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Abstract

We are interested in the problem of multi-agent contracting, in which customers
must solicit the resources and capabilities of other, self-interested agents in order to
accomplish their goals. Goals may involve the execution of multi-step plans, in which
different steps are contracted out to different suppliers. We have focused on decision
criteria for composing requests for quotations, managing the bidding process, evaluat-
ing bids, and monitoring plan execution. We have developed a testbed that allows us to
study these decision behaviors. It can generate sets of plans with known statistical at-
tributes, formulate and submit requests for quotations, generate bids with well-defined
statistics, and evaluate those bids according to a number of criteria. Each of these
processes is supported by an abstract interface and a series of pluggable modules with
a large number of configuration parameters. Data collection and analysis tools round
out the package. We will demonstrate how to take statistics from a real application
domain, apply them to the simulation, and test a variety of bid-management and bid-
evaluation procedures against them.

1 Introduction

Over the past decade, the complexity of logistics involved in manufacturing and other busi-
ness activities has been increasing nearly exponentially. Many processes are being outsourced
to outside contractors, making supply chains longer and more convoluted. The increased
complexity is often compounded by accelerated production schedules which demand tight
integration of all processes. Thus, the field is ripe for the introduction of systems that
automate logistics planning among multiple entities such as manufacturers, part suppliers,
shippers, and specialized subcontractors.

We are interested in learning how a community of heterogeneous, self-interested agents,
can operate to make commitments and carry out plans that require multiple tasks and
coordination among multiple agents. We assume that this community of agents contains
some agents who have goals that they themselves cannot satisfy, either because they lack
the abilities, or the resources to carry out at least some of the operations in their plans.



There are also other agents in the community who have resources to offer, and who are
willing to make those resources available to other agents in a way that maximizes their value
to the agents that control them.

To help automate logistics planning, we have proposed a generalized market architecture
as an approach to multi-agent contract negotiation, and we have implemented prototypes of
both the market architecture and the agents. We call this system MAGNET (Multi AGent
NEgotiation Testbed). MAGNET provides support for a variety of types of transactions,
from simple buying and selling of goods and services to complex multi-agent contract nego-
tiations. In the latter case, MAGNET is designed to negotiate contracts based on temporal
and precedence constraints, as well as price.

Experimental research in this area requires a simulation environment that is sufficiently
rich to be easily adapted to a variety of experimental purposes, while being sufficiently
straightforward to support clear conclusions. MAGNET is not a complete simulation of
a working market environment. Instead, it is focused on the process of determining the
form and content of Requests for Quotations (RFQs), on the management of the bidding
process, and on the evaluation of bids submitted by potential suppliers. It has the ability to
generate plans with well-defined statistics, or to accept hand-built plans or plans extracted
from real-world data. Bids are generated by a community of abstract suppliers, again with
well-defined statistics. All the major decision processes are driven by plug-in components,
with documented APIs and a great wealth of configuration parameters. Data collection
capabilities are well-suited to statistical studies.

This paper is organized as follows: Section 2 describes the environment of MAGNET
agents, and the basic activities and roles of agents in that environment. Section 3 describes
our experimental implementation of a customer agent that we are using to explore agent
decision processes. Section 4 describes the implementation of abstract supplier agents. Sec-
tion 5 gives some examples of the types of studies supported by this framework. Section
6 describes related work, and Section 7 concludes and outlines our future plans and open
problems.

2 Agents and their Environment

MAGNET gives an agent the ability to use market mechanisms (auctions, catalogs, timeta-
bles, etc.) to discover and commit resources needed to achieve its goals. We assume that
agents are heterogeneous and self-interested, and may be acting on behalf of different in-
dividuals or commercial entities who have different goals and different notions of utility.
Although we use auction mechanisms, the problem MAGNET must solve is a combination
of a scheduling problem and a combinatorial auction problem.

Agents may fulfill one or both of two roles with respect to the MAGNET architecture,
as shown in Figure 1. Customer agents pursue their goals by formulating and presenting
Requests for Quotations (RFQs) to Supplier agents through a market infrastructure [5].
The RFQ specifies a task network that includes task descriptions, a precedence network,
and possibly other time constraints. Customer agents attempt to satisfy their goals for the
least net cost, where cost factors can include not only bid prices, but also goal completion
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Figure 1: The MAGNET architecture

time and risk factors. More precisely, these agents are attempting to maximize the utility
function of some user, as discussed in detail in [3].

