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Abstract subsequent path using a Bayesian network. Our algorithm
supports global analysis of the data, via clustering, atagel
local inference using the Bayesian framework. In addition,
our algorithm only uses location and time data, hence it can
be easily generalized to other domains with spatio-tempora
information. Our contributions are summarized as follows:

We propose eigen-based and Markov-based meth-
ods to explore the global and local structure of pat-
terns in real-world GPS taxi trajectories. Our goal
is to predict the subsequent path of an in-progress
taxi trajectory. The exploration of global and local

structure in the data differentiates this work from 1. We offer a systematic way of extracting common behav-
the state-of-the-art literature in trajectory predic- !oral charact_enstllcs frpm a Iarg_e set of observations us-
tion methods, which mostly focus on local struc- ing an algorithm inspired by principal component anal-
tures and feature selection. We propose four algo- ysis EigenStrat) and ourLapStrat algorithm.

rithms: two eigen-based=(genStrat, LapStrat), 2. We compare the effectiveness of methods that explore
a Markov-based algorithmMCStrat), and a fre- global structure onlyRreqCount andEigenStrat), lo-
quency based algorithfreqCount, which we use cal structure only NICStrat), and mixed global and
as a benchmark. A pairwise analysis of algorithm local structure l(apStrat). We show experimentally
performance reveals the best perforfesgCount that methods like.apStrat offer competitive prediction

on alarge real-world data set to bapStrat, which power compared to the more local structure-relMa-
performs better or the same as the more locally de- Strat algorithm.

pendent ICStrat).

2 Redated Work

1 Introduction Eigendecomposition has been used extensively to analyze an
In order to discovercharacteristic patterns in large spatio- summarize the characteristic structure of data sets. The-st
temporal data sets, mining algorithms have to take into acture of network flows was analyzed [ibakhinaet al., 2004,
count spatial relations, such as topology and directiomedls  principal component analysis (PCA) was used to summarize
as temporal relations. The increased use of devices that atlkee characteristics of the flows that pass through an interne
capable of storing driving-related spatio-temporal infar  service provider.[Zhanget al., 2009 identified two weak-
tion helps researchers and practitioners gather the ragess nesses that make PCA less effective on real-world data. i.e.
data to understand driving patterns in cities, and to desigsensitivity to outliers in the data, and concerns aboutnits i
location-based services for drivers. To the urban plarther, terpretation, and presented an alternative, Laplaciaaneig
collected data help aggregate drivers’ habits, and canuemco analysis. The difference between these methods is due to
alternative routes that could help alleviate traffic. Adiit  the set of relationships each method considers: the Lapla-
ally, it also helps prioritize the maintenance of roads. cian matrix only considers similarity between close neigh-
Our work combines data mining techniques that discovebors, while PCA considers relationships between all pdirs o
global structure in the data, and local probabilistic mdtho points. These studies focus on the clustering power of the
that predict short-term routes for drivers, based on pagt dr eigen-based methods to find structures in the data. Our work
ing trajectories through the road network of a city. goes beyond summarizing the structure of the taxi routek, an
The literature on prediction has offered Markov-baseduses the eigenanalysis clusters to predict the subseqant p
and other probabilistic methods that predict paths acelyrat of an in-progress taxi trajectory.
However, most methods rely on local structure of data, and Research in travel prediction based on driver behavior has
use many extra features to improve prediction accuracy. Ienjoyed some recent popularifiKrumm, 201Q predicts the
this paper we use only just the basic spatio-temporal dataext turn a driver will take by choosing with higher likeli-
stream. We advance the state-of-the-art by proposing thirood a turn that links more destinations or is more time effi-
LapStrat algorithm. This algorithm reduces dimensionality cient. [Ziebartet al., 2009 offer algorithms for turn predic-
and clusters data using spectral clustering to then predict tion, route prediction, and destination prediction. Thedgt



used a Markov model representation and inverse reinforcaxates indicate traversal in the graph.

