An Analysis of Sensor-Based Task Planning

Duane Olawsky Kurt Krebsbach Maria Gini
Secure Computing Corporation Honeywell Technology Center Dept. of Computer Science
2675 Long Lake Rd. Automated Reasoning Group University of Minnesota
Roseville, MN 55113 3660 Technology Drive 200 Union Street SE
(612) 628-2846 Minneapolis, MN 55418 Minneapolis, MN 55455
olawsky@sctc.com (612) 951-7352 (612) 625-5582
krebsbac@src.honeywell.com gini@cs.umn.edu
Abstract

We present a planner which can plan to perform sensor operations to allow an agent to gather the
information necessary to complete planning and achieve its goals in the face of missing or uncertain
environmental information.

We have identified and addressed two of the chief problems associated with interleaving execution
with planning. The first is that early execution of actions may interfere with, or even preclude the
achievement of goals not yet considered. The second is that data needed for planning may be
incorrect or uncertain even after they are sensed from the environment.

We cast the problem as one of choosing between various sensing policies. For each piece of
unknown or uncertain information, the planner must decide on the best way to obtain it in order to
minimize the execution cost or provide itself with the greatest chance of success overall.

We provide an analysis of the factors that influence plan quality, and suggest methods which use
these factors to evaluate and rationally choose among various sensing policies.



Contents
1 Introduction 1

2 Background 2
2.1 Plan Quality Criteria . . . . . . . . . . . . . . . 2
2.2 Planning Factors . . . . . . . . . . ... 3
2.3 The Tool Box World . . . . . . . . . . . . . . . 4
2.4 Typesof Failure . . . . .. . . . . . 5
2.5 General Characteristics of the Domain . . . . . . .. . ... ... ... ... 5

3 A Cost-Based Analysis 6
3.1 Base Costs . . . . o i e e e 6
3.2 Expected Number of Premature Actions over Problem Space . ... ... ...... 7

321 TwoExamples . . . . . . . . e 8
3.2.2 Finding pb,2) - . o o et 9
3.2.3 Finding p(b,u) . . . . . ... 9

3.3 Expected Cost of a Policy . . . ... .. ... ... . 11
3.4 Cost of Recovery from Bad Data . . . . . . ... .. ... ... ... ... 12
3.5 Finding a Near-Optimal Policy . . . .. .. ... ... ... .. .. ... ..., 16
3.6 Comparison of Performance . . . . . .. .. ... L o 19
3.6.1 Domain-Independent Strategies . . . . . . .. .. ... ... .. ... 19

3.6.2 Domain-Dependent Strategies . . . . . . . .. .. ... 20

3.6.3 Application to Other Domains . . . .. ... ... ... ... ......... 21

4 A Success-Based Analysis 22
4.1 Predicting Success Rates . . . . . . . . ... 22
4.2 Generalizing to Q(b,u) . . . . . ... e 23
4.3 Selecting a Sensing Policy . . . . . . . . .. ... 24
4.4 Practical Implications . . . . . . . . .. L e 26

5 Related Research 27
5.1 Planning with Incomplete Information . . . . . ... .. ... ... L. 27
5.2 Interleaving Planning with Execution . . . . . . ... .. ... ... 28
5.3 Planning with Uncertainty . . . . . . .. .. .. .. . L 28
5.4 Decision Theoretic Methods . . . . . . . . . .. .. ... . .. .. 28

6 Concluding Remarks 29

1 Introduction

Traditional approaches to task planning assume that the planner has access to all of the world
information needed to develop a complete, correct plan—a plan which can then be executed in its
entirety by a robot [Hendler et al., 1990, McDermott, 1992]. Unfortunately, this information about
the world may not always be available at plan time. This is particularly true when we consider
autonomous robots that must operate under general goals over extended periods in unpredictable
and changing environments. When crucial information is missing at plan time, it may be impossible
to find a complete plan without obtaining additional information. Fortunately, this information is
often available at execution time through the use of sensors. The problem then, is how to incorporate
sensory data collected at execution time into the planning process which, in traditional approaches,
is completed before execution begins.

We have implemented a planner BUMP (Basic University of Minnesota Planner), which is capable
of interleaving planning and execution [Olawsky and Gini, 1990]. BUMP is able to defer portions of
the planning process which depend on unknown or uncertain information until the information in



question can be obtained through sensors. In such cases, BUMP inserts sensor operations directly
into the plan which the agent then executes to enable further planning. Alternatively, BUMP may
choose to assume a default value for the uncertain information rather than plan to sense it. We call
this distinction the sense/default question, and it has played a central role in guiding our recent
research efforts.

Deferral and defaulting each have strengths and weaknesses. Deferral can be attractive with
accurate sensors because it reduces environmental uncertainty. However, sensing can become pro-
hibitively expensive. In addition, satisfying preconditions for sensor operations can in itself be
time-consuming, and as we will see, increases the probability of performing premature actions. De-
faulting, while usually less reliable, allows the planner to complete more of the plan before execution
begins. This in turn allows the planner to see further into the plan and detect problems which
may lie beyond the horizon of the deferral point. As default uncertainty increases however, further
planning based on defaults becomes increasingly arbitrary.

In general, it is nontrivial to decide whether to defer planning and sense a given uncertain value
or simply choose a default value and continue planning with it (facing the risk of having made an
incorrect choice). Deciding on the best strategy for a given planning problem consists of computing
the tradeoffs of various strategies, and that is the major topic of this paper.

In Section 2 we outline the results of our previous work in this area describing the major issues
involved and the problem domain in which we have worked. Sections 3 and 4 then analyze two
different methods for deciding when to sense and when to use a default.

2 Background

The eventual goal of this line of research is to develop improved task planning strategies for increas-
ingly realistic problem domains. In particular, we focus our attention on domains in which some
amount of domain information is not certain at plan time, and must be sensed or defaulted before
planning can proceed. We first discuss two measures of the quality of a plan. It is useful to think of
the quality measures as functions to minimize or maximize, and the strategies as means to that end.
Then we provide a summary of factors that influence the quality including three types of planning
strategies. After that, we introduce the Tool Box World [Olawsky and Gini, 1990] and discuss the
problems posed by it for a planner.

2.1 Plan Quality Criteria

Before proceeding, we should be clear as to the objectives the above-mentioned planning strategies
are intended to serve. We refer to these objectives as plan quality criteria. In this paper, we limit
our attention to just two criteria, namely execution cost and success rates.

