
Measuring Physiological Markers of Stress
During Conversational Agent Interactions

Shreya Datar, Libby Ferland, Esther Foo, Michael Kotlyar, Brad Holschuh, Maria
Gini, Martin Michalowski and Serguei Pakhomov

Abstract Conversational agent (CA) technology is rapidly becoming ubiquitous.
Understanding how CAs impact users on multiple levels, including physiology, thus
becomes increasingly important. In this study, we examined the effects of a CA
interaction on naive users’ physiological markers of stress i.e. heart rate (HR) and
electrodermal activity (EDA). Participants (n = 21) prepared and executed a speech
as part of a stressful interview, followed by a “Wizard-of-Oz” CA interaction. We
expected the CA interactions to be mildly stressful. For a subset of participants with
an initial resting period (n = 10), HR was elevated by 4.06 beats per minute (bpm)
on average during the speech task, relative to the resting baseline. During the CA
interaction however, HR was found to be 1.16 bpm lower on average. Moreover, HR
and EDA values during the CA interaction were highly correlated with those during
the resting period (Spearman’s rho: HR = 0.97, EDA = 0.96) with small differences
(mean diff: HR = 1.16, EDA = 1.82). Contrary to initial expectations, users do
not seem to exhibit a stress response during the CA interaction. We additionally
performed similar analyses and compared our results with the Wearable Stress and
Affect Detection (WESAD) dataset [1].

1 Introduction

Conversational agents have amassed multitudes of uses and users [2–5]. However,
because this technology is relatively new, its impact on users on multiple levels
including physiology, has not yet been extensively investigated. Understanding the
impact of CA technology on users is critical to its success and can help in guiding
its design and the most effective and appropriate use.
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Various aspects of CA technology such as user experience [6], spoken dialogue
system design [7] and modes of interaction [8,9] have been studied. Although phys-
iological responses to technology have been extensively researched in the human-
computer interaction literature [10], fewer studies have examined the physiological
effects, particularly stress effects, of interacting with CAs. For instance, Lee et
al. [11] used physiological signal data to explore users’ experience with assistive
CA technology while watching television. Prendinger et al. [12] proposed a method
to measure responses to an affective and empathetic animated interface agent using
skin conductance response. Similarly, Mori et al. [13] investigated the difference
in the effect of an affective and non-affective embodied CA (ECA) on users and
found that an ECA expressing empathy may offset the frustration or stress caused by
shortcomings of the interface. A majority of these studies examined differences in
physiological response for alternative versions of a CA. These studies demonstrate
that various aspects of CA interactions can elicit physiological responses that can be
analysed further to advance our understanding of user responses to CA technology.

Considering the pervasiveness of CA technology, studying the effect of CAs on
users on a physiological level becomes all the more relevant. Speaking in front of
even a very small audience is known to induce a physiological stress response [14].
If interacting with a CA is similarly stressful, it may result in limited use of such a
system. Additionally, use of a CA that consistently elicits a physiological stress re-
sponse could have negative health consequences. Frequent exposure to psychosocial
stressors has been shown to negatively impact a variety of health measures includ-
ing those indicative of poor sleep quality or those associated with progression of
cardiovascular disease [15, 16]. To our knowledge, only one prior study [12] specif-
ically investigated users’ stress response while interacting with a CA system. Better
understanding of such stress responses could be valuable in guiding CA system de-
sign especially in populations of vulnerable users (e.g. cognitively impaired or older
adults).

Advances in CA technologies provide a wealth of new opportunities for interac-
tion, including applications in personalised care and targeted interventions. Since
ELIZA [17], CA technology has improved dramatically and has increasingly been
applied in health care to develop systems for clinical decision and triage support [18],
screening and diagnosis [19], physical and mental health [20], and patient monitor-
ing [21] to state a few, with interventions also targeted at older adults [22, 23].

