
Predicting Globally and Locally: A Comparison of Methods
for Vehicle Trajectory Prediction

William Groves, Ernesto Nunes, Maria Gini
Department of Computer Science and Engineering, University of Minnesota

{groves, enunes, gini}@cs.umn.edu

Abstract

We propose eigen-based and Markov-based meth-
ods to explore the global and local structure of pat-
terns in real-world GPS taxi trajectories. Our goal
is to predict the subsequent path of an in-progress
taxi trajectory. The exploration of global and local
structure in the data differentiates this work from
the state-of-the-art literature in trajectory predic-
tion methods, which mostly focus on local struc-
tures and feature selection. We propose four algo-
rithms: two eigen-based (EigenStrat, LapStrat),
a Markov-based algorithm (MCStrat), and a fre-
quency based algorithmFreqCount, which we use
as a benchmark. A pairwise analysis of algorithm
performance reveals the best performerFreqCount
on a large real-world data set to beLapStrat, which
performs better or the same as the more locally de-
pendent (MCStrat).

1 Introduction
In order to discovercharacteristic patterns in large spatio-
temporal data sets, mining algorithms have to take into ac-
count spatial relations, such as topology and direction, aswell
as temporal relations. The increased use of devices that are
capable of storing driving-related spatio-temporal informa-
tion helps researchers and practitioners gather the necessary
data to understand driving patterns in cities, and to design
location-based services for drivers. To the urban planner,the
collected data help aggregate drivers’ habits, and can uncover
alternative routes that could help alleviate traffic. Addition-
ally, it also helps prioritize the maintenance of roads.

Our work combines data mining techniques that discover
global structure in the data, and local probabilistic methods
that predict short-term routes for drivers, based on past driv-
ing trajectories through the road network of a city.

The literature on prediction has offered Markov-based
and other probabilistic methods that predict paths accurately.
However, most methods rely on local structure of data, and
use many extra features to improve prediction accuracy. In
this paper we use only just the basic spatio-temporal data
stream. We advance the state-of-the-art by proposing the
LapStrat algorithm. This algorithm reduces dimensionality
and clusters data using spectral clustering to then predicta

subsequent path using a Bayesian network. Our algorithm
supports global analysis of the data, via clustering, as well as
local inference using the Bayesian framework. In addition,
our algorithm only uses location and time data, hence it can
be easily generalized to other domains with spatio-temporal
information. Our contributions are summarized as follows:

1. We offer a systematic way of extracting common behav-
ioral characteristics from a large set of observations us-
ing an algorithm inspired by principal component anal-
ysis (EigenStrat) and ourLapStrat algorithm.

2. We compare the effectiveness of methods that explore
global structure only (FreqCount andEigenStrat), lo-
cal structure only (MCStrat), and mixed global and
local structure (LapStrat). We show experimentally
that methods likeLapStrat offer competitive prediction
power compared to the more local structure-reliantMC-
Strat algorithm.

2 Related Work
Eigendecompositionhas been used extensively to analyze and
summarize the characteristic structure of data sets. The struc-
ture of network flows was analyzed in[Lakhinaet al., 2004],
principal component analysis (PCA) was used to summarize
the characteristics of the flows that pass through an internet
service provider.[Zhanget al., 2009] identified two weak-
nesses that make PCA less effective on real-world data. i.e.
sensitivity to outliers in the data, and concerns about its in-
terpretation, and presented an alternative, Laplacian eigen-
analysis. The difference between these methods is due to
the set of relationships each method considers: the Lapla-
cian matrix only considers similarity between close neigh-
bors, while PCA considers relationships between all pairs of
points. These studies focus on the clustering power of the
eigen-based methods to find structures in the data. Our work
goes beyond summarizing the structure of the taxi routes, and
uses the eigenanalysis clusters to predict the subsequent path
of an in-progress taxi trajectory.