Execution Cost: This criterion measures the cost of all actions to be performed during all phases
of execution when the planner is allowed to recover from premature actions (i.e., undo and redo
these actions). This provides us with some indication of how inefficient the inferior solutions
are for those problems judged unsuccessful under the success criterion. In this paper we treat
each instantiated process (i.e., action) in the plan as having unit cost, although it would be
trivial to assign varying costs to various types of action.! Measuring execution cost implies
reversible actions. For our cost functions to be well defined, we must assume the agent can
recover from any such situation at some finite cost.

Success Rates: Success rates reflect the percentage of problems in which BuMP is able to construct
a plan in which no processes need to be undone as a result of being executed prematurely.
One of the major difficulties in interleaving planning and execution is to keep the robot from
performing actions which may interfere with goals not yet considered. In our experiments this
occurred, for instance, when the robot bolted closed a tool box only to discover that it contained

1Tn [Krebsbach et al., 1991] we also considered planning cost. We will not consider that cost in this paper since it
appears to closely parallel execution cost in our domain.



a wrench (or bolt) needed to accomplish a later goal. Under this criterion we consider such
plans failures, in effect assuming the agent is unable to recover from such premature action.
When we use success rates as the plan quality criterion, we consider any plan which results
in premature action as a complete failure. Succinctly stated, measuring success rates implies
irreversible actions.

2.2 Planning Factors

We have identified the following as important factors of task planning with sensors. Our previous
studies have shown that by intelligently controlling these factors, a planner can improve the quality
of its plans, often dramatically. We define the term owverall planning strategy to refer to a set of
algorithms for determining each of the following parameters for any given problem instance. This
overall strategy will be selected before planning starts. Complete results of the relevant experiments
can be found in [Krebsbach et al., 1991].

Goal ordering: The initial goal ordering describes the order in which BUMP will attempt to con-
struct portions of the plan to satisfy each goal. This ordering is fixed when planning commences
and does not change. It is important to note however, that this order is not necessarily the
order of execution. BUMP is fairly good at ordering and reordering actions to exploit helpful
goal interactions and avoid harmful ones. However, execution of a partial plan to obtain sen-
sory data hampers BUMP’s ability to reorder actions. Once an action is executed, it can no
longer be moved around in the plan. Choosing an initial goal ordering to facilitate intelligent
action reordering is one way to improve BUMP’s performance. We found it advantageous to
order the planner’s initial goals based on the amount and type of unknown information at the
start of planning. The guiding principle is that most sensing should come as early as possible
in the plan. The disadvantage of potentially premature action caused by early sensing is, in
most cases, outweighed by the advantage of constructing most of the plan with more informa-
tion. This goal ordering heuristic depends critically on the assumption that the planner can
identify connections between its top-level goals and the unknown domain propositions in the
problem. In our experiments there is a one-to-one correspondence between goals and potential
unknowns, so the issue is not addressed here. For the remainder of this paper then, we will
assume that regardless of the input order of the goals, it is a trivial matter to reorder goals in
this way.

When to sense: A critical decision when interleaving planning and execution is when to switch
from one to the other. In related research, [Olawsky and Gini, 1990] identified two general
strategies to manage the transfer of control between the planning and execution modules
(i.e., control strategies). In both strategies, if the planner discovers that it requires unknown
information, it inserts a sensor operation into the plan to obtain the information. It then plans
to satisfy any preconditions of this sensor operation.

In the first strategy, known as Stop and Execute (SE), when the planner encounters a goal
whose achievement depends on information it has planned to sense, control is immediately
transferred to the execution module. The sensor process and all processes ordered before it in
the current partial plan are executed. Control then returns to the planner.

In the second strategy, Continue Elsewhere (CE), goals whose achievement depends on infor-
mation that BUMP has planned to sense are deferred. Planning continues elsewhere for other
goals. Only when all goals are either planned to completion or deferred is control transferred
to the execution module. Execution halts after each sensor operation to allow completion of
planning for a deferred goal. In general, CE allows much more planning, albeit less informed
planning, to occur ahead of the first execution phase.

These two strategies are the only truly domain independent control strategies that we have
found useful. It is certainly possible to devise domain dependent strategies for these types
of problems. For example, in [Olawsky and Gini, 1990] we described a modified Continue
Elsewhere strategy call Sense Before Closing (SBC). This strategy was designed for the Tool



Box World (see the next section), and it attempts to sense all the unknown information before
any tool boxes are closed. It would do this by attempting to order all sensor actions before
all box closing actions in the plan. SBC could not be directly applied to other domains.
Domain dependent strategies tend to be rather brittle, breaking down with only the slightest
changes to the problem domain (see Section 3.6.2 for discussion of this). For this reason we
decided to begin our study with the domain independent strategies, and that is the subject of
this paper. By starting with domain independent strategies we can determine whether they
work sufficiently well for any class of problems or whether we need a new domain dependent
strategy for each domain. The results presented here demonstrate that it is feasible to use
domain independent techniques when the domain does not include irreversible actions. We also
show that for domains with irreversible actions the domain independent strategies are clearly
not sufficient and we need to develop special-purpose domain dependent strategies such as
SBC.

In the remainder of this paper we will assume the planner is employing the domain indepen-
dent Stop and Execute (SE) strategy, since the empirical data collected in [Krebsbach et al.,
1991] suggests that its performance is at least as good as that of Continue Elsewhere, the
other domain-independent strategy. The behavior of SE also lends itself more naturally to
mathematical analysis.

What to sense: Finally, there is the question of which unknown or uncertain quantities to sense
and which to default. We call a method for answering this question a sensing policy. Choos-
ing the best sensing policy requires careful consideration of domain-specific factors such as
default reliabilities, sensor reliabilities, planning costs, execution costs, and the cost of human
intervention. Most of this article focuses on choosing a sensing policy.

In summary, an overall planning strategy consists of a goal-ordering heuristic, a control strategy
and a sensing policy.

2.3 The Tool Box World

The problem domain for which empirical data was collected in our previous work and which is
analyzed in this paper is called the Tool Box World. We chose this domain because, although an
abstraction of a real-world domain, it contains all of the important elements of interest to us, and
lends itself well to systematic analysis.

In the Tool Box World, an agent (i.e., robot) is in a room with n tool boxes T1,T5, ..., T,, each
containing wrenches and bolts of various sizes. The robot knows the initial locations of the wrenches
and bolts. Bolts are identified by a unique name, and wrenches are identified by a unique size. The
robot has been instructed to close and bolt one or more tool boxes with particular bolts. Each
of these bolts has an associated size. To perform each bolting operation, the robot must use the
wrench whose size matches the bolt. The bolts are initially in their respective boxes (e.g., bolt b;
is in box Tj;).2 All of the tool boxes are initially open. We assume the robot begins at a neutral
site (one unrelated to any work that it must do). Since the planner’s goals are strongly associated
with particular tool boxes, this assumption was meant to avoid any bias. A sensor is available that
can classify bolts by their head size (e.g., a number from 1 to 10). For simplicity, the bolt sizes are
indicated along the same scale as the wrench sizes. We also assume the robot has a tool belt into
which it can put an unlimited number of bolts and wrenches.?

