location marker. After
receiving the widget from the seller, the register adds sales tax and commission and forwards
a check to the seller, along with a location marker for widget storage. This location marker
and total cost, including tax and commissions, are wrapped in a message and sent to the
buyer. The buyer writes out a check and sends it to the register, which forwards the widget
to the buyer.

Registers have to be centralized and owned by the company that runs MAGMA. This
is the only way security of transactions can be ensured. To reduce system load, it might
be beneficial to use more than one register (either by redundancy or by splitting them into
“departments”). This can be done by incorporating the address or name of the register into
location marker (i.e., instead of using 70949 as a marker, use 70949Qregister5.electronics
or something similar).

5 Architecture of Agents in the MAGMA System

In MAGMA, each agent is represented by two independent processes, running simultane-
ously, and a CLOS data structure. The two processes are a frame process and a main agent
process. The CLOS data structure keeps track of the agent’s inventory and bank balances,
as well as housekeeping data for running both processes.

The frame process is a CLIM frame. All user interaction is handled by this process, so
the main agent process can process messages and do other tasks without waiting for the
user to finish entering data or make a purchasing decision. The only way the frame process
can communicate with the main agent process is by sending messages. The main process
can control the frame process by sending messages to its input streams or by displaying

interface objects that cause certain pieces of code to be executed when the user invokes
them.

The frame process also has a separate stack-group (a coroutine) that displays the status
of the main process. To honor the tradition started by Netscape™ | it is a simple animation
that advances one frame every time the main process fetches messages.

The main agent process has several components. The main component is a fetch-decode-
dispatch loop. Its purpose is to fetch messages from the mailbox, separate contents from
message wrappers and use a hierarchical dispatch system to call the appropriate action. In
the future, it might be appropriate to integrate public-key cryptography into the messaging
system, so the loop will also include a decryption step.

Currently, agents recognize the following messages:

Commands

Sell (COM SELL arguments) Sells a widget from inventory

Buy (COM BUY arguments) Tries to buy a widget specified by the
arguments

Requests

Money (MREQ recipient amount) Sends the amount of money to recipient

Widget (WREQ recipient widget-id) | Sends a widget to recipient (Commands
and requests can be only issued by the
frame process or an authorized agent.
Others will be ignored)

Transfers

Money (MON check) Receives and deposits money

Widget (WID widget) Receives a widget

Key (KEY key) Uses a key to take a widget from the
register

Offers

Counter-offers | (OFFER COUNTER) Makes a counter offer

Accept (OFFER ACCEPT) Accepts an offer

Reject (OFFER REJECT) Rejects an offer

In this version of MAGMA, agents can only react to accept offers. Currently we are
working on implementing negotiation strategies to enable agents to negotiate for lower
prices.

5.1 Example

To illustrate the operation of the system, we will use a simple market situation with one
seller and one buyer. This is sufficient to demonstrate the processes and exchanges that
happen while keeping the size of the log manageable.

For this run, we used a widget taken from the “Canonical list of computer viruses”
from rec.humor USENET group: “MCI VIRUS - Encourages you to send it to your friends

and family.”

1. The system is initialized with 2 agents. Each receives $1000.
Frame processes are started and windows are opened.
The user presses the “Run” buttons to start the main processes.

| Agent 1059 |

Frame Event: Button pressed - Run
Agent1059: Starting up...Ready

| Agent 1088

Frame Event: Button pressed - Run
Agent1088: Starting up...Ready

Now that all processes are initialized and ready, we can proceed.

2. Adding a widget to the inventory

| Agent 1059 |

Frame Event: Button pressed - New Widget

Frame Event: Display form

Frame Event: User input in form

:NAME "MCI VIRUS"

:CONTENTS

"Encourages you to send it to your friends and family."

A widget object is created with this data and sent from the frame process to the
agent process in a message:

From: |Agent1059| To: [Agent1059]|
Message: (WID

#S (WIDGET
:NAME "MCI VIRUS"
:CONTENTS
"Encourages you to send it to your friends and family."
:KEY
50344)
50344)

Agent1059:Received a widget "MCI VIRUS"

As soon as the agent process receives the wrapped widget, it adds the widget to its
inventory and displays a button corresponding to the widget in the inventory window.
When the button is pressed, it initiates the sale of the widget. This is shown in Figure
2.

