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Abstract

We present a system for multi-agent contract negotiation, implemented as a general-
ized market architecture called MAGNET. MAGNET provides support for a variety of
types of transactions, from simple buying and selling of goods and services to complex
multi-agent contract negotiations. In the latter case, MAGNET is designed to nego-
tiate contracts based on temporal and precedence constraints, and includes facilities
for dealing with time-based contingencies. The market operates as an explicit inter-
mediary in the negotiation process, which helps in controlling fraud and discouraging
counterspeculation.

We introduce a multi-criterion, anytime bid evaluation strategy that incorporates
cost, task coverage, temporal feasibility, and risk estimation into a simulated anneal-
ing framework. We report on an experimental evaluation using a set of increasingly
informed search heuristics within simulated annealing. The results show that excess
focus on improvement leads to faster improvement early on, at the cost of a lower
likelihood of finding a solution that satisfies all the constraints.

1 Introduction

Over the past decade, the complexity of logistics involved in manufacturing has been in-
creasing nearly exponentially. Many processes are being outsourced to outside contractors,
making supply chains longer and more convoluted. The increased complexity is often com-
pounded by accelerated production schedules which demand tight integration of all processes.
Thus, the field is ripe for the introduction of systems that automate logistics planning among
multiple entities such as manufacturers, part suppliers and specialized subcontractors.

To help automate logistics planning, we propose a testbed for multi-agent contract ne-
gotiation, implemented as a generalized market architecture called MAGNET (Multi AGent
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NEgotiation Testbed). MAGNET provides support for a variety of types of transactions,
from simple buying and selling of goods and services to complex multi-agent contract nego-
tiations. In the latter case, MAGNET is designed to negotiate contracts based on temporal
and precedence constraints, and includes facilities for dealing with time-based contingencies.

MAGNET adds a new dimension to business-to-business interactions, by adding the
ability to automate the negotiation and execution of complex combinations of contracts
among multiple suppliers. This is especially important for the coordination of supply-chain
management with production scheduling.

Companies usually work with prequalified suppliers and do not rely on auctions to get
the commodities or services they need. Buyer-supplier relationships depend on factors such
as quality, delivery performance, and flexibility as opposed to just cost [19], and these must
be taken into account if automated negotiation is to be successful. Current Internet-based
procurement systems are mostly limited to non production related procurement, such as
office supplies or computer equipment [14]. With most organizations spending at least one
third of their budget to purchase goods or services, procurement savings have a significant
business value. Business-to-business transactions over the Internet are expected to increase
to $1.3 trillion in 3 years, according to Forrester Research, much more than the $108 billion
expected from consumer online spending.

One of the more difficult problems an agent faces in dealing with negotiation over com-
plex plans is the problem of evaluating bids. The agent must solve both bid-allocation and
temporal feasibility constraints, while attempting to minimize cost and risk. We have de-
veloped a highly tunable anytime search, based on a Simulated Annealing [29] framework,
using a set of modular selectors and evaluators. Given that the time allocated to search
will seldom be sufficient to explore a significant fraction of the search space, we must find
an appropriate tradeoff between systematic optimization and random exploratory behavior.
We describe here the first of a set of experiments that will allow us to allocate time to the
various agent activities, and to maximize the performance of the search.

This paper is organized as follows: in Section 2 we identify the requirements for a gen-
eralized multi-agent market architecture that can support complex agent interactions, and
in Section 3 we present a novel architecture that satisfies these requirements. Section 4
describes the decision processes faced by a customer agent in the MAGNET environment.
Section 5 presents the results of a set of experiments that attempt to characterize the bid
evaluation search process. Section 6 describes the state of the current implementation. Sec-
tion 7 relates our work to other published research. Finally, in Section 8, we conclude and
discuss further research opportunities.

2 The Role of an Independent Market

The MAGNET architecture, described in the next section, provides a framework for secure
and reliable commerce among self-interested agents. There are several types of services that
are difficult for self-interested agents to provide for themselves, and that have not been fully
addressed in existing systems. These include negotiation support, value-added services, and
security issues.



Support for multi-agent negotiation over extended time periods. Negotiations may
require extended periods of time to complete, during which a context must be main-
tained. The time during which the negotiated transaction extends can also span sig-
nificant periods of time, in the range of weeks to months. In order to support this, the
market infrastructure maintains the state of each transaction over time.

This is a prerequisite for many other functions the market will perform, and it makes
the system more robust in the face of hardware and communication failures. Most
negotiation protocols involve time limits, such as a deadline for receipt of bids. All
parties to a time-sensitive negotiation process must have a common time reference.
The market architecture provides this. The architecture also has the ability to validate
certain types of non-performance, and to assess negotiated penalties.

Value-added services. An independent market entity can also provide a number of value-
added services that may be commonly used by suppliers and customers. For example,
the market can provide matchmaking facilities to bring together suppliers and cus-
tomers based on their stated preferences [40, 41]. This is particularly important for
two reason. First, participants can continuously issue or retract registered capabilities
in various domains. This makes it difficult for individual participating agents to keep
track of and have access to the most up-to-date information. Secondly, such a facility
provides a form of filtering and reduce the computational costs during bid evaluation
by customer agents.

Furthermore, the market may serve as a repository of statistical data about various
participants. This may include general statistics about availability of suppliers with
specific capabilities, or independent ratings for both suppliers and customers based on
past performance. The general statistical information is useful for customer agents
in formulating a request-for-quotes, while performance ratings can be used by both
customer and supplier agents to determine the risk (or price) associated with various
bids. Finally, the market can provide publish-subscribe facilities to provide registered
participants with notification of important events.

Protection against fraud and misrepresentation. We must assume that participating
agents will take advantage of any opportunities that exist in the design of the market to
gain advantage. The structure of the market recognizes and protects against situations
that allow agents to gain unfair advantage at the expense of other agents. Strategies
that can result in this type of “unfair” gain include:

e Hiding one’s identity or taking on the identity of another. This includes changing
identity in order to escape the consequences of poor service on prior commitments.

e Dishonest auctioneer - In Vickrey-type auctions [46, 45], the motivation for truth-
telling on the part of participants is predicated on their belief in the honesty of
the auctioneer.

e Miscommunication of the rules under which a transaction is being conducted.

e Failure to follow through on commitments.