Given that we assume prior goal ordering and the SE control strategy, the following are the
parameters which describe the problem space:

2This causes the robot to see less of the world while solving its early goals since it need not go anywhere to get a
bolt. While this may at first appear to simplify the problem, in effect it tests the planner on a slightly more difficult
set of problems than it would encounter by chance. The more places BUMP visits, the more of a chance it has to gather
other information, quite possibly information it could use to make more informed action ordering decisions. This in
turn would decrease BUMP’s vulnerability to failures due to premature action.

3We are not concerned here with the arm-empty conditions as used in typical definitions of the blocks world. Our
main goal in defining this domain is to study how sensor use can be interleaved with planning.



Number of Tool Boxes (b) The number b also denotes the number of initial goals, since we as-
sume there is exactly one goal associated with each tool box. All of our experiments assumed
b wrenches, but this assumption is relaxed somewhat in Section 3.

Number of Unknowns (u) The number u denotes the number of unknown bolt sizes at the start
of planning. This value is subject to the constraint v < b. When a default is used, we will
consider the bolt size to be known at the start of planning since BUMP need not defer any goals
that depend upon this default information. Thus, u can also be considered the number of bolt
sizes that will be determined by a sensor reading.

Initial Wrench Locations: Each of the wrenches may initially be in any tool box, implying b’
possible wrench placement scenarios (assuming b wrenches.

2.4 Types of Failure

In the mathematical characterization of the Tool Box World described later in Sections 3 and 4 we
take into account two very different ways in which a plan can fail. The first of these we call failure
due to premature action. Premature action occurs when the agent executes an action A before it
realizes a higher quality plan would result from delaying the execution of A until after the execution
of other actions. This is probably the most significant difficulty with interleaving planning and
execution. Any actions performed before planning is completed are potentially premature.

A second type of failure is due to bad datae. Bad data can be in the form of an incorrect default or
sensor reading. As is the case for premature action, bad data implies total failure in a success-based
analysis, but means increased cost (for recovery) in a cost-based analysis.

The analysis and algorithms presented in the remainder of the paper are intended to improve task
planning for a general class of problems. They either minimize expected cost or maximize expected
success rates. Much of the ensuing analysis depends either on aggregate experimental data obtained
in our earlier work, or on probabilistic models of the domain. This is necessary because the methods
we propose are to be employed prior to any planning or execution, so the outcome of a particular
sensor process cannot be known for certain, only probabilistically modeled.

2.5 General Characteristics of the Domain

Before presenting an in-depth analysis of the Tool Box World in Sections 3 and 4, we briefly discuss
the general characteristics of the Tool Box World that influence our analysis. This provides some
idea of the range of problems to which our ideas could reasonably be applied. We will comment
further in Section 3.6.3 on applying these ideas to other problem domains.

The most important characteristic is that there is information missing at planning time and the
planner can request this information by including sensor actions in the plan. This implies some
interleaving of planning and execution. This missing information in itself produces no difficulties
unless it can cause the execution of an action that makes it impossible to carry out a later action or
makes the later action unnecessarily expensive.

Premature actions are likely to occur in any domain where there is detrimental interaction
between goals. A planner with sufficient knowledge of the world can often avoid these premature
actions by reworking the plan prior to any execution. However, as we shall see in Sections 3 and 4,
when working with incomplete information, the planner’s ability to avoid premature actions declines
precipitously.

Another domain characteristic that we have studied is the effect of bad sensor data on the
performance of the planner and robot. This characteristic is present in virtually all domains that
assume the use of sensors.

A final domain characteristic assumed in this work is a strong relationship between the top-level
problem description and the missing pieces of information. Qur techniques for using the analysis to
improve system performance focus on selecting a sensing policy (e.g., default or sense) for each piece
of unknown information. These policies are chosen prior to all planning. Thus, we must be able
to identify the unknown information by examining only the problem description (i.e., the top-level



goals and initial state information). In the Tool Box World there is at most one unknown per top
level goal and this has facilitated our analysis. We hypothesize that a similar analysis could be
done in domains with multiple unknowns corresponding to each top-level goal as long as there is
no detrimental interaction between the unknowns for a single top-level goal, but this is beyond the
scope of the current research.

We consider two versions of the Tool Box World in the remainder of this paper — one that assumes
reversible actions (the cost-based analysis in Section 3) and another that assumes irreversible actions
(the success-based analysis in Section 4). Both versions are amenable to the type of analysis done
in this paper, and the analysis allows a deeper understanding of the domain. For example, our
success-based analysis demonstrates the extreme difficulty of planning with incomplete information
using irreversible actions.

3 A Cost-Based Analysis

When the robot is able to detect at some point that a default value or a sensor reading was erroneous
and then take corrective actions, it makes sense to use cost as the quality criterion. In this section we
explore the effect of unknown information on execution cost. A similar analysis could be developed
for planning effort. While the algorithms we present make use of a probabilistic analysis of the Tool
Box World, it should be noted that they could also be applied in other domains using approximations
obtained empirically.

3.1 Base Costs

The approaches presented in this paper focus on selecting a sensing policy—that is, deciding when
to use a sensor and when to use a default. When recovery is possible, we not only make a selection of
which option to try but also what to do if that option gives us incorrect information. For example,
if a decision is made to try a default which later turns out to be incorrect, BUMP could try again
by using a sensor to obtain the information. If the sensor reading also fails, it might be possible
to obtain the required information through human intervention (presumably at a very high cost).*
We will use the letters D, S and I to describe these three options—default, sense and intervene.
The letters will be concatenated in various combinations to describe different event sequences. For
example, the sequence SDI describes the scenario where an incorrect sensor reading is followed by
an incorrect default value which is followed by successful human intervention. It is assumed that the
last resource is always successful. DS describes the event sequence where an incorrect default value
is tried followed by a correct sensor reading. An entire problem can contain multiple unknowns, and
for each of these there will be an event sequence.

The event sequences that actually occur depend upon the correctness of the sensor and default
readings which is not known prior to execution. Thus, we probabilistically analyze the expected cost
under various scenarios. It will make our analysis simpler to break this cost into two components:

Recovering from Bad Data - The cost of recovering from errors due to bad sensor readings or
incorrect default values. This cost will be analyzed in Section 3.4.