To contextualize the presented research, this study is part of a Grand Challenges
project at theUniversity ofMinnesota that includes assistive technology interventions
to advance the health and well-being of older adults. The project is aimed at inte-
grating information relating to anticipated stressful everyday life events elicited via
natural conversations with a CA in order to inform the interpretation of physiological
signals collected using wearable sensors (e.g. heart rate, motion and electrodermal
activity) for the purpose of activating just-in-time interventions designed to attenu-
ate a user’s stress response (e.g., upper-body compression via a specially designed
garment [24,25]). The role of the CA system is to provide information supplemental
to physiological signal data to identify time periods in which stressful events are
more likely to occur, in order to minimize potential false positive activations of the
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intervention. The ultimate overarching goal of this approach is to investigate the de-
velopment of CA assisted personalized technology to deliver real-time interventions
in response to stress detection in users, with a particular focus on vulnerable popu-
lations. This study focuses on just one of the multiple aspects of the larger project -
whether the CA system itself induces stress.

The purpose of the current study was to examine and quantify the effects that a
CA interaction has on naive users’ physiological parameters associated with stress
i.e. heart rate (HR) and electrodermal activity (EDA). In order to establish that
participants in this study do in fact produce a physiological stress response that
is measurable with the wearable sensor device we chose to use (Empatica E4),
we used a standard mild stressor task widely used to study stress response - the
speech portion of the Trier Social Stress Test [14]. At the outset, we expected to
find that interacting with unfamiliar technology such as a CA system, would be at
least somewhat stressful and result in a measurable physiological stress response
comparable to one induced by a standard stressor task. Contrary to this expectation,
we found preliminary evidence that while study participants had a measurable stress
response to the stressful speech task, they did not show any stress response while
interacting with the CA system. In fact, heart rate was lower on average during the
CA system interaction as compared to baseline.

In the remainder of this paper, we describe the study design, data collection
and analysis procedures, present results for two types of physiological measures of
stress (HR and EDA) and discuss strengths and limitations of this study, as well as
implications for future studies. We also present analyses and comparisons with the
Wearable Stress and Affect Detection (WESAD) dataset [1], a publicly available
dataset for wearable stress and affect detection.

2 Methods

Our analyses use data from three distinct sets of experiments. Data collected as part
of the Grand Challenges project conducted at the University of Minnesota focused
on measuring physiological responses as participants performed a series of tasks,
which included the CA system interaction (CA Study). We also use another dataset
from a substudy within the Grand Challenges project. As mentioned previously, a
broader goal of the project is to incorporate personalized, real-time interventions
through wearable technology. The substudy focused on designing and developing
wearable haptic garments aimed at promoting relaxation. Experiential effects of
various aspects of compression actuation with the garment were investigated and
physiological signals were simultaneously recorded (Garment Study). Baseline HR
and EDA data obtained in the Garment Study were used to externally validate, in an
independent sample, the measurements obtained during the restful periods in the CA
Study. The WESAD dataset [1] was used as an additional source of data (WESAD
Study) to validate our study findings.
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The Empatica E4 wristband was used to record physiological signals in all three
studies mentioned above. It contains an optical HR sensor, a 3-D accelerometer, an
EDA sensor, and a body temperature sensor. This device has been validated for HR
and EDA measures, showing acceptable accuracy as compared to reference devices
[26, 36].

2.1 Study Designs

2.1.1 CA Study

University of Minnesota students were recruited to be part of the initial participant
cohort for this study. Each participant attended four laboratory sessions over a period
of two days, with two sessions on each day. The first laboratory session consisted
of four major tasks: resting period (for a subset of 10 participants), walking task,
modified Trier Social Stress Test and the Wizard-of-Oz CA system interaction. This
enabled a comparison of physiological responses during the CA interaction with a
known standard stressor task. Hence for this analysis we used data collected during
the first session only. The second, third and fourth lab sessions included only the
WOZ CA interaction and data from these were not used in the current analysis.
Participants also completed a post session survey at the end of each session.

The Wizard-of-Oz CA interaction was carried out through Amazon’s Polly ser-
vice. The voice chosen was a low to mid-range female voice as similar to the Alexa
voice as possible (AWS Polly service’s "Joanna" voice). There is some evidence
that people react more positively to a female voice [40]. There are however other
studies that have reported no significant differences in outcome based on gender
characteristics [41]. The "system" was also highly consistent in interactions.

2.1.2 Garment Study

Physiological signal data was collected for participants as they completed a baseline
survey and subsequently evaluated various facets of the wearable haptic garment.