Discouragement of counterspeculation. Opportunities for counterspeculation arise when
the rules of negotiation allow agents to gain advantage by making use of factors other
than their own capabilities and valuations, such as their estimates of the capabilities
and valuations of the customers or other suppliers [21]. We are concerned with two
general types of counterspeculation. Value-based counterspeculation [32, 35, 46, 45]
occurs when agents use their own estimates of each other’s valuations to set bid prices.
In [7], we identified two classes of time-based counterspeculation opportunities in a
contracting domain that can be controlled by the settings of certain timing parameters.
One of these situations occurs when supplier agents are allowed to expire their bids
before the customer’s request for quotes expires. This forces customers to make deci-
sions without full information on other, possibly more advantageous bids. The other
situation occurs when suppliers believe that the customer will start the bid evaluation
process before all bids are received. If the supplier believes that the customer’s resource
limitations will prevent full consideration of all bids, then early submission of bids, at
potentially higher prices, can be used to skew the customer’s reasoning process.

MAGNET provides a neutral third-party facility for controlling and filtering protocol
exchanges that can reduce or prevent both value-based and temporal counterspecula-
tion. It is up to the agents to decide the extent to which these facilities are used, since
they may slow the negotiation process or reduce the information exchange.

3 The MAGNET Architecture
The MAGNET system is based on these elements:

1. The market. Agents find each other and carry out negotiations through a distributed
infrastructure that enforces protocol rules, limits opportunities for fraud and counter-
speculation, provides a common information base for agents, and tracks the requests,
commitments, and progress toward goals among the agent population.

2. The agents. Each agent is an independent entity, with its own goals and resources. In
general, the resources under control of an individual agent are not sufficient to satisfy
its goals, and so the agent must negotiate with other agents.

Because it is based on a market-based economic model, a MAGNET system acts to
allocate resources among a community of agents to their highest-value uses, over time, and
in a completely distributed fashion. Because MAGNET agents are heterogeneous and self-
interested, they may represent real-world entities who may tune their levels of cooperation
and competitiveness to suit their own needs.

3.1 The MAGNET Market Infrastructure

In order to provide these capabilities, the MAGNET system incorporates a distributed, hier-
archical market infrastructure that manages security, tracks commitments and performance
of agents, and logs their interactions. The market specifies the terms of discourse among



agents through an Ontology, and keeps historical data that may be used by agents in their risk
evaluations. Different market segments may specify specialized ontologies. Agents who wish
to offer resources and services do so through one or more market segments whose ontologies
describe their offerings.

The fundamental elements of the market architecture are the exchange, the market, and
the market session.

3.1.1 The Exchange

An exchange is a collection of domain-specific markets in which goods and services are
traded, along with some generic services required by all markets, such as verifying identities
of participants in a transaction, and a Better Business Bureau that can provide information
about the reliability of other agents based on past performance. Architecturally, an exchange
is a network-accessible resource that supports a set of markets and common services, as
depicted in Figure 1.
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Figure 1: The Structure of an Exchange
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3.1.2 Markets

Each market within an exchange is a forum for commerce in a particular commodity or
business area. There would be markets devoted to banking, publishing and printing, con-
struction, transportation, industrial equipment, etc. Each market includes a set of domain-
specific services and facilities, as shown in Figure 2, and each market draws upon the common
services of the exchange.

An important component of each market is a set of current market sessions in which the
actual agent interactions occur. Agents participating in a market may do so as either session
initiators, or as clients, or both. As detailed in the next section, each session is initiated by
a single agent for a particular purpose, and in general multiple agents may join an existing
session as clients. Important elements of the market include:

e An Ontology that is specific to the domain of the market, specifying the terms of dis-
course within that domain. In a commodity-oriented domain, it would include terms
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Figure 2: The Structure of a Market within the Exchange
©1998 by ACM, Inc., appeared in [9)

for the products or services within the domain, as well as terminology for quality, quan-
tity, features, terms and conditions of business, etc. In a planning-oriented domain,
specifications of services would be in a form that supports planning, including, for
example, preconditions, postconditions, and decomposition information.

e A Protocol Specification that formalizes the types of negotiation supported within the
market. These are limits on parameters of the negotiation protocol, such as maximum
decommitment, whether bids can be awarded before the bid deadline, etc.

o A Registry of market participants who have expressed interest in doing business in the
market. Entries in this registry include the identity of a participant, a catalog (or a
method for accessing a catalog) of that participant’s interests, products or capabilities,
which can be used for matchmaking [40, 41]. Catalogs are required to express interests
and offerings in terms of the market’s ontology.

3.1.3 Market Sessions

A market session (or simply a session) is the vehicle through which market services are
delivered dynamically to participating agents. It serves as an encapsulation for a transaction
in the market, as well as a persistent repository for the current state of the transaction.

We have chosen the term “session” to emphasize the temporally extended nature of many
of these interactions. For example, in a contracting market, if an agent wishes to build a
new house, it initiates a session and issues a Request for Quotes (RFQ). The session extends
from the initial RFQ through the negotiation, awards, construction work, paying of bills, and
final closing. In other words, the session encloses the full life of a contract or a set of related
contracts. The session mechanism ensures continuity of partially-completed transactions,
and relieves the participating agents from having to keep track of detailed negotiation status
themselves.

Agents can play two different roles with respect to any session. The agent who initiates a
session is known as the session initiator, while other participating agents are known as session
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clients. A session can be initiated either for the purpose of buying or selling, depending on
the type of market. A session could also be initiated to sell items or services at auction.

At any given time, a session can be open to new participants, or closed. A public auction
would typically be open to new participants, but most sessions are closed once the contracts
are let. The market maintains a list of open sessions which may be accessed by agents.

Figure 3 shows the structure of a session. Two APIs are exposed, one for the session
initiator and one for session clients. Each session contains an Initiator Proxy that implements
the Initiator API and persistently stores the current state of the session from the standpoint
of the initiator. A Client Proxy is provided for each client that similarly provides a Client
API to the client agent, and persistently stores the current state of the session from the
standpoint of the client. Proxies are market entities that act on behalf of the agents and
enforce market rules.

There are two reasons for the existence of the proxy components. The first is related to
security: client proxy components cannot see the private data of the initiator or of other
clients. The second is that in a distributed system environment, the processing and persistent,
data elements of the initiator and clients would presumably be at different locations in
the network to maximize performance. In Section 6 these proxy components are called
participants.

3.2 The MAGNET Agents

In general, a MAGNET agent has three basic functions: planning, negotiation, and execution
monitoring. Within the scope of a negotiation, we distinguish between two agent roles, the
Customer and the Supplier. A Customer is an agent who has a goal to satisfy, and needs
resources outside its direct control in order to achieve its goal. The goal may have a value
that varies over time. A Supplier is an agent who has resources and who, in response to
a RFQ, may offer to provide resources or services, for specified prices, over specified time
periods. Figure 4 shows the general relationships among Customer agents, Supplier agents,
and the Market.

The negotiation process consists of a contracting phase and a execution phase. The
contracting phase is a simple three-step process consisting of a Request For Quotes, a Bidding
cycle, and an Award cycle. We have developed a finite, leveled commitment protocol that
limits the time and bandwidth required for the negotiation process without limiting the
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scope of possible agreements [36].