Supplier agents attempt to maximize the value of the resources under their control by
submitting bids in response to those RFQs, specifying what tasks they are able to under-
take, when they are available to perform those tasks, and at what price. Bids may specify
combinations of tasks with a single price, and may also include prices on individual tasks.
Prices for multiple tasks can include a discount or a premium. Alternatively, suppliers may
submit multiple exclusive OR bids [14] to specify different combinations of tasks, with prices
and time constraints.

As an example, let’s imagine we need to construct a garage, which must be completed
before the first snowfall. Figure 2 shows a plan to complete the garage. Our plan is com-
plicated by a couple of factors. The special doors must be ordered ahead, and will arrive
one week after we order them. They also cannot be left outdoors, and so must be installed
immediately when they arrive. Also, there is a housing boom in our area, and carpenters

are hard to find.
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Figure 2: Plan for building a garage

3 A Customer Agent

We now focus on the structure and responsibilities of a Customer agent in the MAGNET
environment. As indicated in Figure 1, the basic operations are planning, bidding, and plan



execution. We have implemented a simple Planner that generates random plans with well-
defined statistics, and we have a Bid Manager with a fairly rich implementation of tools for
composing RFQs and selecting bids. The Execution Manager is not yet implemented.

3.1 Design Principles

In order to maximize the usefulness of the MAGNET testbed as a research tool, we have
adopted several design principles that make it easy to plug together and reconfigure, and
that enhance its transparency. Examples are:

1. The system is written in Java, and has been tested on multiple platforms. This makes
it easy to use on whatever you happen to be sitting in front of.

2. All the major behavioral modules are written as abstract classes, with (at least poten-
tially) multiple implementations that can be “plugged in” to implement a particular
behavioral variant.

3. Virtually every feature of the system is selectable and configurable from a configuration
file, and many of them can be viewed and changed from a user interface. This includes
the choice of behavioral plug-ins.

4. The interface between the agents and the Market is also abstracted. This allows con-
nection with multiple types of markets (such as one that looks up price and availability
info from a catalog or timetable) and through multiple communications protocols.

5. Much of the activity of the agent is agenda-driven, and development and maintenance
of the agenda is an important activity in its own right. Agenda items can select plug-
ins, update configuration details, evaluate options, interact with the market or other
agents, update the agenda, and record results.

6. A pervasive logging and data collection system allows for both detailed examination
of behavior and the generation of experimental data. The level of logging is a config-
uration parameter, and the various logging levels have well-defined meanings.

3.2 Planner

The Planner’s task is to turn high-level goals into executable plans, represented as task net-
works. A task network consists of a set of task descriptions, the temporal constraints among
them, and possibly nonzero delays between tasks, to cover communication and transporta-
tion delays. The operations in the task network do not need to be linearized with respect to
time, since operations can be executed in parallel by multiple agents.

The planner in the prototype generates tasks by selecting randomly from a library of
task types, and then creates random precedence relations among them. It can also accept
pre-defined plans. We expect that in many domains, plans will be chosen from a library or
defined by a human user rather than being generated by a general-purpose planner.

Among a community of agents, the definitions of tasks must be shared. That is why we
show the communication of the Domain Model from the Market to the Agents in Figure 1.
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This model includes not only the task definitions, but statistics (presumably collected by the
market) about each task type. These statistics include expected duration and variability,
expected price and variability, and resource availability data. In our garage example, we
would find out from the market that carpentry resources are thin, and that both outdoor
masonry and carpentry work are variable (due to weather), and we would find out from the
manufacturer of the door about the fact that we can’t leave the door outdoors. This data is
then included in the plan received by the Bid Manager.

The plan generated by the Planner is a central data structure throughout a MAGNET
system. The Bid Manager uses it to generate RFQs and to evaluate and record resource
commitments and timing data, and the Execution Manager uses it to monitor and repair
the ongoing execution of the plan. Part or all of the plan is included in a RFQ. In fact, each
of the other components can be characterized by how it uses, decorates, extends, or updates
the plan.

3.3 Bid Manager

The Bid Manager is responsible for ensuring that resources are assigned to each of the tasks
of a plan, that the assignments taken together form a feasible schedule, and that the cost
and risk of executing the plan is minimized. This cost must also be less than the value of
the goal at the time the goal is reached.

When the Bid Manager is invoked, some tasks in the plan may already be assigned. This
can occur because the Execution Manager may use the Bid Manager to repair a partially-
completed plan in which previously determined assignments have failed, because the agent
will perform some of the tasks itself, or because bidding is being carried out in multiple
stages. For example, I may be able to wire my new garage myself, and so I might not
contract for that task.