2.1.3 WESAD Study

WESAD is a multimodal dataset consisting of physiological signal data recorded
using a wrist-worn device (Empatica E4) and a chest-worn device (RespiBAN Pro-
fessional) as part of a lab study. Physiological signal data were collected during three
different affective states: neutral (during the resting period), stress (during the Trier
Social Stress Test), amusement (where participants were shown eleven clips of funny
videos). The stressful and amusement states were both immediately followed by a
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meditation period. In addition to this, ground truth was obtained through subjective
self-assessment questionnaires on five occasions during the lab session.

2.2 Participants

2.2.1 CA Study

Participants in this study were University of Minnesota students with minimal or no
prior experience with a smart home system. There were 21 participants (17 females,
4 males). Three participants refused to disclose their age. All other participants were
between 18 and 23 years of age (mean = 19.4, sd = 1.5). All participants completed
a pre-screening survey in which information pertinent to studying physiological
responses e.g. smoking behaviors, pregnancy and current medications, was noted.
Previous experience with a smart home system was negative for 13 participants,
positive for 4 (less than a year of use) and unknown for 4. The study was performed
with IRB approval, and written informed consent from all participants. Participants
received monetary compensation and additional course credits upon completion of
the study.

2.2.2 Garment Study

This study involved 17University ofMinnesota students (9 females, 8males) between
18-29 years old (mean = 22.1) who self-identified as healthy individuals with no
existing cardiovascular/circulatory health concerns. Data had to be discarded for 4
participants because data collection was paused due to hardware issues with the
garment.

2.2.3 WESAD Study

The WESAD study included 15 graduate students at the University of Siegen, Ger-
many (3 females, 12 males) who were between 24 and 35 years of age (mean = 27.5,
sd = 2.4). See [1] for further details.

2.3 Procedures

2.3.1 CA Study

Participantswere fittedwith theEmpaticaE4 at the beginning of the first experimental
session on both days. The first session of the day was generally conducted in the
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morning. Out of the four lab sessions for a participant, only the first session contained
a standardized stressor task in addition to the CA interaction and was thus used for
the current analysis. This session consisted of four tasks: a rest period, slow and fast
walks (collectively, the walking task), a stressful speech task and a Wizard-of-Oz
CA interaction. A session flow is illustrated in Fig. 1

Rest Period
5 min

10 participants

Slow & Fast Walk
3 min

WOZ CA System
Interaction

9 min

Trier Task

Instruction    Preparation   Execution
          2 min            3 min            3 min          

Consent

Fig. 1 Participant task flow for the first laboratory session during the CA Study.

Following informed consent, participants were fitted with the Empatica E4. For a
subset of 10 participants, this was followed by a 5 min stationary rest period during
which baseline measurements were recorded. All participants (n = 21) were then
instructed to perform a slow and fast walking task. The Trier Social Stress Test task
was administered following the walking tasks.

The Trier Social Stress Test is a widely used standardized stressor task [14].
The speech portion of the Trier test served as the stress-inducing component of the
study. In this task, participants were asked to prepare for an interview (instruction
phase) for a hypothetical job of their choice. They were given 3 min to prepare
for the interview (preparation phase) and 3 min to execute the speech in front of
1 interviewer (execution phase). The interviewer prompted participants with other
common interview questions if they were unable to speak for the entire 3 min
duration.

The Wizard-of-Oz CA interaction took place immediately after the Trier task.
The WOZ CA system asked participants questions to elicit information about their
schedules and whether they anticipated any upcoming event to be stressful. The
interactions lasted 9.2 min on average. The CA interaction was the last task of the
laboratory session. Participants continued to wear the E4 device as they went about
their day, until the end of the second session which was conducted towards the end
of the day.

2.3.2 Garment Study

The wearable technology used in the Garment study involved the application of
compressive and warmth sensations to a wearer while investigating how various
haptic parameters such as location, duration, intensity, and pattern change a user’s
experience. The developed technology was a first step towards a long-term goal of
employing haptic wearables to promote relaxation [24].

After the consent process, participants completed a paper survey in regards to
their baseline clothing comfort and demographics. Physiological signal data corre-
sponding to this stationary period was used as a resting baseline that could be used to
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externally validate baseline measurements from the CA study. After completion of
the baseline survey, participants evaluated the wearable haptic garment on varying
forms of warm compression stimuli (data not presented here since it is not within
the scope of this paper) [24].