The execution phase may involve negotiations over schedule adjustments, decommit-
ments, and in some cases repeating the bidding cycle when it becomes necessary to re-allocate
resources that had originally been committed.
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Figure 5: A Typical Session-Mediated Negotiation

The interactions involved in the basic bidding and execution cycle among the Customer,
Supplier, and market session are illustrated in Figure 5. During execution, the interactions



can be much more complex than indicated here, since either party may decommit from a
contract (and pay a penalty), and the Customer is continuously monitoring and repairing
its plan by replanning and rebidding when events fail to proceed according to expectations.

Each bid may specify one or more tasks, including prices and time constraints for the
individual tasks, as well as a discount or a premium for acceptance of the whole bid. Com-
bination bids (bids that include multiple tasks) are interpreted as an exclusive-OR, so when
multiple combination bids are submitted by the same supplier agent, only one of them can
be accepted.

The Customer initiates the process by starting a market Session and issuing a RFQ. Once
the Customer agent receives bids, it must evaluate them based on cost, task coverage, and
time constraints, and select the optimal set of bids (or parts thereof) which can satisfy its
goals. The resulting task assignment forms the basis of an initial schedule for the execution of
the tasks. The Customer’s goals are time-sensitive, the negotiation process requires Customer
and Suppliers to agree on the times for execution of tasks, and time factors can affect the
cost of execution.

The timeline in Figure 6 shows an abstract view of the progress of a single negotiation.
At the beginning of the process, the Customer agent must allocate time to deliberation for
its own planning, for supplier bid preparation, and for its own bid evaluation. In general, it is
expected that bid prices will be lower if suppliers have more time to prepare bids, and more
time and schedule flexibility in the execution phase. On the other hand, the Customer’s
ability to find a good set of bids is dependent on the time allocated to bid evaluation. These
time intervals can be overlapped to some extent, but doing so creates opportunities for
strategic manipulation of the Customer by the Suppliers, as we discussed earlier.

Plan completion
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Bid Award
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execution

Start of
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Figure 6: Agent Interaction Timeline

After a set of bids is selected, Suppliers are notified of their commitments, and the
Customer agent invokes its Execution Manager to oversee completion of the plan. Plan
maintenance behaviors can include monitoring supplier performance, re-negotiating existing
commitments, re-bidding portions of the plan, re-planning for subgoals that are in jeopardy,
and abandoning the goal.

4 Components and Activities of the Customer Agent

We now focus on the structure and responsibilities of a Customer agent in the MAGNET
environment. The basic operations are planning, bidding, and plan execution.



4.1 Planner

The Planner’s task is to turn high-level goals into executable plans, represented as task
networks. A task network consists of a set of task descriptions of nonzero length, the temporal
constraints among them, and possibly nonzero delays between tasks, to cover communication
and transportation delays. An example task network is shown in Figure 7. The operations
in the task network do not need to be linearized with respect to time, since operations can
be executed in parallel by multiple agents. The task network is passed to the Bid Manager.

Figure 7: Example task network

4.2 Bid Manager

The Bid Manager is responsible for ensuring that resources are assigned to each of the tasks
of a plan, that the assignments taken together form a feasible schedule, and that the cost
and risk of executing the plan is minimized. This cost must also be less than the value of
the goal at the time the goal is reached. When the Bid Manager is invoked, some tasks
in the plan may already be assigned. This can occur because the Execution Manager may
use the Bid Manager to repair a partially-completed plan in which previously determined
assignments have failed, or because the agent will perform some of the tasks itself.

The Bid Manager must construct and issue a RFQ, evaluate bids, and accept bids in
order to carry out its responsibilities.

4.2.1 Construct and Issue Request For Quotes

The RFQ contains a subset S of the tasks in the plan P, with their precedence relations.
As pointed out earlier, there might be elements of P that are not included in the RFQ. For
each task s € § in the RFQ the Bid Manager must specify:

e a time window, consisting of an earliest start time S.t.s(s) and a latest finish time
S.ty(s), and

e a set of precedence relationships S.Pred(s) = {s' € §|s' < s}, the set of other tasks
s’ € § whose completion must precede the start of s.

There is no requirement that the bidding be driven through a single RFQ, and there is no
requirement that all precedence relationships be specified in the RFQ. The only requirement
is that all specified precedence relationships be among tasks in a single RFQ.

10



We assume the agent has general knowledge of normal durations of tasks. One of the
roles of the MAGNET market infrastructure is to gather and publish this information. In
order to minimize bid prices while minimizing the overall duration of the plan, the Customer
agent schedules tasks ahead of time using expected durations, computing early start and
late finish times using the Critical Path (CPM) algorithm [20)].

The Critical Path algorithm walks the directed graph of tasks and precedence constraints,
forward from time ¢, to compute the earliest start s.t.; and finish s.t,; times for each task s,
and then backward from time %40, to compute the latest finish s.t;; and start s.t;; times for
each task. The minimum duration of the entire plan, defined as maz(s.ter) —to, is called the
makespan of the plan. The difference between 74,4 and the latest early finish time is called
the total slack of the plan. If ¢,y is set equal to t, + makespan, then the total slack is 0, and
all tasks for which s.t,; = s.ty are called critical tasks. Paths in the graph through critical
tasks are called critical paths.

The tradeoff between minimizing plan duration and attracting usable bids from suppliers
affects how slack should be set. Our method based on CPM is appropriate if adequate
approximations of task durations are known, because it will reduce the likelihood of bids
being rejected for failure to mesh with the overall schedule, and it will reduce the average
bid prices to the extent that it reduces speculative resource commitments on the part of
suppliers.

In Figure 8 the medium-gray bars show the expected durations of the tasks shown in
Figure 7. The overall slack in the schedule is 5 units for a 35 unit makespan, or about
14%. We can reduce the task durations used to generate the time windows in the RFQ
(lighter bars), leading to larger time windows and presumably greater flexibility for suppliers.
This can work if the shortened durations used to generate this schedule have a reasonable
statistical likelihood of occurring among the received bids. In this example, the lighter bars
show use of durations that are 1 standard deviation below the expected values, while the
black bars show an alternative formulation in which the total expected slack is apportioned
among the tasks on the critical path to produce an RFQ that allows no overlap among
adjacent tasks. The former is likely to produce more bids, and potentially lower-cost bids,
because of the additional scheduling flexibility offered to suppliers. The latter will reduce
the effort the customer must expend to compose a feasible plan, assuming bids are received
to cover all the tasks.

The optimal setting of RFQ time windows would require detailed knowledge of factors
such as likely numbers of bidders and the likely constraint tightness on the resources needed
to carry out the tasks. Since the Customer agent cannot know this data precisely, we must
use approximations. The Market maintains statistics to support this, but there is clearly
more work to be done in this area.