All Other Costs - This includes the cost of actions needed to solve the problem when everything
works perfectly plus the cost of recovery from premature actions. This combined cost will be
denoted by C'(b,u, h) where b is the number of boxes, u is the number of unknowns and h is
as defined below.

4Some other options that we do not consider in this analysis are
1. to try a different sensor, or
2. to continue trying the same sensor.

If the sensor is working at all (i.e., there is a non-zero probability of a correct reading), then with persistence the
second option should eventually produce a correct reading. The probability of n readings all being incorrect goes to 0
as n — oo. This might also have a very high cost. Furthermore, it might be difficult for the planner to know whether
the sensor is functioning at all. If not, then the planner is wasting its time using the sensor repeatedly.



The cost function C’ can be written as the sum of several component costs:
C'(b,u,h):bﬁ+uU+hn+p(b,u)7r (1)
where

B = The base cost of simply achieving each goal, assuming no sensing and no recovery.
o = The cost of executing a single sensor process.

1 = Cost of a human intervention (i.e., using a human as a sensor).

7 = The cost of recovering from a single premature action.

h = The number of decision points with event sequence I. (There is one decision point
for each unknown.)

p(b,u) = The expected number of premature actions (and therefore, recoveries) with b
boxes and uw unknowns.

Several of these values can be approximated rather easily by examining the empirical data and
thinking about the actions that take place in various circumstances. The base cost of achieving
a goal can be anywhere from six actions (goto box, pickup bolt, pickup wrench, close box, insert
bolt and tighten bolt) to eight (goto box, pickup bolt, goto box, pickup wrench, goto box, close
box, insert bolt and tighten bolt). Empirically, the shorter action sequences are more common, so,
assuming a unit cost per action, we approximate

8 = 6.5.

A sensor process only requires one action in addition to the base actions, but sometimes an extra
goto is inserted (to get the correct wrench) which could have been avoided if BUMP had known the
size of the bolt ahead of time. So, we take

o =1.5.

Finally,
T="17

since it always takes seven additional steps to recover from a premature action (loosen bolt, remove
bolt, open box, get wrench, close box, insert bolt and tighten bolt). The value of 7 is set as a system
parameter. In the next section we will obtain a formula for p(b, u).

Implicit in formula (1) is the following simplification of the problem: we ignore the effect that
bad data has on premature actions. In general, we expect bad data to decrease premature action
slightly since the recovery from bad data will cause the robot to pick up additional wrenches. Having
more wrenches decreases the chance of premature action.

3.2 Expected Number of Premature Actions over Problem Space

In modeling cost, we need a way of computing the total number of premature actions over an entire
problem set. When there are multiple premature actions for a single problem, we must count them
all since there will be a separate cost in recovering from each of them. We will compute this by
finding for each wrench the number of problems where that wrench will be bolted into a tool box
prematurely. We will then sum these values.

We first characterize the conditions which cause BUMP to perform a premature action in the Tool
Box World. Using this, we can calculate the expected number of premature actions with b boxes
and u unknowns. Throughout our analysis we assume the top level goals are reordered, as described
in Section 2, so as to minimize the average cost. In addition, we focus on the Stop and Execute
control strategy. As a starting point we consider two examples involving 3 boxes and 2 unknowns.
After that we consider cases where there are b boxes and exactly 2 unknowns. Finally, we generalize
this result for b boxes and « unknowns.



| AR
bs="? bt="? bu=6
5 4 6

Box S Box T Box U

Figure 1: Initial State: Problem 1.

3.2.1 Two Examples

Let us begin with a specific case involving 3 tool boxes S, T and U that are to be bolted closed
with bolts by, by and b,,, respectively. The sizes of these three bolts are 4, 5 and 6, respectively, but
only the size of b, is known at the start of planning. Furthermore, we assume that the goals are
considered by the planner in the order S, T, then U. As mentioned earlier, we also assume each bolt
is in the box for which it is used (i.e., bs is in S, b; is in T and b, is in U).

Example 1. There are 27 problems determined by the possible initial locations of the three
wrenches 4, 5, and 6. To clarify the following discussion, we first outline the progress of the system
on one of the problems where the system performs a premature action: wrench 4 € U, wrench 5 € S,
and wrench 6 € U (Figure 1). The first planning phase begins with the consideration of the goal
(Bolted S bs). Since the size of by is unknown, BUMP first plans to sense b. It cannot, under Stop
and Execute, plan further until it obtains the actual size. So, execution begins. The robot goes to
box S, grabs the bolt bs; and senses it (obtaining bs = 4). Planning resumes, and BUMP plans to go
to box U, get wrench 4, come back to S and bolt it closed. It then starts planning to achieve the
goal (Bolted T b;). Again, it plans to sense a bolt (this time b;). Since this involves going to box
T to get the bolt, the sense operation is ordered after the completion of the S goal.® At this point
BUMP again stops to obtain sensor information. All actions ordered before the sensor operation
must be executed first. Thus, the robot goes to U, gets wrench 4, goes back to S, bolts S shut, goes
to T, picks up b; and senses it (with result b = 5). Now planning continues. BUMP plans to get
wrench 5, but at this point it realizes that a premature action has been committed (i.e., bolting S
shut with wrench 5 in it). The robot must then recover from the premature action by opening S,
getting wrench 5 and rebolting S. m|

Obviously, a special-purpose strategy such as Sense Before Closing could avoid the premature
action and do better on this problem. However, a different strategy would have to be developed
for each domain, and this could be difficult for domains that are more complex than the Tool Box
World.

Example 2. Let us briefly consider a similar problem (Figure 2): wrench 4 € T, wrench 5 € S,
and wrench 6 € S. The initial planning phase is identical. However, during the second phase, BUMP
plans to go to T instead of U to get wrench 4. When it plans to sense bolt by, it decides to perform
this operation while it is at T getting the wrench. This sensor operation is therefore performed (and
planning resumes) before box S is closed. At that point, the rest of the plan is completed since

5This follows the reasonable convention of finishing up what you are doing at one location before going on to
another.



4

Box S Box T Box U

Figure 2: Initial State: Problem 2.

no more sensor readings are needed and planning need not be suspended. BUMP now has complete
information and will plan to get wrenches 5 and 6 out of S before closing it. O

These two examples demonstrate the behavior we must describe. There are two possible prema-
ture actions in Example 2. One is to prematurely lock wrench 5 in box S, and the other is to lock
wrench 6 in S. In both cases the premature action must occur before bolt b; is sensed since once
this sensor operation occurs the planner has all necessary information and a complete plan is found.
Any problems can still be remedied (by action reordering) in the final planning phase. Thus, BUMP
can avoid premature actions if something causes it to sense b; before closing S. This will happen
whenever the robot must travel to box T (the location of b;) before closing S, and this in turn will
happen if wrench 4 is in T. Thus, wrench 5 can be locked in box S only if wrench 4 is not in T.
Wrench 6 could be in any box, so this gives six problems that involve a premature action affecting
wrench 5. Similarly, wrench 6 can be locked in box S only if wrench 4 is not in T. This gives six
problems involving a premature action affecting wrench 6.