The Bid Manager must construct and issue a RFQ, evaluate bids, and accept bids in
order to carry out its responsibilities. The high-level structure of the Bid Manager is shown
in Figure 3.
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Figure 3: The Bid Manager



3.3.1 Process Planner

The Process Planner creates the high-level agenda for the Bid Manager. A primary respon-
sibility is to allocate time to negotiation and plan execution. The current version is really
just a placeholder that reads an agenda from a configuration file or a user interface. In
the future it will be responsible for deciding which markets to use, when to consult local
catalog and timetable databases, and how to break up the plan accordingly. If the plan has
alternative branches, it may also decide which alternatives to pursue and in what order. For
example, it may decide to solicit bids on a high-value but risky approach, and if that fails to
fall back on a lower-value but safer alternative. It could also decide to defer taking bids on
later tasks until earlier tasks were underway or even completed. This is standard practice
in many industries. In our garage example, we might decide to wait until the carpentry was
underway before ordering the doors.

3.3.2 Negotiation Manager

The Negotiation Manager handles the actual bidding process. Its overall job is to decorate
the plan with a feasible, minimum-cost set of resource assignments. It uses the Bid Evaluator
to decide among alternative bid combinations.

The Negotiation Manager is further broken down into a set of components, as shown
in Figure 4. The Bid Scheduler assembles a schedule for the bidding process, possibly
subdividing the time allocated by the Process Planner, and adds items to the agenda to
drive the Auction Manager. Dividing the bidding process into multiple phases can be an
important strategy to reduce the level of uncertainty in the plan. For example, we might not
want to take bids on the roofing for our garage until we have firm dates for the carpentry.
We’ll discuss an example of multi-phase bidding in Section 5.

Several different versions of the Bid Scheduler have been implemented to experiment with
different strategies. Ultimately it will be up to the Process Planner to decide which strategy
(or strategies) to use, and configure the Bid Scheduler accordingly through its agenda entries.
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Figure 4: The Negotiation Manager

Before bids can be solicited in a market, an RFQ must be composed. The RFQ is a
structure that contains some portion of the plan data (tasks and precedence relations) as
determined by the Bid Scheduler, along with a set of scheduling constraints. The primary



role of the RFQ Builder is to determine those scheduling constraints. Information comes
from several sources:

e From the Planner, we have a set of tasks and their precedence constraints. This
information is contained in the plan.

e From the Market, we have statistical information about duration and variability for
the different task types. We also have information about resource availability and the
number of vendors who are likely to bid on tasks of this type.

e From the Process Planner, we have the overall schedule for the execution of the plan.

e From the Bid Scheduler, we know which tasks are to be advertised for bid in the current
RFQ.

The primary goal of the RFQ Builder is to produce an RFQ that will solicit the most
advantageous set of bids possible. The bid evaluator cannot evaluate bids that are not
received, nor can it make successful combinations of bids that are in conflict with one another
over precedence constraints. The approach we take is to find a balance between giving
maximum flexibility to suppliers, ensuring that the resulting bids will combine feasibly, and
ensuring that the job will be completed by the deadline. We do this by setting early-start
and late-finish times in the RF(Q for each task.

Figure 5 shows two alternative ways to schedule and compose the RFQs for our garage
project. In version A, we believe we have a full 5 weeks to finish our garage, and the only
scarce resource is carpentry. Therefore, we allow 3 weeks for the one-week carpentry job,
and we are guaranteed that if we receive bids on all tasks, they can be combined feasibly.
In version B, we are interested in finishing the garage as soon as possible. Therefore, we bid
out the masonry and carpentry first in RFQ B1, and then after we get a bid that finishes
the carpentry by the end of week 3, we then bid out the remainder of the tasks in RFQ B2.

The Auction Manager interacts with the Market and/or other agents to solicit bids.
Different versions of the Auction Manager can be implemented to interact with different
market environments. We have a version that uses a MAGNET market to solicit bids, and
one that uses a set of in-process simulated Supplier agents directly to generate bids for testing
purposes. The latter version is useful for doing large statistical studies where throughput is
a critical factor.