4.2.2 Evaluate Bids

When bids are returned, the Bid Manager must assemble them into a minimum-cost feasible
schedule in order to determine which bids to accept.

For each bid, the Bid Manager has the option of selecting the entire bid and paying an
overall discounted price (or possibly a premium), or selecting a subset of the individual task

11
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Figure 8: Reducing task durations to increase time windows

bids from a combination bid. Timing information for a bid includes early start, late finish,
and duration for each task in the bid. Bids that cover multiple tasks are required to specify
prices for each of the individual tasks, as well as a (possibly discounted) price for the entire
set, of tasks. The semantics of a bid is that a supplier is willing to perform the task or
combination of tasks for the bid price, starting at any time in the time window specified in
the bid.

The complexity of the bid evaluation algorithm depends on the type of bids allowed
(single item, bundles, multi-attribute, etc). We allow agents to bid on combinations of
items, we do not assume superadditivity of bid prices (the bid price for a combination of
items is not necessarily higher or lower than the bid price for the individual items), and
we use exclusive OR bids (when multiple bids on combinations are submitted by the same
agent, only one of them can be accepted). In addition, bids can have multiple attributes and
include time windows. This makes bid evaluation much more complex than in traditional
auctions [25, 49, 34].

The time-dependent nature of the negotiation protocol requires that the search be com-
pleted within a fixed period of time. Boddy and Dean [2] have characterized this type of
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Inputs:
S: the set of tasks, with precedence relations, to be assigned
B: the set of bids, including both composite and component bids
Output:
Nypi: the node having a mapping N,y;.M of bids to tasks
with the best known evaluation
Process:
for each s € § /* pre-process bid-task mappings */
compute the set of bids Bs; C B such that Vb € B;,b includes s
compute s.p /* the mean price for s among Bs */
if s € S such that B, = () then
exit /* there is at least one task for which no bid was submitted */
Q) < priority queue of maximum length beam_width,
sorted by node evaluation N.v
Ny < empty node with Ng.M =0
for each s € S /* check for singletons */
if length(Bs) =1 then
No.M «+ No.M Un(s, first(Bs))

/* the function m(s,b) creates a mapping of bid b to task s */

Ny.v < evaluate node(Ny) /* see narrative in this section */
Nopt < Ny /* initialize the result */
insert(Q, Ny) /* insert the first node into the queue */
T < Ty /* set the initial annealing temperature */
R < current_time
Z + 0 /* initialize the improvement counter */
while (R < time_limit) A (Z < patience) do
N  selectnode(Q,T) /* see Figure 10 */
B + select_bid(N, B) /* see Section 5.1.3 */
N' « expand node(N, B) /* see Figure 11 */
N'.v « evaluate node(N') /* see narrative in this section */
insert(Q, N')
if N'.v < Ngpt.v then
Nopt «~ N'
Z <+ 0
else
Z <+ Z+1
T <+ T(1—¢) /* the value € is the annealing rate */
return Ny,

Figure 9: The Simulated Annealing algorithm used to evaluate bids.
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search as an anytime search. If an agent is not able to process the bids fast enough, it might
miss good deals and spend all its time processing bids instead of awarding contracts. A hos-
tile agent could submit a huge number of bids to prevent another agent from accomplishing
its task, although the Market Session can be configured to limit this.

A high level algorithm for our bid evaluation process is depicted in Figure 9. This is a
simulated-annealing framework [29] with a finite queue (maximum length is beam_width). A
number of complications are omitted, such as the fact that expand node (see Figure 11) may
fail to produce a node. This can happen, for example, because the selected bid has already
been tried against the selected node, or because of an optional uniqueness test.

The simulated-annealing framework is a queue-based search, characterized by two ele-
ments, the annealing temperature 7" which is periodically reduced by a factor e, and the
stochastic node-selection procedure shown in Figure 10.

Procedure select node
Inputs:
Q: the current node queue, sorted so that Qn.v < Qp41-v
/* Qn.v is the evaluation of the n'* node in Q */
T: the current annealing temperature 0 <7 <1
Output:
Npert: the selected node
Process:
r < random(0, 1) /* a random number uniformly distributed between 0 and 1 */
R+ Qo.v —TIn(l — 7)(Qiast-v — Qo-v)
/* R is called the “target evaluation” */
/* Qo and Qqust are the first and last nodes in the queue, respectively */
n+0
while Qpt1.v < R do
/* find the last node whose evaluation is less than or equal to the target */
n<n+l
return Q,

Figure 10: The node-selection algorithm.

Bid selection may be done by a variety of means. We describe several methods in Sec-
tion 5.1.3. The selector is a plug-in component that can be configured in a number of ways.
The simplest selector simply makes a random choice among bids that are not part of the
current mapping. Others may focus on improving coverage, feasibility, or cost. In the next
section we report on some experimental results using different bid selectors.

Node expansion (see Figure 11) is done by adding mappings of the selected bid to all the
tasks covered by that bid, potentially discarding mappings of other bids that overlap the new
bid. This will fail if the selected bid has already been used to expand the selected node, or
because the bid was used to produce the current node or one of its parents within tabu-length
generations (see [29] for a further explanation of the use of tabu lists). Not shown is the
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Procedure expand node
Inputs:
N: the node to be expanded
B: the bid to be added to N.M, the bid-task mapping of N
Output:
N': a new node with a mapping that includes B, or null if the mapping fails
Process:
if (B € N.tabu) \/(B € Byn.m) V(B € N.tried) then
return null
/* B was added in recent parentage of N, or is already in mapping of N, */
/* or as been tried previously. */
N' + copy(N)
insert(N'.tabu, B) /* tabu is a limited-length queue */
insert(N'.tried, B) /* tried is a set */
S ' SgNSni.m /* S is the set of tasks in both B and N'.M */
B' <+ b e By o such that S, C S’
/* B' is the set of bids in N'.M whose tasks overlap the tasks in B */
Vb€ B',Vs € Sy, N'.M + N'.M —n(s,b) /* remove mappings for B' */
Vs € S, N'.M < N'.M +n(s,B) /* add the mappings for B */
return N’

Figure 11: The node-expansion algorithm.

fact that expansion can also fail if an attempt is made to unmap a singleton bid (a bid that
provides the only possible mapping for some task).

Node evaluation produces a value N.v for node N which is a weighted sum of the following
four factors:

e coverage: are all the subtasks covered? a bid that covers some not yet covered subtasks
should be preferred over a bid that covers subtasks already covered.

o feasibility: is the current partial solution feasible? If the Critical Path algorithm finds
any negative slack, the current partial solution is not feasible, since it violates some
time constraint.

e cost: what is the total cost?

e risk: how risky is the solution? A low price bid might have a greater risk because the
supplier has a poor reputation as reported by the Market’s Better Business Bureau, or
because its timing parameters may not provide sufficient slack to recover from failure.
In general, risk factors include recovery cost, loss of value as the end date is delayed,
cost of plan failure, and other factors.