3.2.2 Finding p(b,2)

Now let us move to the case where there are an arbitrary number b of boxes and exactly 2 unknowns.
We first introduce some notation. Assume as before that the goals are reordered so that all the ones
with unknown information come first, followed by those for which all information is known. Let
g1,92,---,9p be these reordered goals. Now, define W(g;) to be the wrench needed for goal g; and
B(g;) to be the box associated with that goal. Since u = 2, the sizes of the bolts in B(g;) and B(g2)
are unknown. The only type of premature action that can occur is for one or more of the wrenches
W(g2),W(g3),---,W(gs) to be locked in B(g;). If W(g1) is in B(gs) then no premature actions will
occur because a complete plan will be found before any boxes are closed. If W(gy) is not in B(g2)
and some wrench W (g;),i > 2, is in B(g1) a premature action involving W (g;) will occur no matter
where the other wrenches are located. This gives (b — 1)b*~2 potential premature actions for each
of the wrenches W (g2), W (g3), ..., W (gs) for a total of (b — 1)2p°~2.

3.2.3 Finding p(b,u)

Now, we consider the general problem with b boxes and u unknowns. There are two ways that the
placement of a wrench can lead to a premature action.

1. W(g:) € B(g;) where j < i—2 and j < u. Informally, a wrench needed for a given box is
in the box for a goal that is two or more positions back in the sorted goal list. At the time
when the robot is closing B(g;), BUMP will not know yet that W(g;) is needed. We call this
condition 2-back. We must note however that a 2-back failure will not occur if j = u — 1 and



W (g;) € B(gy) since the final unknown bolt, which is in B(g,) will be sensed before B(g;) is
closed (consider wrench 6 in Example 2 above).

2. W(g;) € B(gi—1) AW (gi—1) & B(g;) where i < u. Informally, a wrench needed for a given box
B is in the preceding box, and the wrench for the preceding box is not in B. If the wrenches
were “flipped” (i.e., W(g;) € B(gi—1) A W(gi-1) € B(g:)), the robot would sense the bolt for
gi before closing B(g;—1) and the premature action would be avoided. We call this condition
half-flipped. (Consider wrench 5 in Examples 1 and 2 above.)

Let us begin by considering the wrenches corresponding to bolts of unknown size (i.e., W(g1),-. .,
W(gy)). Assume that the reordered list of goals is g1, ..., gs with g1,..., gy (u < b) having unknown
bolt sizes. For each wrench W (g;), (i = 3,...,u) there exists i — 2 locations, B(g1), ..., B(gi—=2) that
would cause a 2-back failure. The remaining b — 1 wrenches can be in any of the b boxes, so for
wrench W (g;), there are (i — 2)b*~1 2-back failures. Note that there cannot be any 2-back failures
involving wrenches W(g:) and W(g2). Summing over the wrenches W(gs), ..., W(g,) gives the total
number of 2-back failures involving unknowns:

Fi(bu) = Xu:(i —2)p°!
=3
(u—2)(u—-1)

bb—l
2

2)

Note that formula (2) also happens to be correct for u = 2 (giving zero), so it applies to all u > 2.
Now consider half-flipped failures for the wrenches W(g1),...,W(gy)- A half-flipped failure
occurs when W(g;) € B(gi—1) A W(gi—1) ¢ B(g;).- This allows 1 possible location for W(g;), b —1
locations for W(g;—1) and b locations for each of the other b — 2 wrenches. Thus, for i = 2,...,u,
there are (b — 1)b°~2 problems involving a half-flipped error on wrench W (g;). There cannot be any
half-flipped failures for W (gy). The total number of half-flipped failures for these wrenches is thus:

Fy(b,u) = (u—1)(b—1)p*2. (3)

Formula (3) is correct for all u > 2.

Finally, we examine cases where a wrench corresponding to a goal with a known bolt size is
bolted into a box. These cases are different because once the final unknown is sensed, planning is
completed, and reordering can be done before any further (possibly premature) actions are executed.
As a result, there are no half-flipped failures for these wrenches. However, a 2-back failure can still
occur since a known wrench can be locked in an unknown box (other than the final unknown box).
If a wrench W(g;) with u < ¢ < bisin a box B(g;) with 1 < j < w— 2, there will be a 2-back failure
on wrench W(g;). Since the other wrenches can be anywhere this accounts for (b — u)(u — 2)b*~!
premature actions. In addition, if W(g;) is in B(gy,—1) there will be a 2-back failure if W (gy,—1) is

not in B(g,). The other wrenches can be anywhere. This gives another (b—u)(b— 1)b*~2 premature
actions. The total number of 2-back failures for wrenches W (gyy1),-.., W(gp) is
Fs(bu) = (b—u)(u—2)b"1+(b—u)b-1)"2 (4)
(b—u)(bu — b —1)b*2 (5)
for u > 2.

Summing formulas (2)-(5) gives us the following formula which represents the total number of
premature action failures for the class of problems involving b boxes and u unknowns.

F(b,u) = Fl(b,u)+F2(b,u)+F3(b,u)

W +(u—1)(b— 1) + (b —u)(bu — b— )b
(u—1)(2b—u)d

2

bbfl

pb—2 —b+1].

10



This formula is valid for all u > 2.

Since b° is the number of problems in the entire problem space for b tool boxes, the ratio F(b, u)/b®
describes the number of expected failures for a randomly selected problem from that space. This is
p(b,u) introduced in Section 3.1. With u < 1 there are no premature actions since a complete plan
is found before any boxes are closed. So,

(u=1)(2b—w) |, 1-b
@=D)@b=w) 4 125 iy > 9
= 26 5 7
plbw) { 0 u=0,1.

It is instructive to hold « fixed and take the limit as b — oo.
lim p(b,u) =u—1.
b—oo

This suggests that it is the absolute amount of unknown information that plays the primary role in
determining premature actions, not the number of boxes. Remember that u — 1 is the limit of the
ezpected number of premature actions. Clearly, for a given problem instance it is possible that the
number of premature actions is greater than 1.

3.3 Expected Cost of a Policy

In this section we describe the formula for the expected cost of a policy. It will be based upon the
two components of cost given above: recovery from bad data, and C’(b,u, h).