3.3.3 Bid Evaluator

A Bid Evaluator is a search engine that takes a plan and a set of bids, and attempts to find
an optimal or near-optimal mapping of bids to tasks, respecting temporal constraints. It
must do this within the period of time allocated by the Process Planner, which may have
been subdivided by the Bid Scheduler. We have implemented a simple systematic search
engine, as well as a highly-modular simulated annealing version. We have described these in
detail, along with experimental performance data, in [4]. We are in the process of integrating
a Mixed Integer Programming bid evaluator (see for example [1]).
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Figure 5: RFQ Example

The core algorithm of the simulated-annealing engine is similar to the one described
in [15]. Starting with a plan and a set of bids, we generate and evaluate bid mappings
until one of several stopping conditions holds. These include failure to find improvement for
a configurable number of iterations, expiration of the deliberation time limit, and lack of
mappings that have any untried expansions. Configuration options include:

e A “patience factor” which is multiplied by a problem complexity metric to determine
the failure-to-improve stopping condition,

e Maximum length of the search queue,

e Length of the tabu list — this is used to reduce a tendency to backtrack in the search
space,

e Annealing schedule, including initial temperature, temperature increment, and number
of iterations between temperature adjustments,

e Number of times to restart the search — experience has shown that better results
are achieved by annealing relatively quickly and restarting the search repeatedly, as
opposed to running a single long search with the same number of iterations,

e The adjustment to the patience factor on successive restarts,

e Whether to avoid generation and evaluation of identical nodes,



e Whether to add infeasible nodes to the queue, where they could be chosen for further
expansion,

e Specific evaluator types to be applied to node evaluation,

e Evaluation parameters, such as the penalty to be applied for lack of full coverage or,
in the case where infeasible nodes may be expanded, the penalty for infeasibility,

e The bid selector type(s) to be used for choosing bids for node expansion — most imple-
ment some combination of random and focused selection, and

e Control parameters for the chosen bid selectors.

As noted above, we also have a systematic search engine that can automatically be
chosen for low-complexity problems, and we are in the process of adding a mixed-integer
programming module as an alternate search engine within the same framework.
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Figure 6: Bid Example

Figure 6 shows a very small example of the problem the Bid Evaluator must solve. We
composed the RFQ with a large overlap between the Carpentry and Roofing tasks, perhaps
because we believed there would be large numbers of bidders with a wide variation in lead
times. Bid 2 indicates this carpenter could start at the beginning of week 3, would take
3 days, and was willing to shift that out 2 more days to accomodate our schedule. Bid 3
shows a roofer who could start partway through week 2, would take 3 days, and needed to
finish partway through week 3. Clearly these two bids cannot be combined. Bid 4 shows a
more expensive carpenter who could start earlier, but needs a week to finish. This can be
combined with Bid 3, but with no slack to accomodate weather delays or other contingencies.
Bid 5 gives us a large enough time window for the roofing task to be combined with either
Bid 2 or Bid 4. Assuming the risk is tolerable, the best combination appears to be Bidl,
Bid2, Bid5.



4 Supplier Agents

Since our primary interest has been in the workings of the Customer agent, our Supplier
agents are currently fairly simple-minded entities. They receive RFQs, and they respond
by submitting bids. They do not maintain resource schedules, and they have no persistent
identity. The basic structure is shown in Figure 7. Each of these three layers is implemented
as an abstraction with multiple implementations.

RFQ Bid-Set Bid Sets

Generator

Bids

Bid
Generator

Task-Bids

Task-Bid
Generator

Figure 7: Simple Supplier Simulation

A Bid-Set Generator generates sets of bids and returns them to the Customer agent.
Example Bid-Set Generators include one that always bids on certain task types if they are
present in the RFQ, one that generates a random set of bids, and one that extends the
random set generator by attempting to generate a set that covers all tasks in the RFQ.

A Bid Generator generates a single bid, possibly containing multiple individual task-bids.
The average sizes, and the degree of size variability, of the bids produced are determined by
configuration parameters, and in some cases by the structure of the plan and the type of Bid
Generator selected. We have implemented Bid generators that can generate bids for certain
types of tasks, random collections of tasks, or sets of tasks that are connected by precedence
relations. An obvious extension would be to generate role-based bids in the sense of [10].