ment learning coupled with maximum entropy to provide ac- : v v

curate predictions for each of their prediction taskéeloso (Ve eyys ) = {17 if I(c5, s1) * L(ey’s sm) =1

et al., 2011 proposes a Naive Bayes model to predict that a LA 0 Otherwise

taxi will visit an area, using time of the day, day of the week, 1)
weather, and land use as features.[fiosina and Fiosins, From trajectory;, a policy vectorr; is created having one
2014, travel time prediction in a decentralized setting is in-
vestigated. The work uses kernel density estimation toigred
the travel time of a vehicle based on features includingtleng

of the route, average speed in the system, congestion level,
number of traffic lights, and number of left turns in the route

One common characteristic of these studies is the use of
features other than location to improve prediction accurac
However, they do not offer a comprehensive analysis of the
overall structure of traffic data. Our work addresses thistsh Figure 1: City grid transitions are all rectilinear.
coming by providing both an analysis of the commuting pat-
terns, using eigenfunctions, and route prediction based ofajye for each edge in the city graph. Edgh,, is a directed
partial user trajectories. edge coefficient indicating that a transition occurred leetw

s; ands,, in the trajectory. The policy vectors for this data
set graph have length 1286, based on the number of edges in

3 DataPreparation the graph. A collection of policieH =< 71,72, ..., Ty >
is computed from a collection of trajectori&s

The GPS trajectories we use for our experiments are taken Vi —< Vi Svi > @)

from the publicly available Beijing Taxi data set which in- 81,827 7772 T8 Sm )

cludes 1 to 5-minute resolution location data for over ten- ) 1, if Zle (¥, i e ) >1

thousand taxis for one week in 20DPuanet al., 2014. Bei- Ot s = {O Othejr;vlise AR )

jing, China is reported to have seventy-thousand regidtere
taxis, so this data set represents a large cross-sectiolh of @& graphical example showing a trajectory converted into a
taxi traffic for the one-week perid@huet al., 2013. policy is shown in Figure 2. All visited locations for trajec

Because the data set contains only location and time in-

12

formation of each taxi, preprocessing the data into segsnent ——
based on individual taxi fares is useful. The data has seffci P Dy A Transiions. -eessim
detail to facilitate inference on when a taxi ride is comgtet = Jf s 10
for example, a taxi waiting for a fare will be stopped at a taxi 2, i U,
stand for many minutdZhuet al., 2014. Using these infer- = A g
ences, the data is separated into taxi rides. z = § 6
To facilitate analysis, the taxi trajectories are disaedi g }L E
into transitions on a region grid with cells of size 1.5 kin 2 *= =
1.5 km square.V =< wvy,vs,...,v, > iS a collection of 3 E 5
trajectoried/s,. We divide it intoVrg, Vrg, VAa Which are the
training, test, and validation sets, respectively. A ttyey 4 0
v; is a sequence of time-ordered GPS coordinates; =< 8 o 12
c}t,...c¥, ..., c} >. Each coordinate contains a GPS lat- Longitude (grid cell index)
itude and longitude value,* = (z;,y,). Given a complete Figure 2: A trajectory converted to a policy in the city grid.
trajectory @;), apartial trajectory (50% of a full trajectory)
can be generated ag“""'" =< ¢V ¢¥i . ., Cijg > The tory v?"**! are given bygvt
last location of a partial trajectory!*s! =< c}i;'/Q > is used artial _
to begin the prediction task. v =< Wsy, Weyy - - -5 Ws,, >, With (4)
~ The relevant portion of the city’s area containing the ma- ARy H(C?f“m“l7si) >1
jority of the city’s taxi trips, called @ity grid is enclosed in a Ws; = 0 Othejr;vise J ®)

matrix of dimension 14 20. Eachs; corresponds to the cen-
ter of a grid square in the euclideap-space. The city graph A baseline approach for predictioffreqCount, uses ob-

is encoded as arectilinear grid with directed edges () be-  served probabilities of each outgoing transition from each
tween adjacent grid squarégc;, s;) is an indicator function  node in the graph. Figure 3 shows the relative frequen-
that returns 1 if GPS coordinatg is closer to grid centes;  cies of transitions between grid squares in the entireitrgin
than to any other grid center, otherwise returns 0. Equdtion set. This city graph discretization is similar to prepreieg
shows an indicator function to determine if two GPS coordi-methods used by others in this domBitrumm and Horvitz,

2006; Veloscet al., 2011].
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Figure 4: A sample partial policy:
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Figure 3: Visualization of frequency counts for edge traoss in
the training set. Longer arrows indicate more occurrences.