2.3.3 WESAD Study

The WESAD study involved a 20 min stationary period where baselines were
recorded, the Trier Social Stress Test, an amusement period where participants
watched clips of funny videos, and 7 min guided meditation periods immediately
after the stress and amusement states. In this study, both the speech and arithmetic
portion of the Trier test were included, each lasting 5 min. Participants executed
the Trier test in front of a three-person panel. The guided meditations were intro-
duced specifically to de-excite participants and bring them back to close to a neutral
affective state (cool-off period). See [1] for further details.

3 Analysis

3.1 Data Preprocessing

In the CA study, each lab session was audio-recorded. Event timestamps (i.e. the
start time and end time for each experimental task) were obtained manually from the
voice recording after it was aligned with the Empatica E4 signal streams as follows.
The Empatica E4 records the Unix epoch timestamp of the time when the device
was switched on, with the timing of each subsequent HR and EDA sample identified
at a predefined frequency (HR: 1 Hz, EDA: 4 Hz) relative to the initial timestamp.
The study facilitator was instructed to say out loud when they finished fitting the
participants with the device. Using this event in the audio stream as an anchor point,
the relative offsets in the E4 data streams were converted to absolute timestamps
synchronized with the start and end of each task.

To examine measures of heart rate variability (HRV), an accepted indicator of
stress [27], in the CA study, successive inter beat intervals (IBIs) were isolated from
the IBI data stream recorded by the Empatica E4. For every participant, the total
durations of IBI segments were calculated for each task.

In the Garment study, there was no categorically defined resting period; however,
participants filled out a demographics and baseline comfort questionnaire. In order
to obtain baseline measurements, we isolated HR and EDA values from stationary
periods during the baseline survey period using E4’s accelerometer data. This re-
sulted in 1 min intervals of HR and EDA signal values on average per participant.
Specifically, these periods were obtained by identifying a set of continuous G-values
(sum of squared acceleration values along the three accelerometer dimensions) that
had a standard deviation less than or equal to 5 along each dimension. Stationary pe-
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riods could not be isolated for 3 participants. Baselines obtained for the 10 remaining
participants were used in the analysis.

From theWESADstudy, physiological signals collected using only thewrist-worn
Empatica E4 were considered. The RespiBAN chest device records measurements
at a frequency of 700Hz. Data synchronised between both devices were available in
the dataset, however event labels were available only at the sampling frequency of
the RespiBAN device. These were downsampled to get corresponding event labels
for signals measured by the E4.

3.2 Statistical Analyses

To distinguish between participants associated with the different studies included in
the analysis, we define the following:

• P1: set of all 21 participants in the CA Study
• P2: subset of 10 participants from the CA study with resting baseline measure-

ments
• P3: subset of 10 participants in the Garment Study with resting baseline measure-

ments
• P4: set of 15 participants from the WESAD study

A reference standard for physiological measures was not available for the CA
study. Hence to externally validate the baseline measurements, HR and EDA rest
period measures from the Garment Study (P3) and WESAD study (P4) were com-
pared with those in the CA study (P2) using an unpaired t-test. Stationary period
measurements from the Garment Study (P3) were also compared with the system
interaction task of the CA Study (P2).

To compare the physiological response between tasks, we calculated the Spear-
man’s correlation coefficient for both, HR and EDA for all pairs of tasks in the CA
study (P2). For every participant, a mean HR value was calculated for each task by
taking the average of all HR values recorded during the task. However for EDA,
we considered the maximum value during the task. The EDA signal has two com-
ponents: a tonic component (slower changing component) and a phasic component
(faster changing component). The tonic component makes up the majority of the
EDA signal. The EDA signal thus exhibits a lagged stress response. Hence, instead
of calculating means as in the case of HR, maximum EDA values during tasks were
used for analysis.

In the CA study, only the rest period (resting baseline or rest), Trier task prepara-
tion (preparation), Trier task execution (execution) and the WOZ CA system inter-
action (interaction) were considered for further analysis. Since the Trier instruction
phase immediately followed the walking task, an elevation in HR during this task
could either be attributed to stress or the preceding physical activity, and was thus
left out. The walking task was not considered since it is not directly relevant for the
purposes of the analysis. One-way ANOVA and pairwise t-tests were conducted to
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analyze mean differences between the selected tasks. Pairwise t-tests were adjusted
for multiple comparisons using the Bonferroni procedure. Similar analyses were
performed using the WESAD dataset and the results were compared to those from
the CA study. All statistical tests assumed the probability of Type 1 error <0.05
threshold for determining statistical significance. Statistical tests were carried out
using the R statistical software package (Version:4.0.2; [28]).