When negotiation involves a large set of tasks with a rich set of temporal constraints,
there is a tradeoff to be considered between guaranteeing that bids will compose feasibly (all
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temporal constraints satisfied), or giving more flexibility in an attempt to reduce costs and
potentially tighten up the schedule. If the latter approach is taken, the evaluation process
becomes even more challenging. We have developed a set of evaluation criteria that can be
traded off against each other, and the ability to add constraints (e.g. excluding a particular
vendor, or ensuring that another vendor be given enough business to satisfy a long-term
agreement).

An important component of bid evaluation is the determination of the expected schedule
risk. Schedule risk is associated, among other things, with constraint-tightness, which is
determined according to the slack available along each partial path through the task network.

Intuitively, the risk associated with constraint tightness is higher whenever accepting a
particular set of bids will increase the probability of missing the goal deadline, or of missing
the latest start time b.t;5(s) specified in the bid b € B, containing task s. This is similar
to the problem addressed by the notion of teztures in [12]. Our approach is to measure
constraint tightness by path, where a path is a sequence of tasks starting at the beginning of
the plan and extending toward the goal along successor relations. We use partial paths as
well as complete paths for this calculation, because tasks can be constrained both by their
precedence relationships and by the time windows specified in the bids. For example, in the
task network in Figure 7, there are 9 paths, all starting with s, as follows:

S1 S1 < S3 S1 <= 84
S1 < S92 S1 < 83 < S5 S1 = 84 < 85
S§1 <82 <85 81 <83<85<3S85 81 <84 <85 8¢

Along each path, we measure constraint tightness as the ratio of slack to expected dura-
tion, as in
i (Stast) = to — Lsepatn de(8)
EsEpath de(s)
where s, is the last task on path, d.(s) is the expected duration of task s, and ¢, is the

start time.
An more complete discussion of our approach to risk evaluation is contained in [6].

k(path) =

4.2.3 Accept Bids

After building the schedule, the Bid Manager sends bid acceptance messages to the vendors
of accepted bids, specifying which parts of which bids are accepted. This completes bidding
phase of the negotiation process.

4.3 Execution Manager

The Execution Manager is responsible for overseeing execution of the plan as contracted, and
making decisions on how to respond when events do not proceed as expected. It receives
the task assignments from the Bid Manager and, through the market, receives updates
on plan execution from contracted vendors. It maintains a time map with tasks, vendor
commitments, and temporal constraints among tasks. For each event, it must decide whether
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to respond, and if so, whether to respond directly to a particular vendor, whether to re-bid
a portion of the plan, or whether to re-plan and re-bid one or more subgoals of the plan.

The Bid Manager produces a set of task assignments, each of which includes one or more
tasks from the plan, along with the contract data for execution of that task. Contract data
include the task, the resources committed to carrying out that task, an agreed-upon price,
an agreed-upon time window and temporal constraints, and the decommitment penalties.

All the activities of the Execution Manager revolve around the maintenance of the time
map. The time map [10] can be thought of visually as a Gantt chart, decorated with contract
data and temporal constraints among tasks. For each task the time map records an early
start, a late finish time, the committed start time and duration, and the set of precedence
constraints.

As time passes and the execution of the plan proceeds, the Execution Manager works in
conjunction with the market session to drive the plan to completion. In general, the session
is responsible for releasing tasks to the suppliers when their prerequisites are satisfied, and
for assessing decommitment penalties when the parties fail to satisfy their commitments. In
the process, the session forwards to the Execution Manager notifications of task release and
task completion events. The Execution Manager is then responsible for making decisions
and taking appropriate action in response to those notifications.

The market session maintains a performance monitoring table, which is essentially a
stripped-down version of the time map maintained by the customer agent. It contains, for
each contracted task, the winning bidder, the early start and late finish times, the contracted
subset of successor tasks, and the decommitment penalty. The performance monitoring table
is maintained by updating the expected release time for each successor task whenever the
expected finish time of a task changes. When the slack value becomes critical (slack(s) = 0),
or infeasible (slack(s) < 0) the customer is notified to enable it to take appropriate action.

Each supplier agent is also notified by the market session of task releases, and of changes
to expected task release times for each task for which a bid has been awarded.

Following are the classes of events to which the Execution Manager must respond, and a
brief outline of the response options.

Nominal Completion. No action is required.

Early Completion. If a critical path is affected, and if the value of the plan could be
improved by changing the earliest start time for some task s, then the Execution
Manager could request the vendor of s whether the schedule can be moved up, and
for what cost. After evaluating the cost/benefit tradeoff, the Execution Manager will
request schedule changes accordingly.

Vendor Decommitment. When a supplier decommits, the Execution Manager has three
choices: (1) customer decommitment, (2) attempt to re-bid decommitted task(s), (3)
attempt to re-plan and re-bid unsatisfied subgoal(s). The choice that is expected to
maximize the profit is the one that will be made.

Missing Event. Completion events are considered missing if their failure to arrive triggers
violation of a temporal constraint. This is considered non-performance on the part of
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the vendor. The Execution Manager responds by notifying the market session of vendor
non-performance.

Late Completion. A late completion event is one that occurs later than promised but
does not violate temporal constraints. It is a configuration option whether to treat
this as a missing event. If not, the Execution Manager responds by re-evaluating the
critical path and notifying vendors of affected tasks of changed time windows. All such
time window changes will result in tighter windows.

Notice of Late Completion. If a vendor wishes to extend a deadline, it must initiate
a negotiation with the customer using a Notice of Late Completion, giving a new
expected completion time and an updated bid. The Execution Manager must then
choose whether to accept the updated bid, with the new time commitment, or whether
to treat this event as a customer decommitment.

5 Experimental Results on Bid Evaluation

Bid evaluation is a critical part of the Customer agent’s behavior, and it is clearly a costly
combinatorial problem. We have put considerable work into building a search engine that
performs well. It is important to characterize its performance because of the need to allocate
time to it in the context of the overall negotiation process. We report on a set of experiments
that give us confidence that effective bid evaluation can be performed in a reasonable time
frame.

The first experiment compares the performance of our simulated-annealing search engine
with a systematic search that is guaranteed to find all solutions. A solution is defined as
a mapping of bids to tasks in which all tasks are covered by bids, and a feasible schedule
can be composed, taking into account the precedence constraints in the plan and the time
limits and quoted task durations in the bids. This experiment is somewhat limited in scope
because of the obvious combinatorial limitations of the systematic search approach, but it
does show that the simulated-annealing approach produces good results and seldom fails to
find a solution if one exists.