Research in travel prediction based on driver behavior has
enjoyed some recent popularity.[Krumm, 2010] predicts the
next turn a driver will take by choosing with higher likeli-
hood a turn that links more destinations or is more time effi-
cient. [Ziebartet al., 2008] offer algorithms for turn predic-
tion, route prediction, and destination prediction. The study



used a Markov model representation and inverse reinforce-
ment learning coupled with maximum entropy to provide ac-
curate predictions for each of their prediction tasks.[Veloso
et al., 2011] proposes a Naive Bayes model to predict that a
taxi will visit an area, using time of the day, day of the week,
weather, and land use as features. In[Fiosina and Fiosins,
2012], travel time prediction in a decentralized setting is in-
vestigated. The work uses kernel density estimation to predict
the travel time of a vehicle based on features including length
of the route, average speed in the system, congestion level,
number of traffic lights, and number of left turns in the route.

One common characteristic of these studies is the use of
features other than location to improve prediction accuracy.
However, they do not offer a comprehensive analysis of the
overall structure of traffic data. Our work addresses this short-
coming by providing both an analysis of the commuting pat-
terns, using eigenfunctions, and route prediction based on
partial user trajectories.

3 Data Preparation

The GPS trajectories we use for our experiments are taken
from the publicly available Beijing Taxi data set which in-
cludes 1 to 5-minute resolution location data for over ten-
thousand taxis for one week in 2009[Yuanet al., 2010]. Bei-
jing, China is reported to have seventy-thousand registered
taxis, so this data set represents a large cross-section of all
taxi traffic for the one-week period[Zhuet al., 2012].

Because the data set contains only location and time in-
formation of each taxi, preprocessing the data into segments
based on individual taxi fares is useful. The data has sufficient
detail to facilitate inference on when a taxi ride is completed:
for example, a taxi waiting for a fare will be stopped at a taxi
stand for many minutes[Zhu et al., 2012]. Using these infer-
ences, the data is separated into taxi rides.

To facilitate analysis, the taxi trajectories are discretized
into transitions on a region grid with cells of size 1.5 km×
1.5 km square.V =< v1,v2, . . . ,vw > is a collection of
trajectoriesVTr. We divide it intoVTR, VTE, VVA which are the
training, test, and validation sets, respectively. A trajectory
vi is a sequence ofn time-ordered GPS coordinates:vi =<
cvi

1
, . . . cvi

j , . . . , cvi

N >. Each coordinate contains a GPS lat-
itude and longitude value,cvi

j = (xj , yj). Given a complete
trajectory (vi), a partial trajectory (50% of a full trajectory)
can be generated asvpartial

i =< cvi

1 , cvi

2 , . . . , cvi

N/2 >. The

last location of a partial trajectoryvlast
i =< cvi

N/2 > is used
to begin the prediction task.

The relevant portion of the city’s area containing the ma-
jority of the city’s taxi trips, called acity grid is enclosed in a
matrix of dimension 17× 20. Eachsi corresponds to the cen-
ter of a grid square in the euclideanxy-space. The city graph
is encoded as a rectilinear grid with directed edges (esisj ) be-
tween adjacent grid squares.I(cj , si) is an indicator function
that returns 1 if GPS coordinatecj is closer to grid centersi
than to any other grid center, otherwise returns 0. Equation1
shows an indicator function to determine if two GPS coordi-

nates indicate traversal in the graph.

Φ(cvi

j , cvi

k , eslsm) =

{

1, if I(cvi

j , sl) ∗ I(c
vi

k , sm) = 1

0 Otherwise
(1)

From trajectoryvi, a policy vectorπi is created having one
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Figure 1: City grid transitions are all rectilinear.

value for each edge in the city graph. Eachδsl,sm is a directed
edge coefficient indicating that a transition occurred between
sl andsm in the trajectory. The policy vectors for this data
set graph have length 1286, based on the number of edges in
the graph. A collection of policiesΠ =< π1, π2, . . . , πw >
is computed from a collection of trajectoriesV :

π
vi =< δvi

s1,s2 , . . . , δ
vi

sl,sm , . . . > (2)