A Task-Bid Generator produces a bid for a single task. The bid specifies the task to be
performed, the expected duration of the task, and early start and late finish time window
data. In most cases it must also assign a cost to the task, which the Bid Generator will use
in composing the overall cost for the bid. The duration and cost are selected from random
distributions specified in the task-type description. The early-start and late-finish times are
also randomly generated from the resource-availability data in the task-type description.
The constraints on the time window for the Task-Bid come from two sources: (1) the time
window specified in the RFQ, and (2) the times already specified in other Task-Bids for tasks
that are immediate predecessors or successors of the current task. If the Task-Bid generator
cannot fit the requested task into the time window, it fails to produce a result, and the bid
will not include that particular task.
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5 Using the MAGNET Testbed

The system in its current form is useful for several types of studies. Recent work includes
experiments with bid evaluation performance, and studies of the RFQ composition prob-
lem. Our longer-term goal is to support studies of mixed-initiative decision making with
experienced human users in realistic market simulations.

5.1 Bid Evaluation
To study bid evaluation, we are able to control a wide range of conditions, including:

e Composition of the generated plans: number of tasks, task types (which in turn controls
duration variability and probability of bids), and the density of the precedence network,

e Structure of the RFQ: Whether it covers the whole plan, amount of slack in the sched-
ule, and the degree to which bids are allowed to violate precedence relations,

e Number and size of bids, composition of bids: random selections, contiguous task sets,
role-based task sets,

e Type of search used, search parameters,
e Bid selectors and evaluators, evaluation parameters.

The testbed supports a number of measurements for evaluating search performance,
including search effort, anytime performance, and solution quality, along with counts of
solved, unsolved, and known unsolvable problems encountered. Output is in a form that can
be used by a standard spreadsheet, or Matlab in the case of anytime performance data.

An important ongoing effort along these lines is learning how to make bid evaluation work
effectively in a mixed-initiative environment. We have studied the implications of Expected
Utility Theory in the MAGNET environment [3]. We are currently developing and evaluating
evaluators to assess risk, and user interface strategies to support collaborative evaluation and
decision-making between a MAGNET agent and its user.

5.2 Bid Scheduling

Earlier tests had shown that there are cases where level of scheduling uncertainty in a plan
led to a choice between leaving large amounts of slack in the schedule, or generating RFQs
with large overlaps in task timing, which in turn caused many bids to be unusable. This
can happen if plans are long, or when they contain tasks that have low resource availability
or high variability in duration. In order to deal with these situations, we are experimenting
with a variety of bid scheduling strategies.

The idea is to split the bidding process into phases, such that the schedule variability in
each phase is limited. We have designed several Bid Schedulers, each of which implements
a different strategy. We are trying to understand how they perform, what the tradeoffs are,
and how to recognize situations where multi-phase bidding is advantageous. Bid Scheduler
types we have tried include the following:
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e Split the plan into some number of roughly equal phases. This gives us a simple
baseline phased-bidding method that is easy to test and that will give us some idea of
any disadvantages of phased bidding.

e Run forward through the plan breadth-first until the schedule uncertainty exceeds some
threshold.

e Run forward through the plan breadth-first, terminating each phase at “high-risk”
tasks.

e Bid out “high-risk” tasks first, then fill in with the lower-risk tasks. The motivation
for this is that if the high-risk tasks cannot be accomplished, there is no point in even
looking at the others.

Each of these is designed to generate task-sets in which all precedence relations are
satisfied either in the current set or in a previous set. One important principle in multi-phase
bidding is not to allow earlier phases to take up all the available schedule slack, making it
more difficult to find resources for the later phases.

Preliminary results suggest that even without worrying about high-risk tasks, multiphase
bidding can generate tighter schedules on average, at the same price, and that search effort
on the customer side is reduced substantially. On the other hand, the time required for
the overall bidding process may easily become dominated by the time required for supplier
deliberation, and opportunities for suppliers to submit “package” bids are reduced.

5.3 RFQ Composition

The RFQ composition problem appears to be highly dependent on the characteristics of
the market. For that reason, we are closely studying one particular market, international
shipping, in hopes of developing a set of data that can support realistic simulation. These
data include numbers of likely bidders, likelihood of bidding, specialized vs. full-service
suppliers, lead times, and correspondence between bids and actual performance. Further
complications arise from standard practices such as capacity consolidation, subcontracting,
and the variety of contract terms that are used in a typical supply chain. We are working with
North Star Import-Export, a local freight forwarding company, to develop our understanding
in this area.

Preliminary results indicate that, given some reasonable number of bidders, some amount
of overlap in the task time windows between successive tasks gives better results than a RFQ
specification that guarantees that all bids will combine feasibly. For example, if we knew
that both roofing and carpentry resources were widely available but with long and variable
lead times, we might put out an RF(Q that specified a broad overlap between those two
activities, and then look for a combination of bids that makes a good schedule. Figure 6
shows what such an RFQ might look like. We have implemented several different plug-in
versions of the RFQ Builder in order to test alternative approaches.