4 Methods

This work proposes four methods that explore either thd locag
or the global structure or a mix of both to predict short-term o

trajectories for drivers, based on past trajectories.
Benchmark: Frequency Count Method. A benchmark pre-

diction measurekreqCount, uses frequency counts for tran-

sitions in the training set to predict future actions. THatiee
frequency of each rectilinear transition from each loaatio

Longitude (grid cell index)

Figure 5: Showsd, location probabilities
from FreqCount method with horizonof 3 7
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Figure 6: Continuation of Figure 4 trajectory
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setl]Freacount — - gFreqCount - tq determine a basic predic-
tion of future actions. This method only considers freqyenc
of occurrence for each transition in the training set, seéx-
pected to perform poorly in areas where trajectories ietgrs

Algorithm 1: Policy Iteration

Input: Location vector with last location of ta®i®t, a
policy list II, prediction horizomiter
Output: A location vector containing visit probabilities
for future locations)
1 faccum . elast
2 for m eIl do
t+1

90 — elast
whilet < niter do
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the grid is computed and is normalized based on the ”UmbeﬁigenStrat: Eigen Analysis of Covariance. The eigen-

of trajectories involving the grid cell. The resulting poyli

strategies approach exploits linear relationships between

matrix is a Markov chain that determines the next predicteqrgnsitions in the grid which 1) can be matched to partial

action based on the current location of the vehicle.

trajectories for purposes of prediction and 2) can be used to

The FreqCount method computes a policy vector based siydy behaviors in the system. The first part of the algorithm

on all trajectories in the training set TRF®ICoUt contains
first order Markov transition probabilities computed froth a
trajectories as in Equation 6.

- FreqCount

5Y
_ ZvETR Si,Sj (6)

Y weTR 2{:1 0% o

The probability of a transitions¢ — s;) is computed as the
count of the transitios; — s; in TR divided by the count of
all transitions exitings; in TR.

Si,85

focuses on model generation. For each pair of edges, the co-
variance is computed using the training set observations. T

n largest eigenvectors are computed from the covariance ma-
trix. These form a collection of characteristigen-strategies

from the training data.

When predicting for an in-progress trajectory, the algo-
rithm takes the policy generated from a partial taxi traject
mUrredict g maximum angle to use as the relevancy thresh-
old «, and the eigen-strategies Hs Eigen-strategies having

Policy iteration (Algorithm 1) is applied to the last loca- an angular distance less tharto wVrredict (measured using
tion of a partial trajectory using the frequency count pplic cosine similarity) are added fd,..;. This collection is then



Algorithm 2; EigenStrat Algorithm 3; LapStrat

Input: IItgr, number of principal componentdi(ns), Input: TItg, dimension dims), number of clusterk,
minimum angle between policiea), prediction similarity threshold €), predictionhorizon
horizon gorizon) X Output: Inferred location vectof

Output: Inferred location vecto# 1 Generate similarity matri¥V|rg| |tr| Where

1 Generate covariance mati@¥., |« ., (wherem; € Ilg) J(mi,my), if J(mi,m;) > €
between transitions on the grid; Wiy {O Otherwise ;

2 Get thedims eigenvectors of C with largest eigenvalues;

3 Compute cosine similarity betweerf?**a! and the 2 Generate Laplacian (L. = D — W andvd;; € D

- _ TR, i
principal components: _ g — Yo w, fi=z
Hrel = {Wprincipalj |COS(7Tp_rincipalj 5 ngrmal) > CY}, *J 0 OtherWiSé
4 If the cos(mprincipat;» mH2"') < 0, then flip the sign of 3 Get thedims eigenvectors with smallest eigenvalues;
the coefficients for every policy. Use Algorithm 1 with 4 Usek-means to find the mean centroids
II,. on vf“"”‘” for horizon iterations to computé; (Teentroid;»J = 1... k) of k policy clusters;

5 Find all centroids similar tar2"tia:
IL.; = {Tcentroid, |J (T eentroia; , TE4TH) > €}
6 Use Algorithm 1 withIT,..; on vf‘"”‘” for horizon
iterations to computé;

used for policy iteration. An optimal values faranddims
are learned experimentally.