δvi

sl,sm
=

{

1, if
∑N−1

j=1
Φ(cvi

j , cvi

j+1
, esl,sm) ≥ 1

0 Otherwise
(3)

A graphical example showing a trajectory converted into a
policy is shown in Figure 2. All visited locations for trajec-
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Figure 2: A trajectory converted to a policy in the city grid.

tory vpartial
i are given byθv

partial

i :

θv
partial

i =< ωs1 , ωs2 , . . . , ωsm >,with (4)

ωsi =

{

1, if
∑n

j=1
I(c

v
partial

i

j , si) ≥ 1

0 Otherwise
(5)

A baseline approach for prediction,FreqCount, uses ob-
served probabilities of each outgoing transition from each
node in the graph. Figure 3 shows the relative frequen-
cies of transitions between grid squares in the entire training
set. This city graph discretization is similar to preprocessing
methods used by others in this domain[Krumm and Horvitz,
2006; Velosoet al., 2011].
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Figure 4: A sample partial policyπv
partial
i
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Figure 5: Showsθ̂, location probabilities
from FreqCount method with horizon of 3
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Figure 6: Continuation of Figure 4 trajectory
π
vi
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Figure 3: Visualization of frequency counts for edge transitions in
the training set. Longer arrows indicate more occurrences.

4 Methods
This work proposes four methods that explore either the local
or the global structure or a mix of both to predict short-term
trajectories for drivers, based on past trajectories.
Benchmark: Frequency Count Method. A benchmark pre-
diction measure,FreqCount, uses frequency counts for tran-
sitions in the training set to predict future actions. The relative
frequency of each rectilinear transition from each location in
the grid is computed and is normalized based on the number
of trajectories involving the grid cell. The resulting policy
matrix is a Markov chain that determines the next predicted
action based on the current location of the vehicle.

The FreqCount method computes a policy vector based
on all trajectories in the training set TR.πFreqCount contains
first order Markov transition probabilities computed from all
trajectories as in Equation 6.

δπ
FreqCount

si,sj =

∑

v∈TR δvsi,sj
∑

v∈TR

∑M
k=1

δvsi,sk

(6)

The probability of a transition (si → sj) is computed as the
count of the transitionsi → sj in TR divided by the count of
all transitions exitingsi in TR.

Policy iteration (Algorithm 1) is applied to the last loca-
tion of a partial trajectory using the frequency count policy

setΠFreqCount =< πFreqCount > to determine a basic predic-
tion of future actions. This method only considers frequency
of occurrence for each transition in the training set, so it is ex-
pected to perform poorly in areas where trajectories intersect.

Algorithm 1: Policy Iteration

Input: Location vector with last location of taxiθlast, a
policy list Π, prediction horizonniter

Output: A location vector containing visit probabilities
for future locationŝθ

θaccum ← θlast1

for π ∈ Π do2

t← 13

θ0 ← θlast4

while t ≤ niter do5

θt =< ωt
s1 , ω

t
s2 , . . . , ω

t
si , . . . , ω

t
sM >6

, whereωt
si = maxsj∈S(ω

t−1
sj ∗ δ

π
sj ,si)7

t← t+ 18

for Si ∈ S do9

ωθaccum

si = max(ωθaccum

si , ωθt

si )10

θ̂ = θaccum11

EigenStrat: Eigen Analysis of Covariance. The eigen-
strategies approach exploits linear relationships between
transitions in the grid which 1) can be matched to partial
trajectories for purposes of prediction and 2) can be used to
study behaviors in the system. The first part of the algorithm
focuses on model generation. For each pair of edges, the co-
variance is computed using the training set observations. The
n largest eigenvectors are computed from the covariance ma-
trix. These form a collection of characteristiceigen-strategies
from the training data.