4 Results

Fig. 2 shows raw HR and EDA values for a participant (Subject ID: 504) during
the first laboratory session. Since EDA is sampled at a frequency of 4Hz, it was
downsampled by taking rolling means, using a sliding window. The Trier instruction
phase took place immediately after the walking task; and after Trier execution,
participants were briefed on interacting with the CA system.

We observed individual variability in how people respond to stress. Mean HR
response during Trier task execution was 6.32 beats per minute (bpm)with a standard
deviation of 12.45 bpm. Mean EDA response was 0.32 microsiemens (µS) with a
standard deviation of 0.67 µS.

Rest Period Walk   Trier Test
Preparation

Trier Test
Execution

CA Interaction

HR

EDA

Fig. 2 Raw HR and EDA signals for participant 504 during the laboratory session.
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4.1 External Validation of the CA Study Resting Period

No significant differences were found between the rest period of the CA study (P2)
and the estimated stationary periods of the Garment study (P3) for both HR and
EDA (HR: mean diff = 1.18 bpm, p = 0.84; EDA: mean diff = 1.53 µS, p = 0.19).
Comparing HR values during the rest periods of the CA study (P2) and WESAD
study (P4) resulted in a mean difference of 10.27 bpm (p = 0.09), however this
difference was not statistically significant. No significant differences were found in
EDA values between the two studies (mean diff = 0.01 µS, p = 0.99).

Additionally, no significant differences were found between the CA system inter-
action (P1) and the Garment study stationary periods (P3) (HR: mean diff = 0.12, p
= 0.97; EDA: mean diff = 2.17 µS, p = 0.07).

4.2 Signal Comparisons Between Tasks

Fig. 3 shows correlations of mean HR and maximum EDA values between tasks in
the CA study. There is a strong correlation between HR values during the rest period
and CA system interaction (rho = 0.97, p<0.001) with small differences (mean diff =
1.16 bpm).MaximumEDA values during the rest period and system interaction were
also strongly correlated (rho = 0.96, p<0.001) with small differences (mean diff =
1.82 µs). Overall, larger correlations between tasks were observed in the EDA signal
compared to HR. Since the EDA signal exhibits a lagged response, tasks closer to
one another temporally are expected to have large correlations. Relative to baseline,
EDA was lower on average during the instruction phase (mean diff = -0.43 ms). This
difference increased progressively during the Trier task (preparation mean diff =
0.31ms, execution mean diff = 1.87ms) but decreased during the system interaction
(mean diff = 1.82ms).

AAAAAAAAAAAAAAA
Walk

Instruction

Preparation

Execution

Interaction

Rest Walk Instruction Preparation Execution

0.00

0.25

0.50

0.75

Spearman's 
rho

BBBBBBBBBBBBBBB
Walk

Instruction

Preparation

Execution

Interaction

Rest Walk Instruction Preparation Execution

0.91

0.93

0.95

0.97

Spearman's 
rho

Fig. 3 Correlations of mean HR values (Panel A) and maximum EDA values (Panel B) between
tasks in the CA study.

We also compared the inter-task signal correlations of the CA study with the
WESAD study for selected tasks. We define the following correlations, depicted in
Fig. 4:
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• C1: Correlation between Baseline and Trier Execution
• C2: Correlation between Trier Execution and CA Interaction (CA) / Meditation

(WESAD)
• C3: Correlation between Baseline and CA Interaction (CA) / Meditation (WE-

SAD)
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Heart Rate
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C1 C2 C3
Electrodermal Activity

Study CA WESAD

Fig. 4 Trends in correlations between tasks for the CA and WESAD studies.

In both studies, C3 for HR values is the largest correlation (CA study: rho = 0.97;
WESAD study: rho = 0.63). The largest EDA correlation is C2. In the CA study, this
could be explained by the temporal proximity of Trier execution to the CA interaction
or meditation periods.