Eigenpolicies also facilitate exploration of strategicide
sions. Figure 7 shows a plot of an eigenpolicy which shows a
distinct pattern found in the training data. Taxis werersgiy
confined to trajectories either the inside circle or themperi
ter of the circle, but rarely between these regions. The twi
series (positive and negative) indicate the sign and magdait
of the grid coefficients for this eigenvector. We believelana
ysis of this type has great promise for large spatio-tenipor
data sets.

The input to the Jaccard index are two vectors representing
(golicies generated in Section 3(m;, ;) is the Jaccard in-

ex between policies; andr;. The unnormalized Laplacian
is computed by subtracting thiegree matrix from the simi-
larity matrix in the same fashions &Shi and Malik, 200D
4ne choose thelims eigenvectors with smallest eigenvalues,
and performk-means to find clusters in the reduced dimen-
sion. The optimal value fodims is learned experimentally.
positive directions — TheLapStrat algorithm i§ described in Algorithm 3.
negative directions «-- > | MCStrat: Markov Chain-Based Algorithm The Markov

rtial

s e s chain approach uses local, recent information fra@ffy ..,
-+ the partial trajectory to predict from. Given the lasedges
traversed by the vehicle, the algorithm finds all complede tr
y g p
-7 + jectories in the training set containing the sainedges to
t
&

oo

[ 4 . [ 4

build a set of relevant policiel,.; using the match function.
matchk, a, b) is a function which returngrue if at least the
last k& transitions in the policy generated by trajectarare

ope | od o also found inb. Using Equation 9V,.; is then used to build

a composite single relevant poliey..;, that also obeys the
Markov assumption: the sum of all probabilities exitingrfro
Longitude (grid cell index) each location is equal to 1, so the resulting policy preserve
the probability mass.
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Figure 7: An eigenpolicy showing a strategic pattern.

artial

Vyer = {vs|matchk, rUsredict %) = true, v; € Vir}

LapStrat: Spectral Clustering-Inspired Algorithm. Lap- 7
Strat combines spectral clustering and Bayesian-based pol- @)

icy iteration to cluster policies and infer driver next tarn Trel =< 57! ,”.,577“”4 > (8)
Spectral clustering operates upon a similarity graph amd it e Y

respective Laplacian operator. This work follows the sgadct s = Zvevm 05,5, 9)
clustering approach of Shi et #6hi and Malik, 2000 using Sissj > oevis ZIJQ\/[—l 5o

an unnormalized graph Laplacian. We use Jaccard index to . . J S
compute the similarity graph between policies. We chose th&Sing the composite,;, policy iteration is then performed
Jaccard index, because it finds similarities between slici O" the last location vector computed fram.caic-

that are almost parallel. This is important in cases such aé

two highways that only have one meeting point; in this case; Results

if the highways are alternative routes to the same intdmgct Given an in-progress taxi trajectory, the methods presente
they should be similar with respect to the intersection poin facilitate predictions about the future movement of theiveh



cle. To simulate this task, a collection of partial trajee
is generated from complete trajectories in the test set.tA se
of relevant policy vectors is generated using one of the four
methods described, and policy iteration is performed to gen|EigenStrat|  0.431
erate the future location predictions. The inferred futiore LapStrat | *0.000211| *0.000218
cation matrix is compared against the actual complete tax
trajectory. Predictioneesults gre scored by compariggrthe MCStrat | *0.00149 | *0.000243
ferred visited location vectcﬁagainst_ the full location vector  apje 2: p-values of Wilcoxon signed-rank test pairs. 8thr) val-
gvi. The scores are computed using Pearson’s correlationjes indicate the row method achieves statistically sicaniti¢0. %%
score = Cor(6,60%). The scores reported are the aggregatssignificance level) improvement over the column method fprea
mean of scores from examples in the validation set. diction horizon of 6. Ifn/a, the row method’s mean is not better than
The data set contains 100,000 subtrajectories (of approxihe column method.
mately 1 hour in length) from 10,000 taxis. The data set is
split randomly into 3 disjoint collections to facilitate @ari-
mentation: 90% in the training set, and 5% in both the test an
validation sets. For each model type, the training set id tse
generate the model. Any model parameters are optimized u
ing the test set. Scores are computed using predictions maggeferences
on partial trajectories from the validation set. [Fiosina and Fiosins, 2012]. Fiosina and M. Fiosins. Co-
Results of each method for 4 different maximum predic- operative kernel-based forecasting in decentralizedimult
tion lengths are shown in Table 1. The methods leveraging agent systems for urban traffic networks. Ubiquitous
more local information near the last location of the vehicle Data Mining, pages 3—7. ECAI, 2012.