When predicting for an in-progress trajectory, the algo-
rithm takes the policy generated from a partial taxi trajectory
πvpredict , a maximum angle to use as the relevancy thresh-
old α, and the eigen-strategies asΠ. Eigen-strategies having
an angular distance less thanα to πvpredict (measured using
cosine similarity) are added toΠrel. This collection is then



Algorithm 2: EigenStrat
Input: ΠTR, number of principal components (dims),

minimum angle between policies (α), prediction
horizon (horizon)

Output: Inferred location vector̂θ
Generate covariance matrixC|πi|×|πi| (whereπi ∈ ΠTR)1

between transitions on the grid;
Get thedims eigenvectors of C with largest eigenvalues;2

Compute cosine similarity betweenπpartial
vi and the3

principal components:
Πrel = {πprincipalj |cos(πprincipalj ,π

partial
vi ) > α};

If the cos(πprincipalj ,π
partial
vi ) < 0, then flip the sign of4

the coefficients for every policy. Use Algorithm 1 with
Πrel onvpartiali for horizon iterations to computêθ;

used for policy iteration. An optimal values forα anddims
are learned experimentally.

Eigenpolicies also facilitate exploration of strategic deci-
sions. Figure 7 shows a plot of an eigenpolicy which shows a
distinct pattern found in the training data. Taxis were strongly
confined to trajectories either the inside circle or the perime-
ter of the circle, but rarely between these regions. The two
series (positive and negative) indicate the sign and magnitude
of the grid coefficients for this eigenvector. We believe anal-
ysis of this type has great promise for large spatio-temporal
data sets.
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Figure 7: An eigenpolicy showing a strategic pattern.

LapStrat: Spectral Clustering-Inspired Algorithm. Lap-
Strat combines spectral clustering and Bayesian-based pol-
icy iteration to cluster policies and infer driver next turns.
Spectral clustering operates upon a similarity graph and its
respective Laplacian operator. This work follows the spectral
clustering approach of Shi et al.[Shi and Malik, 2000], using
an unnormalized graph Laplacian. We use Jaccard index to
compute the similarity graph between policies. We chose the
Jaccard index, because it finds similarities between policies
that are almost parallel. This is important in cases such as
two highways that only have one meeting point; in this case,
if the highways are alternative routes to the same intersection,
they should be similar with respect to the intersection point.

Algorithm 3: LapStrat
Input: ΠTR, dimension (dims), number of clustersk,

similarity threshold (ǫ), predictionhorizon
Output: Inferred location vector̂θ
Generate similarity matrixW|TR|×|TR| where1

wij =

{

J(πi,πj), if J(πi,πj) ≥ ǫ

0 Otherwise
;

Generate Laplacian (L):L = D −W and∀dij ∈ D2

dij =

{

∑|TR|
z=1

wiz , if i = z

0 Otherwise
;

Get thedims eigenvectors with smallest eigenvalues;3

Usek-means to find the mean centroids4

(πcentroidj
, j = 1 . . . k) of k policy clusters;

Find all centroids similar toπpartial
vi :5

Πrel = {πcentroidj
|J(πcentroidj

,πpartial
vi ) > ǫ};

Use Algorithm 1 withΠrel onvpartiali for horizon6

iterations to computêθ;

The input to the Jaccard index are two vectors representing
policies generated in Section 3.J(πi,πj) is the Jaccard in-
dex between policiesπi andπj. The unnormalized Laplacian
is computed by subtracting thedegree matrix from the simi-
larity matrix in the same fashions as[Shi and Malik, 2000].
We choose thedims eigenvectors with smallest eigenvalues,
and performk-means to find clusters in the reduced dimen-
sion. The optimal value fordims is learned experimentally.
TheLapStrat algorithm is described in Algorithm 3.
MCStrat: Markov Chain-Based Algorithm The Markov
chain approach uses local, recent information fromv

partial
predict,

the partial trajectory to predict from. Given the lastk edges
traversed by the vehicle, the algorithm finds all complete tra-
jectories in the training set containing the samek edges to
build a set of relevant policiesVrel using the match function.
match(k, a, b) is a function which returnstrue if at least the
last k transitions in the policy generated by trajectorya are
also found inb. Using Equation 9,Vrel is then used to build
a composite single relevant policyπrel, that also obeys the
Markov assumption: the sum of all probabilities exiting from
each location is equal to 1, so the resulting policy preserves
the probability mass.