4.3 Comparing the Rest Period and CA Interaction

One-way ANOVA and pairwise t-tests were conducted to compare the differences
in mean HR values between selected tasks during the CA study (P2). No significant
differences were found between any pairs of tasks. On average, mean HR was
elevated by 4.06 bpm (sd = 14.89 bpm) during the Trier task execution but was lower
by 1.16 bpm (sd = 4.31 bpm) during the system interaction, relative to baseline
(Fig. 5). With the same set of participants, one-way ANOVA and pairwise t-tests
were also conducted usingmaximumEDAvalues during tasks however no significant
differences were found between any pairs of tasks (Fig. 6). Log values were used for
these calculations to meet the normality condition.

Since HR and EDA were similar in the rest period and system interaction (for
P2), we used the CA interaction as a proxy for the baseline for all participants (P1),
and repeated the above analysis. We found that mean HR was significantly elevated
during Trier task execution (Fig. 7). EDA was significantly elevated during the Trier
task execution as compared to both, baseline and Trier task preparation (Fig. 8).
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Fig. 5 Comparison of mean HR values between tasks in the CA study (P2).
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Fig. 6 Comparison of maximum EDA values between tasks in the CA study (P2).

4.4 Comparing the CA and WESAD studies

Using data from the WESAD study, one-way ANOVA between tasks for HR mean
yielded significant differences between the baseline rest period and Trier test (p <
0.001) and between the Trier test and meditation period (p < 0.001). No significant
differences were found between the baseline and meditation tasks. For EDA, signif-
icant differences were only found between the Trier test and meditation period (p =
p < 0.001).

Fig. 9 and Fig. 10 show a comparison of the CA (P1) and WESAD (P4) studies
considering their rest periods, Trier test and CA system interaction in case of the
CA study, or meditation period in case of the WESAD study. The rest period is the
baseline in both studies.

Increases and decreases in average HR means and maximum EDA values for the
tasks follow the same pattern for both studies, although their magnitudes differ.
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Fig. 7 Comparison of mean HR values between tasks in the CA study (P1) with CA system
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Fig. 8 Comparison of maximum EDA values between tasks in the CA study (P1) with CA system
interaction as baseline.. ’*’ indicates significance (p<0.05)

4.5 HRV Analysis

We used the IBI signal recorded by the Empatica E4 to measure HRV in the CA
study. A total of 822 IBI segments with average segment length of 7.1s were found
across all participants (P1, n = 21) and tasks. The number of segments and average
segment length for each task were as follows: rest 106 (27.6s), walking 41 (1.9s),
Trier instruction 83 (7.3s), Trier preparation 133 (6.0s), Trier execution 67 (2.0s), CA
system interaction 392 (8.5s). Note that rest period segments were only available for
participant set P2 (n = 10). Since 3-5 min is the recommended length for measuring
short-termHRV [29], we were unable to compute short-termHRVmeasures reliably.
This is consistent with previous studies that used the Empatica E4 for HRV analysis
[30]. Finally, we observed that a larger number of IBI segments were available
in stationary, non-stressful periods such as the resting period and the CA system
interaction.
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Fig. 9 Trends in mean HR during selected tasks for the CA (panel A) and WESAD studies (panel
B).
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Fig. 10 Trends in maximum EDA during selected tasks for the CA (panel A) and WESAD studies
(panel B).

5 Discussion

Prior literature shows that performing the Trier task results in a measurable increase
in HR on the order of 5-10 bpm [31]. Our results are consistent with these prior
findings and also show a similar elevation in HR during the Trier task. When the CA
system interaction was used as baseline for all 21 participants, an elevation of 7.9
bpm was observed during Trier execution relative to baseline. This finding confirms
that a) study participants were indeed stress-responders on average as they showed
a response to a standard stressor, and b) the device used in the study was capable of
measuring stress response when it was present. Contrary to our initial expectations,
we found no elevation in HR during the CA interaction. This finding indicates that
the CA system interaction may not be stress-inducing.

Similar trends were observed when selected tasks from the CA andWESAD stud-
ies were compared (Fig. 9, Fig. 10). The guided meditation period was specifically
aimed at de-exciting participants after the stress and amusement affective states in
the WESAD study. Relative to rest period baselines, mean HR and maximum EDA
values were lower during the meditation task, as well as, during the CA interaction.