(LapStrat, MCStrat) perform better than the methods rely- [kKrumm and Horvitz, 2006 J. Krumm and E. Horvitz. Pre-

ing only on global patternseqCount, EigenStrat). This destination: Inferring destinations from partial traject
is true for all prediction horizons, but the more local meth-  rjes. UbiComp 2006, pages 243-260, 2006.

ods have an even greater performance advantage for larg
prediction horizons.

Method |FreqCount|EigenStrat|LapStrat| MCStrat
FreqCount

n/a n/a

n/a n/a

pproach which simultaneously incorporates global anal loc
redictions to provide more robust results.

[ . -
ﬁ(rumm, 2010 J. Krumm. Where will they turn: predicting
turn proportions at intersectionBersonal and Ubiquitous

Prediction Horizon Computing, 14(7):591-599, 2010.

correlation (std. dev.) [Lakhinaet al., 2004 A. Lakhina, K. Papagiannaki,
Method 1 2 4 6 M. Crovella, C. Diot, E. D. Kolaczyk, and N. Tatft.
FreqCount| .579 (.141) .593(.127) .583(.123) .573 (.122) Structural analysis of network traffic flowBerform. Eval.
EigenStrat| .563 (.143) .576 (.134) .574 (.140) .574 (.140) Rev, 32(1):61-72, 2004.

LapStrat | .590 (.144).618 (.139) .626 (.137).626 (.137) [Shi and Malik, 2000 J. Shi and J. Malik. Normalized cuts
MCStrat [.600 (.146) .616 (.149) .621 (.149) .621 (.149) and image segmentatiotEEE Trans. on Pattern Analysis

Table 1: Perf b thod and orediiit and Machine Intelligence, 22(8):888-905, 2000.
Zf)‘n_eTh'e beersct)rsn;gPecieers%sjuremens y method and precieion [Velosoet al., 2011 M. Veloso, S. Phithakkitnukoon, and

C. Bento. Urban mobility study using taxi traces.Hroc.

Statistical significance testing was performed on the vali- ©f tTe 2011 int’l workshop on Trajectory data mining and
dation set results, as shown in Table 2. The best performin analysis, pages 23-30, 2011.
methods (apStrat andMCStrat) achieve a statistically sig- [Yuanetal., 2010 J. Yuan, Y. Zheng, C. Zhang, W. Xie,
nificant performance improvement over the other methods. X. Xie, G. Sun, and Y. Huang. T-drive: driving directions
However, the relative performance difference betweendhe |  based on taxi trajectories. Rroc. of the 18th SIGSPATIAL

cal methods is not significantly different (althoughpStrat Int’| Conf. on Advancesin GIS, pages 99-108, 2010.

has a slight edge in performance oMCStrat). [Zhanget al., 2009 J. Zhang, P. Niyogi, and Mary S.
McPeek. Laplacian eigenfunctions learn population struc-

6 Conclusions ture. PLOSONE, 4(12):€7928, 12 2009.

The methods presented can be applied to many other spatibZzhuet al., 2013 Y. Zhu, Y. Zheng, L. Zhang, D. Santani,
temporal domains where only basic location and time infor- X. Xie, and Q. Yang. Inferring Taxi Status Using GPS
mation is collected from portable devices, such as senger ne  Trajectories ArXiv e-prints, May 2012.

works as well as cell phone location prediction. These Préfziebartet al., 2004 B. Ziebart, A. Maas, A. Dey, and
dictions assume the action space is large but fixed and ob- 3 Bagnell. Navigate like a cabbie: probabilistic reason-
servations implicitly are clustered into distinct but rafes ing from observed context-aware behaviorPic. of the

goals. In this domain, each observation is a set of actions a 1oth int'| conf. on Ubiquitous computing, UbiComp '08
driver takes in fulfillment of a specific goal: for example, to pages 322-331, 2008. ’ '

take a passenger from the airport to his/her home. In future
work, we propose to extend this work using a hierarchical