The second experiment demonstrates the performance of the bid evaluation process using
a set of increasingly informed bid selectors, and a selector that combines random and focused
behaviors. It is clear from these results that the more focused selectors do not perform well on
their own; they are not sufficiently “exploratory” to support the stochastic search approach.
The “combined” selector is shown to perform well on relatively large problems.

5.1 Experimental Setup

The experimental setup includes three main components: a MAGNET Server as described in
Section 6, a Customer agent that generates plans, requests quotes, and evaluates bids, and a
simulated community of Supplier agents that generate and submit bids. The bid evaluation
process is instrumented to measure the rate of improvement for various search strategies.
Random variable seeds are controlled to ensure that different search strategies are presented
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with exactly the same problems. Two seeds are used: one controls problem generation (the
plan and the bids), and the second controls random number generation for the stochastic
search. This guarantees that all search methods are run against the same set of problems.

5.1.1 Customer Agent: Construct and Issue a Request for Quotes

For these experiments, plans are randomly-generated task networks, with a number of con-
trollable parameters, and the RFQs have a controllable amount of added slack to promote
feasibility. Plan variables include:

1. Number of tasks.

2. Mix of task types. Task types are characterized by average duration, duration vari-
ability, average price, and price variability. Both duration and price are normally
distributed, positive values.

3. Branch factor. This is the average number of precedence relationships per task. For
example, if a particular task has one predecessor and one successor, then the branch
factor for that task is 2.

Before issuing the RFQ, we compute the makespan for the entire plan, and expected
early start times s.t.; and late finish times s.t;; for each task in the plan, as specified in
Section 4.2. RFQ variables include:

1. Total slack. This is the ratio of the time allowed for plan completion to the expected
makespan of the plan.

2. Additional slack obtained by reducing task durations below their expected values. For
these experiments, we simply multiplied each expected duration by a factor of 0.8
and re-ran the CPM algorithm. The only justification for this number is that it was
the greatest reduction we found that did not cause most problems to have no feasible
solutions. Other, more sophisticated methods of adding additional slack are possible,
as outlined in Section 4.2.

5.1.2 Supplier Agent: Generate Bids

The supplier agent is a test agent that masquerades as an entire community of suppliers.
Each time a new RFQ is announced by the Market, the supplier attempts to generate some
number of bids.

Each bid represents an offer to execute some subset of the tasks specified in the RFQ. A
price for the whole set is specified, along with prices for each task in the set. The ratio of
the overall bid price to the sum of the individual task prices is referred to as the discount
or the premium of the combination. In addition, the early start time, late finish time, and
maximum duration are specified for each task. It is a requirement of the protocol that the
time parameters in a bid are within the time windows specified in the RFQ. Task durations
are normally distributed around the expected value used by the Customer, and the time
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windows are randomly set to be smaller than the time windows specified in the RFQ and
larger than the computed durations.

Bids are generated for random sets of contiguous tasks within the RFQ. Full details on
the bid generation process are given in [8]. Previous work [39] has shown that the size of
bids can have a significant impact on the difficulty of the search problem; intuitively, larger
bids are harder to compose together because there is a higher likelihood of overlap.

5.1.3 Customer Agent: Evaluate Bids

Once the bidding deadline is past, the Customer evaluates the set of bids in an attempt
to find a combination that provides coverage of all tasks, allows for a feasible schedule,
and minimizes a combination of cost and risk. Since bids are exclusive OR (when multiple
bids are submitted by the same agent, only one of them can be accepted) for each bid the
Customer has the option of selecting which parts of the bid (if any) to accept. Bids for
combinations might include a discount or a premium for accepting the whole bid.

The following bid-selection methods, used as the select_bid procedure in the algorithm
in Figure 9, have been implemented and tested. Note that the feasibility and cost improve-
ment methods have significant complexity costs associated with them, although this cost is
incurred only once per node the first time the selector visits the node.

e Random Bid, Random Bid Component: Choose a bid or a bid component at random,
and attempt to add it to the node. The ratio of bids to bid components is adjustable.
This method is fast (O(1)) and promotes general exploration of the search space.

e (Coverage Improvement: Choose a bid or bid component that covers a task that is not
mapped in the node. The probability of choosing a bid component is equal to the
coverage factor of the node. If a bid component is chosen, the coverage factor will
increase; if a bid is chosen, the probability of improving coverage is always P, > 0.5.
This method is also O(1) if the set of unmapped tasks and the set of bids per task is
stored.

o Feasibility Improvement: The mapping is scanned to find tasks that have negative slack
bid.t.s + duration, > bid.ty , are constrained by their bids rather than by predecessors
or successors, and could be moved in a direction that would relieve the negative slack.
They are sorted by their potential to reduce infeasibility, and saved. The untried bid
or bid component with the highest potential to reduce infeasibility is chosen. Note that
when a bid is chosen, there is no guarantee that it will not introduce other infeasibilities.
The complexity of this method is O(zy), where x is the number of tasks in the plan
and y is the number of tasks in the mapping that meet the above improvement criteria,
incurred once the first time a node is subjected to feasibility improvement, and O(z),
where z is the number of bids that could potentially be mapped to a task, the first
time a feasibility improvement is attempted for a particular task on a node.

e Cost Improvement: Choose the (untried) bid or bid component that is responsible for
the maximum positive deviation from the average price, and replace it with a lower-
priced bid that covers at least the task with the highest positive cost deviation. The
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first time this method is applied to a node, it has a complexity of O(zy + z), where z
is the number of bids mapped to a node, y is the number of components (tasks) in a
bid, and z is the number of potential bids per task.

These selectors can be composed together and used to generate focused improvement for
a given node. Available composite selectors include:

e FeasCouv: If the node is infeasible, use the feasibility improvement selector; otherwise
if it is not fully covered, use the coverage improvement selector; otherwise use the
random selector.

o (CostFeasCou: If the cost of the covered portion of the node is above average, attempt
to reduce its cost; otherwise use the FeasCov selector.

o Combined: Run the Random selector as long as it produces improvement, then switch
to Feasibility Improvement until that fails to produce improvement, then switch back to
Random, then to Coverage Improvement, then back to Random, then to CostFeasCov,
and finally back to Random.

5.2 Comparing Systematic and Stochastic Search

Our first experimental goal was to determine how well the simulated annealing search per-
formed with respect to a known optimal reference. For that purpose, we constructed an
alternate search engine that generates all feasible combinations of bids and bid components
in order to be guaranteed of finding optimal solutions. Because of bid overlap and feasibility
issues, no more efficient method is known that will provide such a guarantee. Its structure
is similar to the method reported in [39] with the addition of a feasibility test.