Bad data can be either a sensor reading or a default value, and the recovery can use a sensor, a
default or human intervention. Since default values are merely guesses about the state of the real
world they are obviously fallible. A bad sensor reading could be due either to a malfunction of the
sensor or simply to noise in the sensor data. We define the reliability of a value to be the probability
that it is correct. Reliability is a measure of a priori confidence that the value is correct. No notion
of amount of error or distance from the correct value is considered here. This definition of reliability
applies equally well to sensor and to default values.

The expected cost of recovering due to bad data will be denoted by a function &, where b is the
number of boxes, and w is the number of wrenches. This function takes b arguments each describing
the event sequence for a single decision point. Each argument is a sequence of the letters D, S and I
as described in Section 3.1. Thus, d,3(DSI, DS) is the cost of recovering from bad data when there
are two boxes and three wrenches, and the event sequences for the two unknowns are DSI and DS.
The order of the arguments represents the order in which the decision points are reached during
execution.

Given these definitions we can develop formulas for the expected cost of a sense/default /intervene
policy. We introduce another function Kj,, to denote this expected cost for b decision points and
w wrenches. The function K, takes b arguments which describe the policy used. The arguments
have the same form as the arguments of & ,,, but the interpretation differs slightly. Whereas the
event sequence SDI implies that the sensor and the default both yielded bad information, this is
untrue for the policy SDI. The policy represents a decision about which resources will be tried if
necessary. That is, SDI denotes the following policy:

1. Use a sensor.
2. If the sensor gives incorrect information, try a default.
3. If the default is incorrect, request intervention.

The resulting event sequence could be S, SD, or SDI. In contrast to an event sequence, each
component (e.g., DSI) of a policy must end in I so that the robot can always succeed and a finite
cost can be assigned (we assume intervention always yields correct information). The function
K> 3(DSI,DI) is the expected cost with two boxes and three wrenches using the policy DSI-DI and
taking into account the likelihood that the defaults and sensors will yield correct information.
K}, can be defined as a weighted sum of C' and 8y, values. The weights reflect the likelihood
of particular event sequences based upon the reliabilities of the sensor readings and default values.

11



We will use the notation r; to denote of the reliability of a default value for decision point i and
s; to denote the reliability of the corresponding sensor reading. As an example, with one decision
point and w wrenches the expected cost of the policy SDI is expressed by the weighted sum:

Kl’w(SDI) = Cl(]., 1,0) + (1 - 81)T161,w(SD) + (1 — 51)(1 - T1)51,w(SDI).

The first term represents the base cost required as a minimum to achieve the goal assuming no bad
data is encountered. The second term represents additional costs incurred when the sensor reading
is bad but the default works. The final term reflect the additional cost when both the sensor and
the default are bad and human intervention is required. The arguments of C’ are determined from
the total policy. The value of 4 will be the number of decision point policies that begin with S, and
the value of h will be the number of them that begin (and end) with I.

Using similar reasoning, we obtain the following formula for the policy DSI, in which we try the
default before the sensor:

Klyw(DSI) = 01(1,0,0) + (1 — rl)slél,w(DS) + (1 — Tl)(l — 81)51’w(DSI).

There are three other possible policies with one decision point which are described by the following
formulas:

Ky (SI) = C'(1,1,0) + (1 — 51)81.4,(ST)
Ky o(DI) = C'(1,0,0) + (1 = r1)81,(DI)
Kio(I) = C'(1,0,1).

Given a way to calculate d1 ,, we could select a policy with probabilistically optimal performance
by calculating the value of all five of these formulas and taking the policy with the minimum value.
However, this algorithm will not work in general because it is far too expensive. To see this we look
at one of the formulas for two decision points. One policy would try both defaults first, backed up
by sensing and intervention. The resulting weighted sum is

K»o(DSI,DSI) = ("(2,0,0)+ (1 —11)s17r202,4(DS, D)
+r1(1 = r3)s202,,(D,DS) + (1 —r1)s1(1 — r2)s202.4, (DS, DS)
+ (1 —r1) = s1)r202,0(DSI,D) +1r1(1 —r2)(1 — $2)02,, (D, DSI)
+ (1 —r1)(1—s1)(1 —172)8202,,(DSI,DS)
+ (1 —7r1)s1(1 —r2)(1 — 82)02,,(DS,DSI)
+(1=71)(1—51)(1—72)(1 — 52)d2,(DSI, DSI).

This formula is certainly much more complicated than the formulas for one decision point. In
fact the number of terms to be summed in a formula that considers all three resources — defaults,
sensors and intervention — grows exponentially (3 for b decision points). The number of factors in
the longest term is 2b+ 1. Calculating the expected cost of just one policy is O(b3"), and the number
of policies to be evaluated and compared is 5°. Clearly, we cannot use this exhaustive method to
find the optimal policy unless the number of decision points is quite small.

In the next section we will consider the calculation of dp 4, and in Section 3.5 we will present an
algorithm to solve a slightly simplified version of the policy selection problem.

3.4 Cost of Recovery from Bad Data

Unlike the cost of recovering from a premature action (which is a constant seven steps), the cost of
recovering from bad data varies dramatically with the context in which the bad data is encountered.
This context can be broken down into three components: the current state of the world, the method
of obtaining new information to be employed in the recovery, and the information that is obtained.
Unfortunately, the state of the world (in particular, the set of wrenches in the robot’s tool belt)
depends on the sensor readings that have occurred. Since this information is not known until

12



Recovery Recovery
Location of Wrench Action Sequence Cost

in tool belt tighten 1
in an open box goto, pickup wrench, goto, tighten 4
in the closed box robot is trying | remove bolt, open, get wrench, close, insert bolt, 6
to bolt tighten

in some other, bolted box goto, loosen, remove bolt, open, get wrench, close, 10

insert bolt, tighten, goto, tighten

Table 1: Using a default value to recover from bad data.

Recovery Recovery
Location of Wrench Action Sequence Cost
in tool belt remove bolt, sense, insert bolt, tighten 4
in an open box remove bolt, sense, insert bolt, goto, pickup 7
wrench, goto, tighten

in the closed box robot is trying | remove bolt, sense, open, get wrench, close, insert 7
to bolt bolt, tighten

in some other, bolted box remove bolt, sense, insert bolt, goto, loosen, re- 13

move bolt, open, get wrench, close, insert bolt,
tighten, goto, tighten

Table 2: Using a sensor to recover from bad data.

execution time, it is impossible to know before planning begins the exact context during any arbitrary
recovery. Nevertheless, we can learn a good deal by characterizing the effects of the context on
recovery, and that is what we do in this section.