3. Offering a widget for sale.
The user presses the inventory button for MCI VIRUS and initiates a form display:

Eill B11| Eill| Pause| Run| Mew Widget| Buy!| Balance

| X

i

=

=] -
Sell HERLTH CARE VIRUZ|

[

Sell MCI VIRUS|

Sell MCT NEW VIRUS'

Zell MICHREL JACESOHN VIRUS'

Zell FEDERAL EBURERUCEAT VIRUS'

Zell MCT VIRUS

Zell MNEW WORLD ORDER VIRUS'

Figure 2: Seller agent with inventory

| Agent 1059 |

Frame Event: Button pressed - Sell MCI VIRUS
Frame Event: Display form

Frame Event: User input in form

:DESCRIPTION "MCI Virus description"

:PRICE 10.0

After the information is entered, the interface process forms a command message and
sends it to the agent process:

From: |Agent1059| To: |Agent1059]|
Message: (COM

SELL

"MCI VIRUS"
"MCI Virus description"
10.0)

The agent process makes an offer and sends it to the offer-board:

Offer from Agent1059, #S(OFFER :WIDGET "MCI VIRUS"
:WIDGET-DESCRIPTION
"MCI Virus description"
:PRICE 10.0 :TYPE T
:ACTION INIT :ID 63692)

Now the user of a different agent would like to purchase the widget.

The user presses the “Buy!” button and enters the category in which to search for
offers, as well as the number of offers he is willing to consider:

| Agent1088]|

Frame Event: Button pressed - Buy!
Frame Event: Display form

Frame Event: User input in form
:CATEGORY "MCI VIRUS"

:NUMBER 5

The frame process calls the offer-board search and receives a list of five (or whatever
the value of :NUMBER is) offers, sorted by price (lowest bids come first):

Searching for offers...

Only one offer is found, and a button is displayed with this offer’s description and
price. If there were more offers, there would be as many buttons as offers, as shown
on Figure 3:

Frame Event: Display button

When the button is pressed, the agent receives a command to follow up on the offer
and buy the widget:

|Agent1088] :
buying MCI Virus description for $10.00 from |Agent1059]|

From: |Agent1088| To: |Agent1088|
Message: (COM
BUY
#S (OFFER
:WIDGET "MCI VIRUS"
:WIDGET-DESCRIPTION "MCI Virus description"
:PRICE 10.0
:TYPE T
:ACTION INIT
:ID 63692)
| Agent1059|
10.0)

Eill B11| Eill| Pause| Run| Mew Widget| Buy!| Balance

T TR O
IL S A EW

hagi ot o i |qﬁ

[| ¥

]~

H

Buy Encourages vou teo send it to wyour friends ar

Buy MCI VIRUS 2 for $7.49 from CLIM-USEER::|RgentS

Buy MCT Virus 34 for $9.99 from CLIM-USER:: |Lgent

Buy Encourages vou to send it to your friends ancd

Buy MCI VIRUS for $12.25 from CLIM-USER:: |RAgent33

=l

-

i~]

Figure 3: Buyer agent after receiving multiple bids

The agent process sends an accept offer to the seller agent:

From: |Agent1088| To: |Agent1059]|
Message: (OFFER
CLIM:ACCEPT
#S (OFFER
:WIDGET "MCI VIRUS"
:WIDGET-DESCRIPTION "MCI Virus description"
:PRICE 10.0
:TYPE T
:ACTION INIT
:ID 63692)
10.0)

The seller takes the widget out of its inventory and sends it to the register:

Sent to register by |Agent1059| and stored at 73693:

#S(WIDGET :NAME "MCI VIRUS"
:CONTENTS
"Encourages you to send it to your friends and family."
:KEY 50344)

Immediately, the register writes a check and sends it to the seller, together with a
key for the widget retrieval. The seller deposits the check upon receipt and sends the
key to the buyer:

Bank: Check written from REGISTER to |Agent1059| for 10.00
Bank: Check deposited by |Agent1059|

From: |Agent1059| To: [Agent1088]|
Message: (KEY

73693

10.0)

The buyer receives the message and sends a check and the widget key to the register.
The register responds by sending the widget to the buyer and depositing the check.