The test problem for this experiment is necessarily small, because of the long run times
of the systematic search engine. We generated 20 random problems with 10 tasks and 11
bids each. The “branch factor” that controls the density of precedence relationships was
2.4, and the average bid size was 2.72 tasks. Overall schedule slack was set to 1.4, and task
durations were set to 70% of expected values to open up the time windows in the RFQ.

The summary data for this experiment is in the table below. Of the 20 problems, solutions
(feasible mappings that covered all tasks) were found for 9 problems. The others either lacked
coverage (in 7 of the 20 runs there was at least one task for which no bid was submitted)
or no feasible combinations existed (4 cases). The node counts and the solution evaluations
are the mean for the cases where solutions were found. The data for the Stochastic 1 and
Stochastic 3 trials are normalized to account for the missing solution.

Systematic Stochastic 1 Stochastic 2 Stochastic 3
Nodes Generated 115480 2171 2205 1323
Covered & Feasible 46916 435 448 219
Best Solution Eval. 7960 8073 7998 8073
Solutions Found 9 8 9 8
Run Time (min.) 242 9.8 9.4 6.2
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The 4 trials used identical plans and bid sets. The search engine parameters were set up
as follows:

Systematic: Systematic search with problem setup as described above.

Stochastic 1: Simulated-annealing search, initial temperature 0.35, reduced by 0.95 every
100 iterations, patience factor (number of iterations without improvement) 100. The
stopping criterion for the stochastic search is either timeout (no timeout was used in
this trial) or failure to improve for a number of iterations equal to the patience factor.
The bid selector is the Combined selector, as described in the previous section.

Stochastic 2: Setup as in Stochastic 1, except that a uniqueness test is added to prevent
identical nodes from being evaluated and added to the search queue.

Stochastic 3: Setup as in Stochastic 2, except that the patience factor was reduced to 50.

The conclusion is that the simulated-annealing search engine performs well, with solution
quality within 2% of the systematic search at radically reduced run times. It is also clear
that it needs to be tuned to avoid missing solutions.

5.3 Stochastic Search: Comparing Bid Selectors

In this study, we are attempting to learn whether the simulated-annealing search tech-
nique can be effectively applied to large bid-evaluation problems. The results show that
the Combined selector outperforms all the others and can be used effectively on moderate-
sized problems, and that the more focused methods alone are ineffective, even if used with
high annealing temperatures. It seems that excess focus on improvement leads to faster
improvement early on, at the cost of a lower likelihood of finding a solution that satisfies all
constraints.

In order to probe a range of problem complexity factors, we ran the Random, Cov,
FeasCov, and Combined selectors against two different problem types of the same size but
different levels of complexity. Both types contain 50 tasks and 100 bidders, and each problem
set is generated with the same random number sequence. In the small-bid problem, the
average bid size (number of tasks included in a discounted bid) is 5, and in the large-bid
problem, the average bid size is 15. Earlier work [39] has shown that this difference has a
significant impact on the search difficulty due to the greater probability of overlap among
bids.

Figure 12 shows the improvement curves for the four bid selectors on the small-bid prob-
lem, and Figure 13 shows improvement curves for the same selectors on the large-bid problem.
Error bars show - where o is the standard deviation across runs, and n is the number of
runs. The Combined selector clearly gives the best overall performance, both in terms of
solution quality and in terms of consistency.

The following table shows the number of acceptable assignments found for the small-bid
and large-bid problems. The table shows how effective the four selectors were at finding
solutions that satisfied all constraints. The actual number of such solutions is not known.
Again, we see the advantage of the Combined selector, which uses random selection to
generate sets of candidates, and then switches to more focused selectors to clean up.
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Figure 12: Improvement curves for the small-bid problem. Averages are shown for 20 runs.
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Figure 13: Improvement curves for the large-bid problem. Averages are shown for 20 runs.

Selector small-bid problem large-bid problem

Random 2 2
Cov 3 0
FeasCov 2 0
Combined 6 1

In Figure 14, we explore the effect of raising the annealing temperature on the perfor-
mance of the selectors. The experiments described earlier are all run with an initial annealing
temperature of 0.3. We see that raising the annealing temperature does not improve perfor-
mance, and the focused selectors do not perform any better at higher temperatures.
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Figure 14: Improvement curves for two different annealing temperatures.

6 Implementation

Figure 15 is a UML class diagram that shows the principal interfaces of a MAGNET server.
In addition to the basic Exchange, Market, Session structure introduced in section 3.1, we
add the additional notion of a Participant, which acts as a server-side proxy for an individual
agent. A Participant will have a ParticipantRole instance for each Session it has joined: a
Customer for those Sessions in which it is playing the Customer role, and a Supplier for
those Sessions in which it is playing the Supplier role. The ParticipantRole objects provide
the necessary role-specific interfaces to the Sessions, filtering content and enforcing protocol
rules. The principal Agent-visible content is contained in a SessionContext object, which is
accessible through the getSessionContert method in the ParticipantRole. The MarketHome,
SessionHome, and ParticipantHome interfaces are factory/finders for the Markets, Sessions,
and Participants respectively.

The server is highly scalable. Markets and their Sessions can be distributed separately
from an Exchange, and it is possible for a Market to be registered with multiple Exchanges,
although this feature has not been implemented. Each Exchange and each Market is built
on an underlying database, giving it long-term persistence and transactional robustness.

When an agent wishes to submit an RFQ to a Market, the sequence of events is approx-
imately as follows:

1. If the agent has not yet registered with the Exchange, it must do that in order to
obtain a security context, which is required for all other operations.

2. The agent logs in to the Exchange, obtaining a reference to its Participant interface
and its security context.

3. The agent chooses a Market in which to run its negotiation Session.
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Figure 15: Design of the MAGNET Server

. The agent requests a new Session from the Market. This gives the agent a Customer
role interface with which to interact with the Session. This also connects the agent
with the protocol event stream (normally via a callback interface) produced by the role
object.

. The agent composes its RFQ and submits it to the Session via its role interface.

. The Market inspects the new RFQ and forwards it to Suppliers who have registered
an interest in its contents.

. Suppliers who wish to participate in the negotiation join the new Session in order to
obtain a Supplier role interface. They may then retrieve the SessionContext for that
session, which will contain the RFQ.

. Negotiation proceeds between the Customer and Supplier agents, each submitting pro-
tocol messages and receiving notifications through their respective role interfaces.

The current MAGNET server is implemented in Java as described above, with persistent

state that allows shutdown and recovery without loss of data. In addition, an agent frame-
work has been constructed that provides a local interface to a remote server, including a
callback mechanism for receiving protocol events. Simple agents have been constructed on
this framework, including the test agents described in this paper, as well as a user-interface
customer agent that allows a user to interact directly with the server, and through the server
with other agents. We are currently working on integrating the user interface with the search
engine described here and automated protocol processing to support a mixed-initiative in-
teraction model.
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7 Related Work

Markets play an essential role in the economy [1], and market-based architectures are a
popular choice for multiple agents (see, for instance, [5, 30, 42, 47] and our own MAGMA
architecture [44]). Most market architectures limit the interactions of agents to manual
negotiations, direct agent-to-agent negotiation [35, 11], or some form of auction [49].