The consistently large correlations between tasks within the CA study, compared
to the WESAD study (Fig. 4), could perhaps be attributed to the differences in
duration and interval between tasks in the CA and WESAD studies. Tasks in the
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WESAD study were longer and included a 5 min buffer between all tasks. This
perhaps allowed participants to return to a rest-like phase before the beginning of the
next task. The WESAD study incorporated a 20 min resting period where baseline
measurements were taken, as compared to a 5 min resting period in the CA study.
The WESAD study also included both the speech and arithmetic portions of the
Trier Social Stress Test to be executed in front of a three-person panel whereas our
study only used the speech portion, to be executed in front of one interviewer. This
may explain the larger difference in mean HR between the resting period (baseline)
and Trier test in the WESAD study, as shown in Fig. 9. Although we compared the
CA and WESAD studies and found similar trends in physiological responses, a key
difference between the two studies is the gender of participants. P1 consisted of 8
females and 2 males whereas P2 consisted of 3 females and 12 males. It is not clear
what, if any, effect differences in gender composition of the two studies may have
on the results. Some prior studies found that sex differences in the response to the
Trier Social Stress Test were not significant [37, 38]; however, other studies found a
significant effect [39]. Further investigation with larger samples is needed to answer
this question.

Several limitations should be consideredwhen interpreting the results of our study.
The study relies on a small sample of participants. Our findings need to be replicated
and confirmed in larger studies powered to determine that there truly is no difference
between HR and EDA measures during resting or relaxation periods and the CA
system interaction. Power analyses using recorded HR and EDA values indicate that
task comparisons in the CA study would be significant at the 95% confidence level
if the number of participants is at least 85 considering HR values, or 28 considering
EDA values only. The participants in this study were students, thus limiting the
generalizability of our findings to older individuals. In this study, we were only able
to assess physiological parameters during interactions with a single WOZ task-based
system-initiative CA. Further investigation is necessary to evaluate stress response
to interactions with other CA system types designed for various purposes (e.g., CA
systems designed as therapeutic agents for healthcare applications). Our study also
did not include a cool-off period as in other Trier test studies. A comparison between
such a phase and the CA interaction would further strengthen the argument that a
CA interaction is in fact not stress inducing. Additionally, while we were not able
to independently verify the accuracy of the Empatica E4 measurements against a
reference device in this study, this device has been previously investigated in other
studies and shown to produce reliable estimates of HR and EDA [26,30, 36].

Our study is one of the first to explore approaches to objectively quantify effects
of CA technology on users’ physiological parameters in real time. Additionally, we
were able to replicate findings of other laboratory [31] and naturalistic studies [32]
showing that awrist-worn optical HR sensor can detect elevation inHR in response to
a standardmild stressor. Furthermore, the results of the current study also suggest that
similarly to HRmeasures, EDAmeasures also respond to a stressful stimulus and can
bemeasured with a wrist-worn sensor, which is consistent with prior studies showing
that, despite lower correlation with galvanic skin response measures obtained from
fingers, wrist-based EDA measures offered better discriminative power for stress
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detection [33]. Finally, we also showed that consistent with prior studies [30], the
Empatica E4 cannot be used to reliably measure HRV.

The pace of advancement in CA technology in the last decade has been very
rapid. Reliability and adoption of technology however is a gradual process, and this
becomes a particularly important consideration while designing systems for older
adults. Yaghoubzadeh et al. [34] studied qualitatively, the acceptance of a virtual daily
assistant by elderly or cognitively impaired users and the feasibility of a successful
interaction in a Wizard-of-Oz setting. They found that although elderly cognitively
impaired users were more reluctant to accept and recognise use of a daily assistant,
focus groups, interviews and encounters with an actively engaging system prototype
helped to advance acceptance. The CA system used in this study was simple and
predictable, which meant that participants acclimatized to it fairly quickly. In fact
participants, in post-study surveys, often rated the system as robotic, friendly, and/or
polite. Directly examining older adults’ interactions with the CA would provide
valuable insights into their acceptance of this technology, in addition to inspecting
the feasibility of real-time monitoring of physiological signals. The results presented
here are preliminary, however they have important implications for integrating CA
systems into a patient’s care process.
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