Tables 1 and 2 describe the costs in the various contexts in which recovery from bad data can
occur. Each row is a world state context, and each table assumes a given recovery method. For
example, consider the case where we recover from bad sensor data by using a default value (see
Table 1). The bad data will be discovered when the robot attempts to tighten the bolt using an
incorrect size of wrench. The default indicates a wrench to try next, and the first column specifies
the location of this wrench in the current state. If that wrench is in the box the robot is currently
attempting to bolt, the third row of the table applies.

It is in principle impossible to know prior to executing a portion of the plan exactly which of the
eight recovery sequences will be used. However, using these context-dependent recovery costs, we
can determine the expected cost of recovering from bad data by weighting each cost from the tables
by the likelihood of the agent being in the associated context. This likelihood can be determined
based upon four pieces of information. In addition to b and w, we also need the following information
to model the expected cost:

h = The number of wrenches the agent is currently holding (including those in its tool
belt).

¢ = The number of boxes currently closed.

The values of b and w remain constant for a given problem. Since each goal involves bolting closed
a box, c reflects the number of goals achieved so far.

Suppose we want to know the expected cost of recovery from bad data at an arbitrary decision
point assuming we try sensing first, it fails, and then defaulting works (event sequence SD). At
the time when the sensor fails and we are ready to try a default, we could potentially be in any of
the contexts listed in Table 1. We must find the probability of each context. Let us assume that
there is an equal likelihood that the default value will indicate any one of the w wrenches. Then,
the probability that it will indicate a wrench that the robot already has in its tool belt is simply

13



h/w.® Being in the second context (the wrench is in an open box) requires that we are not holding
the correct wrench (probability (w — h)/w), and that the box containing the wrench is not closed
(probability (b — ¢)/b). Similarly, the third and fourth contexts occur with probabilities (w — h)/wb
and (w — h)(c — 1) /wb, respectively.

Using these probabilities together with the context-dependent recovery costs from Table 1, we
define a function I'p(b,w, h,c) to denote the expected incremental cost of using a default to recover
from bad data given the values of b, w, h and ¢. We refer to this as an incremental cost since it
computes the cost associated with a single recovery, and we will sum these costs later.

I he) = 1.0 44. 2P0 gw=h_ ,, (w=h-1)
w wb wb wb

1
o (bh + 2(w — h)(2b+ 3¢ — 2)).

The same probabilities can be used for the incremental cost of attempting to recover via sensor use:
h —h)(b-— —h —h)(c—1

PR Colnt ) Gl BT el (RN PON Colln ) Gl )

w wb wb wb

iw (4bh + (w — h)(Tb + 6¢ — 6)) .

IS(ba w, h7 C)

Tables 3 and 4 give expected recovery costs for values of h and ¢ from 1 to 10 assuming b = w = 10.

Recovery costs associated with bad data change as the agent proceeds through the various plan-
ning and execution phases. For instance, as the agent achieves more of its goals, it acquires more
wrenches, reducing the likelihood of expensive recoveries where the robot does not already have the
wrench. However, there are competing costs at work here. As the agent achieves more goals, more
boxes are bolted shut, so the probability of having to reopen a box for the wrenches the agent has
not collected increases.

As a comparison of these two recovery policies let us find their difference.

1

IS(waahac) - ID(bawahac) = bw

(3bw — 2w + 2h).

Note first that this difference does not depend upon ¢ at all. Second, as b gets large, the difference
approaches 3 for all values of w and h. This makes sense since from Tables 1 and 2 we can see
that, in three of four contexts, recovering via sensor takes three more actions ((1) obtain a bolt, (2)
sense it and (3) return it to its spot) than recovering via default. The only exception is where the
needed wrench is in the box on which the robot is currently working in which case there is a helpful
interaction between sensing and getting the wrench. As the number of boxes grows, the likelihood
of this exception context shrinks.

Recovery via sensor is always more expensive than recovery via default, but we must remember
that in the latter case we have already sensed the bolt size (with incorrect results) so a sensing cost
has already been paid and evaluated as part of C’(b,u, h). Furthermore, deciding to sense first and
then recover if necessary by using a default can lead to excessive premature actions. Thus, it is
incorrect to simply compare corresponding entries in each table to choose the least costly policy.
The correct choice is also a function of sensor/default reliabilities, and the cost of recovering from
premature actions for each.

There is of course a third type of recovery where human intervention is used. We treat human
intervention as an expensive sensor operation that supplies information to the agent, but leaves the
world unchanged. After the agent receives this information it can plan recovery actions. Again,
context determines the exact operations and hence the cost. The actions taken are identical in all
contexts to those used when recovering via default. Thus, we define

IH(bawa h,C) = ID(bawa h7 C) +n

%0ne might think this ratio should actually be (h — 1)/(w — 1), since we know one of the wrenches we are holding
has already failed, but it is possible for recovery to yield the same incorrect value as the original attempt. Since BUMP
does not detect such pointless recovery attempts, we do not use this knowledge in this calculation.

14



Wrenches Boxes Closed

Held 1 2 3 4 5 6 7 8 9 10

1 3914450556066 |71|77]|82]|8.7

2 3.6 40|45 |50|55(60 6469|7479

3 323741454953 |58|62]|66]| 70

4 291331364044 |47 |51 |54|58]|6.2

5 2612913213538 |41 |44 |47 50|53

6 2312512830132 (353740142 | 44

7 2012112312527 (129(30(32]34]|36

8 16 | 1.8 192021 |22|24|25]|26 |27

9 1314141516 |16 | 17| 17|18 | 1.9

10 1.0|110(10|10|10|10|10|1.0]|101| 1.0

Table 3: Expected Cost Ip (with b = w = 10).
Wrenches Boxes Closed

Held 1 2 3 4 5 6 7 8 9 10
1 6.7 727818318994 (99 105 | 11.0]| 11.6
2 6469|7478 83|88 |93| 98| 10.2|10.7
3 6165697478 82(86| 90| 95| 99
4 58 1626569 |72 |76|80| 83| 87| 9.0
5 5558|6164 |67 |70(73| 76| 79| 82
6 52 |54(57(59|62|64|66| 69| 7.1 7.4
7 4951|153 |54|56|5860| 62| 63| 6.5
8 46 | 4.7 48 | 5.0 | 5.1 |52 | 5.3 54 5.6 5.7
9 43 |1 44|44 |45 |45 | 46 | 4.7 4.7 4.8 4.8
10 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 4.0 4.0 4.0

Table 4: Expected Cost Is (with b = w = 10).