Our goal is to develop a sufficiently realistic simulation of an actual market to support
evaluation of MAGNET agent performance by personnel who are experienced in that market.
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In the shipping domain, some market data can be taken from published timetables, and we
will plug in bidders that operate directly from these timetables. There are also Web-based
resources such as www.freightwise.com that could support supplier-agent wrappers, and
which are a good source of availability and pricing data.

6 Related Work

Markets play an essential role in the economy, and market-based architectures are a popular
choice for multiple agents (see, for instance, [2, 19, 22]. Most market architectures limit
the interactions of agents to manual negotiations, direct agent-to-agent negotiation [18, 6],
or various types of auctions [23].

Existing architectures for multi-agent virtual markets typically rely on the agents them-
selves to manage the details of the interaction between them, rather than providing explicit
facilities and infrastructure for managing multiple negotiation protocols. In our work, agents
interact with each other through a market. The market infrastructure provides a common
vocabulary, collects statistical information that helps agents estimate costs, schedules, and
risks, and acts as a trusted intermediary during the negotiation process.

Auctions are becoming the predominant mechanism for agent-mediated electronic com-
merce [9]. AuctionBot [23] and eMEDIATOR [17] are well known examples of multi-agent
auction systems.

The determination of winners of combinatorial auctions [13] is hard. Dynamic program-
ming [16] works well for small sets of bids, but does not scale and imposes significant restric-
tions on the types of bids. Methods for improving the efficiency of combinatorial auctions
have been developed in the last few years, among others, by Sandholm [17] and Fujishima [7].
Mixed integer programming has been demonstrated to work extremely well even on large
problems by Andersson [1]. However, none of those algorithms has been applied to situations
with time constraints of the type and complexity we presented. Walsh et al [20] study combi-
natorial auctions for problems in supply chain, but ignore time constraints. When they study
decentralized scheduling [21] they limit their study to the scheduling of a single resource.
MAGNET agents have to deal with multiple resources. Customer agents use the bidding
process as a way of obtaining the use of resources of supplier agents. Customer agents have
also to ensure the scheduling feasibility of the bids they accept, and must evaluate risk as
well as simple schedule feasibility.

MAGNET agents are similar to the agents used for collaborative planning by [10], where
combinatorial auctions are used for the initial commitment decision problem, which is the
problem an agent has to solve when deciding whether to join a proposed collaboration.
Their agents have precedence and hard temporal constraints. However, to reduce search
effort, they use domain-specific roles, a shorthand notation for collections of tasks. In their
formulation, each task type can be associated with only a single role. MAGNET agents are
self-interested, and there are no limits to the types of tasks they can decide to do.

Because the search space for combination bids with temporal constraints is huge, we
have chosen to use a simulated annealing framework. Since the introduction of iterative
sampling [11], a strategy that randomly explores different paths in a search tree, there have
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been numerous attempts to improve search performance by using randomization. Random-
ization has been shown to be useful in reducing the unpredictability in the running time
of complete search algorithms [8]. Our experimental results [4] show that our bid selection
algorithm performs very well on a variety of problem types.

7 Conclusions and Future Work

The MAGNET automated contracting environment is designed to support negotiation among
multiple, heterogeneous, self-interested agents over the distributed execution of complex
tasks. The MAGNET testbed is a prototype implementation of a Customer agent, along
with a population of simulated Supplier agents. It is highly configurable and extensible, and
has been used for several statistical studies aimed at understanding the decision processes
for a Customer agent.

The current system has proven to be very useful for the types of statistical studies we
have pursued so far. Future plans call for more focus on mixed-initiative interaction, and
our current user interface is too primitive to support that work.

Some domains, notably the International Shipping domain we are currently studying in
collaboration with North Star Import-Export, will require an enhanced plan representation
to deal with the fact that alternate routes or shipping modalities may be acceptable. This
enhancement, along with the improved user interface discussed above, will be in use as part
of our work with North Star by April 2001.

A major need in this area of research is the establishment of a set of benchmark problems
by which different strategies can be compared. Leyton-Brown et al [12] have proposed a test
suite called CATS for testing combinatorial auction systems. It solves part of the problem,
but it only deals with bids, not the RFQ, and it does not handle the precedence relations
needed in the MAGNET environment.
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