Auctions are becoming the predominant mechanism for agent-mediated electronic com-
merce [16]. AuctionBot [49] and eMEDIATOR [34] are among the most well known examples
of multi-agent auction systems. They use economics principles to model the interactions of
multiple agents [47]. Auctions are not the most appropriate mechanism for the business-to-
business transactions we are interested in, where convenience of scheduling, reputation, and
maintaining long term business relations are often more important than cost.

Existing architectures for multi-agent virtual markets typically rely on the agents them-
selves to manage the details of the interaction between them, rather than providing explicit
facilities and infrastructure for managing multiple negotiation protocols. In our work, agents
interact with each other through a market. The independent market infrastructure provides
a common vocabulary, collects statistical information that helps agents estimate costs, sched-
ules, and risks, and acts as a trusted intermediary during the negotiation process. We believe
there are many advantages to be gained by having a market-based intermediary for agent
negotiations, as explained earlier in the paper.

Rosenschein and Zlotkin [32] showed how the behavior of the agents can be influenced
by the set of rules that the system designers choose for the agents’ environment. In their
study the agents are homogeneous and there are no side payments. In other words, the goal
is to share the work, not to pay for work. They also assume that each agent has sufficient
resources to handle all the tasks, while we assume the contrary.

Sandholm’s agents [36, 35] redistribute work among themselves by a contracting mecha-
nism. Sandholm considers agreements involving explicit payments, but he also assumes that
the agents are homogeneous — they have equivalent capabilities, and any agent can handle
any task. Our agents are heterogeneous, and decide what tasks to handle.

Matchmaking, the process of making connections among agents that request services
and agents that provide services, will be an important issue in a large community of MAG-
NET agents. The process is usually done using one or more intermediaries, called middle-
agents [40]. Kuokka and Harada [22] describe an agent application whereby potential pro-
ducers and consumers of information send KQML messages describing their capabilities and
needs to an intermediary called a matchmaker. Sycara et al [41] present a language used by
agents to describe their capabilities and algorithms to use it for matching agents over the
Web. Our system casts the Market in the role of matchmaker.

The determination of winners of combinatorial auctions [25] is hard. Dynamic program-
ming [33] works well for small sets of bids, but does not scale and imposes significant restric-
tions on the bids. Sandholm [34] relaxes some of the restrictions and presents an algorithm
for optimal selection of combinatorial bids, but his bids include only cost.

Our setting is more general. MAGNET agents have the ensure the scheduling feasibility
of the bids they accept. They also have to assess their own preferences and risk tolerance.
In our bid evaluation algorithm the Customer agent evaluates the different choices using a
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measure of risk in addition to just cost.

We have chosen to use a simulated annealing framework for bid evaluation. Since the
introduction of iterative sampling [23], a strategy that randomly explores different paths in
a search tree, there have been numerous attempts to improve search performance by using
randomization. Randomization has been shown to be useful in reducing the unpredictability
in the running time of complete search algorithms [15].

A variety of methods that combine randomization with heuristics have been proposed,
such as Least Discrepancy Search [18], heuristic-biased stochastic sampling [4], and stochas-
tic procedures for generating feasible schedules [27], just to name a few. The algorithm we
presented is based on simulated annealing, and as such combines the advantages of heuristi-
cally guided search with some random search. Our experimental results show that additional
benefit can be obtained by using domain-specific heuristics when deciding how to expand a
node. This combined with the basic simulated annealing framework produces good results
in a short time frame.

Our goal is to automate the scheduling/execution cycle of a single autonomous agent
that needs the services of other agents to accomplish its task. Pollack’s DIPART system [28]
and the Multiagent Planning architecture (MPA) [48] assume multiple agents that operate
independently but all work towards the achievement of a global goal. Our agents are trying
to achieve their own goal and to maximize their profit; there is no global goal.

Various classes of scheduling problems have been considered in the Operations Research
literature [20, 24, 13]. Many interesting scheduling problems are computationally intractable,
and numerous heuristic approaches have been described [17, 31]. Much of the recent work
in scheduling has focused on the problem of maintaining or updating an existing schedule in
the face of changes [50, 38]. All of these systems are concerned with determining schedules
for individual resources; the assumption is that there is some set of tasks to be done, and
some set of resources available to do those tasks, and the problem is to find an optimal or
near-optimal assignment of tasks to resources over time. MAGNET Customer agents are
not resource-limited; these scheduling approaches will work for the supplier agents, but they
are not well suited for the problems that the Customer agent must solve.

The notion of using an explicit time-map to support reasoning about events, actions,
states, and causality over time was first described in [10] and further elaborated in [3].
Schwalb, Kask, and Dechter [37] describe a formal system for reasoning about time and
events, including another form of a time map called a Conditional Temporal Network.

The problem faced by the Customer agent in our design is that of monitoring a plan and
its schedule, and finding ways to repair it when it is broken. Muscettola [26] and Tate et
al [43] advocate combining the planning and scheduling problems to deal with this issue.
Muscettola’s approach is based on maintaining state information over time for a relatively
fixed set of resources, and so it is not directly applicable to our work.

8 Conclusions and Future Work

In this paper we have brought together ideas from recent work in market architectures for
electronic commerce, and work in multi-agent contracting protocols. We have presented
a generalized market architecture that provides support for a variety of transaction types,
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from simple buying and selling to complex multi-agent contract negotiations. We have
also presented a protocol that takes advantage of the services of the market. Our market
architecture is organized around three basic components: the exchange, the market, and
the session. We have shown how the existence of an appropriate market infrastructure
can add value to a multi-agent contracting protocol by controlling fraud and discouraging
counterspeculation.

Bid Evaluation is an important, difficult, combinatorial problem. We have shown that a
flexible, tunable Simulated Annealing search framework can be used to solve this problem.
We have begun to characterize the temporal performance of our search engine, in order to
support the time-allocation decisions an agent must make during the bidding cycle.

We have begun implementing software-agents to interact within MAGNET, and intend to
benchmark their performance against human participants as well as each other. We believe
that the most productive, realistic approach to agent design in a commercial contracting en-
vironment will be a mixed-initiative approach, in which the agent’s responsibility is to act as
a decision-support tool and intermediary for a human decision maker. We are also exploring
how modifying the parameters of the market and session protocols can effect the performance
of the system. Eventually, we would like to open our testbed to outside participation over
the Internet.
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