Bank: Check written from |Agent1088| to REGISTER for 10.00
Taken from register by |Agent1088| from 73693

Bank: Check deposited by REGISTER

After the widget is received, it is added to the agent’s inventory and the cycle is
ready to start again:

Agent1088:Received a widget "MCI VIRUS"

6 Directions for Future Work

At this time, many problems associated with using MAGMA in the real world remain
unsolved. Some of them will be addressed in the second version of MAGMA currently
under development. The system will be written in Java and C++ and built as an open API,
allowing third-party developers to build their own agents or interface with legacy systems
in any available language that supports linking of C libraries and socket communication.

e Networking. The first and foremost problem that needs to be solved is network
communications for agents. In MAGMA 2.0 we will use sockets to make connections
between the agents running within a Web browser and messaging hubs running on
the server.

e Security. Even though current version of MAGMA incorporates simple encryption
and authentication, any commercial implementation must include more and stronger
security features. MAGMA 2.0 will include RSA public-key encryption in the low-
level communications layer, ensuring that no messages are passed unencrypted. The
most important messages such as money transfers will be double-encrypted and will
include checksums and authentication codes to ensure integrity.

e Interface to Existing Systems has to be designed in a way that will not require
major changes in the legacy software used by financial institutions and shipping
companies. Due to a large installed base of SQL-compatible databases in the financial
and other business sectors, as well availability of products that interface SQL engines
with older mainframe-based system, a logical choice for such interface would be a
translator between the agent messaging language used in MAGMA and an industry
standard query language such as SQL. Even though MAGMA 2.0 is not likely to
include SQL interface, it will be possible to use agent API routines in conjunction with
an existing SQL-compatible product. When JDBC (Java DataBase Connectivity)
API is released, the connection will become even more natural.

e Intelligent Negotiation and Decision Algorithms are extremely important if
the system is to gain acceptance from major retail companies. If they are effective,
companies can conduct their Internet sales automatically or with a minimal human
input, allowing them to lower costs to justify investment in a new system. In MAGMA
2.0 we will implement and test several strategies and algorithms, including some of
the ones described earlier in the paper.

e Business Prospects. Even though MAGMA is an academic project, we will at-
tempt to implement the second version using commercial-grade techniques and test
it in the real world. Some of the smaller-scale applications of MAGMA might include
service like used book, CD-ROM or computer parts exchange, or a listing service such
as resume bank or a personal ad system.

If these tests prove successful, and after problems found during these tests are reme-
died, MAGMA will be ready to be released into the second stage of testing with small
business applications.

References

[1] Y. Amihud. Bidding and Auctioning for Procurement and Allocation. New York Uni-
versity Press, New York, 1978.

[2] J. Case. Economics and the Competititive Process - Studies in Game Theory and
Mathematical Economics. New York University Press, New York, 1979.

[3] Anthony Chavez and Pattie Maes. Kasbah: and agent marketplace for buying and
selling goods. In Proc. PAAMY6, page to appear, 1996.

[4] Robert Doorenbos, Oren Etzioni, and Daniel Weld. A scalable comparison-shopping
agent for the World Wide Web. Technical Report UW-CSE-96-01-03, University of
Washington, 1996.

[5] B. Krulwich. Bargain finder agent prototype. Technical report, Anderson Consulting,
http://bf.cstar.ac.com/bf/, 1995.

[6] Jeffrey Rosenschein and Gilad Zlotkin. Designing conventions for automated negotia-
tion. Al Magazine, pages 29-46, Fall 1994.

[7] T. Sandholm and V. Lesser. Issues in automated negotiation and electronic commerce:
Extending the contract net framework. In First International Conference on Multiagent
Systems (ICMAS-95), pages 328-335, San Francisco, 1995.

[8] Ying Sun and Daniel Weld. Automating bargaining agents (preliminary results). Tech-
nical Report UW-CSE-95-01-04, University of Washington, 1995.