Vrel = {vi

∣

∣match(k, πv
partial

predict , πvi) = true,vi ∈ VTR}

(7)

πrel =< δπ
rel

s1,s2 , . . . , δ
πrel

si,sj , . . . > (8)

δπ
rel

si,sj =

∑

v∈Vrel
δvsi,sj

∑

v∈Vrel

∑M
k=1

δvsi,sk

(9)

Using the compositeπrel, policy iteration is then performed
on the last location vector computed fromvpredict.

5 Results
Given an in-progress taxi trajectory, the methods presented
facilitate predictions about the future movement of the vehi-



cle. To simulate this task, a collection of partial trajectories
is generated from complete trajectories in the test set. A set
of relevant policy vectors is generated using one of the four
methods described, and policy iteration is performed to gen-
erate the future location predictions. The inferred futurelo-
cation matrix is compared against the actual complete taxi
trajectory. Prediction results are scored by comparing thein-
ferred visited location vector̂θ against the full location vector
θvi . The scores are computed using Pearson’s correlation:
score = Cor(θ̂, θvi). The scores reported are the aggregate
mean of scores from examples in the validation set.

The data set contains 100,000 subtrajectories (of approxi-
mately 1 hour in length) from 10,000 taxis. The data set is
split randomly into 3 disjoint collections to facilitate experi-
mentation: 90% in the training set, and 5% in both the test and
validation sets. For each model type, the training set is used to
generate the model. Any model parameters are optimized us-
ing the test set. Scores are computed using predictions made
on partial trajectories from the validation set.

Results of each method for 4 different maximum predic-
tion lengths are shown in Table 1. The methods leveraging
more local information near the last location of the vehicle
(LapStrat, MCStrat) perform better than the methods rely-
ing only on global patterns (FreqCount, EigenStrat). This
is true for all prediction horizons, but the more local meth-
ods have an even greater performance advantage for larger
prediction horizons.

Prediction Horizon

Method
correlation (std. dev.)

1 2 4 6
FreqCount .579 (.141) .593 (.127) .583 (.123) .573 (.122)
EigenStrat .563 (.143) .576 (.134) .574 (.140) .574 (.140)
LapStrat .590 (.144).618 (.139) .626 (.137) .626 (.137)
MCStrat .600 (.146) .616 (.149) .621 (.149) .621 (.149)

Table 1: Performance measurements by method and predictionhori-
zon. The best score is inbold.

Statistical significance testing was performed on the vali-
dation set results, as shown in Table 2. The best performing
methods (LapStrat andMCStrat) achieve a statistically sig-
nificant performance improvement over the other methods.
However, the relative performance difference between the lo-
cal methods is not significantly different (althoughLapStrat
has a slight edge in performance overMCStrat).

6 Conclusions
The methods presented can be applied to many other spatio-
temporal domains where only basic location and time infor-
mation is collected from portable devices, such as sensor net-
works as well as cell phone location prediction. These pre-
dictions assume the action space is large but fixed and ob-
servations implicitly are clustered into distinct but repeated
goals. In this domain, each observation is a set of actions a
driver takes in fulfillment of a specific goal: for example, to
take a passenger from the airport to his/her home. In future
work, we propose to extend this work using a hierarchical

Method FreqCount EigenStrat LapStrat MCStrat

FreqCount n/a n/a n/a

EigenStrat 0.431 n/a n/a

LapStrat *0.000211 *0.000218 0.462

MCStrat *0.00149 *0.000243 n/a

Table 2: p-values of Wilcoxon signed-rank test pairs. Starred (*) val-
ues indicate the row method achieves statistically significant (0.1%
significance level) improvement over the column method for apre-
diction horizon of 6. Ifn/a, the row method’s mean is not better than
the column method.

approach which simultaneously incorporates global and local
predictions to provide more robust results.
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