15




where, as before, 1 is the cost of a single human intervention.
Now we return to the question of finding & ,,. In a few simple cases, dp ., is simply equal to an
appropriate incremental cost. For example,

d35(SD,D,I)=1Ip(3,5,1,1).
This is true since there is exactly one recovery, and at that point we know

1. the robot has exactly one wrench which the sensor told it to pick up (assuming it had zero to
begin with), and

2. exactly one box is closed—the one the robot unsuccessfully tried to bolt—assuming every box
was open initially.

However, in most cases we cannot determine before execution time the correct values for the argu-
ments of the incremental cost functions. The value of ¢ is not a problem, but we cannot determine
h. We do not know before execution the values of the sensor readings that will be made and hence
which wrenches will be collected. For example, after the event sequence SDI-DSI-DI-SI the robot
might still have only two wrenches (all S’s and D’s indicate the same wrench, and the I’s indicate
one other wrench). Alternatively, the robot could have 10 wrenches if each attempt at closing a box
used a new wrench. Thus, we cannot precisely calculate the context, nor the value for &y, .

3.5 Finding a Near-Optimal Policy

In this section we will use an approximation of expected cost for recovery from bad data, and this
will allow us to obtain an O(blogb) algorithm for selecting the probabilistically optimal cost-based
sensing policy. The approximation made here is that we ignore the context when calculating the
cost of a recovery due to bad data and instead use a cost averaged over all contexts. An alternative
method in which context is preserved and dynamic programming is exploited to control the inherent
complexity is discussed thoroughly in [Krebsbach, 1993].

We first derive three new functions I (b, w), I (b, w) and I} (b, w) denoting these average costs.
The empirical study in [Krebsbach et al., 1991] and the analysis in this paper made the domain
restriction that a different wrench was needed for each box. This implies that in any reachable
context h > ¢. We will use this fact in deriving I, (b, w) and Ig(b, w) and I (b, w). The formula for
I (b,w) is

2 = bh + 2(w — h)(2b + 3¢ — 2)
I, (b, = —
p(bw) w(w+1)’;; bw
2 w
= — bh? + h(w — h)(3h +4b —1
o T 2o+ bl G+ 45 1)
_ 3w?® — 5w+ 12bw — 6b + 2
N 6bw '
The formula for I5(b, w) is
w h
2 4bh + (w — h)(7b + 6¢ — 6)
I (b = —
s(b,w) w(w+1)’;czz1 bw
2 w
= - 4bh? - _
Iy ’;[ bh? + h(w — h)(3h + Tb — 3)]
_ w? — 3w + 10bw — 2b + 2
B 2bw '

Also, Iy (b,w) = Ip(b,w) + 7.

16



| a | Ab,w(aara 3) |

SDI | (1 = s)(Ip (b, w) + (1 — 7)1 (b, w))
SI (1 —s)I(b,w)
DSI Q—-r){Ig+ (1 —s)I(bw))
DI (1—r)I(b,w)

I 0

Table 5: Ay (a,r,s).

This simplification enables us to approximate dp,, as a sum of the incremental recovery costs.
First for any single decision point event sequence a;, we define rec(a;) to be the set of recoveries of
a;. This is simply the set of non-initial resources in the sequence. For example, rec(SDI) = {D, I}.

Now,
b
Spuwlan,..a)m Y, Y Libw).

i=1 jEI‘eC(a,’)

This approximation of d ,, allows us to derive a very simple approximation for K3 ,,. For example,

Ky (SDI,SDI) ~ C'(2,2,0)
+ (1= 51)Ip(2,w) + (1 = )T (2,w))
+ (1= 82)(Ip(2,w) + (1 — r2) I (2,w)),

and

Kso(DSL,SII) ~ C'(3,1,1)
+ (1 =r)(Is(3,w) + (1 = s1) I (3, w))
+ (1 = 82) I3 (3, w).

In each case we begin with C' and than add one term for each decision point reflecting the costs
of recovering from bad data. This term is constructed as follows. If the first letter in the partial
policy is D or S, find the probability that this attempt will fail. If the next letter is I, multiply
this failure probability by If;. Otherwise, find the probability that the second attempt will fail,
multiply this probability by Iy, add to this the appropriate I' value for the second attempt and
multiply by the probability of failure for the first attempt. Thus, DI yields (1 — r;)I}, and DSI
yields (1 —r;)(I5 + (1 — s;)I). The length of the entire approximating formula for K is O(b) for b
decision points.

In determining the policy for a particular decision point there are two crucial questions. First,
should we start off with a sensor reading for this decision point? If yes, this probably implies
additional premature actions. The exact number of extra premature actions caused by an S-initial
policy at this decision point depends upon the total number of S-initial policies that are selected.
Hence this part of the policy selection cannot be made locally.

Given a decision regarding the initial attempt, a second question is what options to use when
recovering from bad data. If a decision has been made to start with a sensor reading, should
the policy be SDI or SI? Similarly, if we decide not to start with a sensor should we choose DSI,
DI or 1?7 Fortunately, this decision can be made locally. To see this, let us first introduce some
convenient notation. Let Ay, (a,r,s) be the expected cost of recovering from bad data during
execution of a policy a for one decision point, assuming reliabilities 7 and s. The formulas for
calculating Ay . (a,7, s) based upon incremental recovery costs are shown in Table 5.

We can now write the expected cost of a policy as

b
Kb,u,(al, .. .,ab) ~ C'(b,u,h) + Z Ab,w(ai,ri,si). (6)

i=1

"Like a default, human intervention does not lead to premature actions. Thus, the I policy is grouped with DSI
and DI.

17



Let us assume that some decision point a; in formula (6) uses policy SDI. Now consider a modifi-
cation of this policy where a; = ST:

b
Kb,w(al,...,ag.,...,ab) ~ C'(b,u,h)—i—(ZAbvw(ai,ri,si)> (7
i=1

— Apwlag,rj,s5) + Apwlal,rj,s5)-
Subtracting (7) from (6) gives the improvement (i.e., the decrease in cost):
Apw(ajrj,s5) = Dpw(aj,rys) = (1= s5)(Ip(b,w) + (1= 1) I (bw)) — (1= 5;) I (b,w)
= (- 8;)Ipb,w) — Iy (b, w).

We should prefer a; to a; if this improvement is greater than or equal to zero. That is, the modified
policy (with aj = ST) is at least as good as the original if

(1= s;)(Ip(b,w) = 1T (bw)) > 0. (8)

Since s; < 1, this is true whenever s; = 1 or I (b,w) > r;I}(b,w). This can be determined
independently of the policy selections for other decision points.

Similar reasoning can be used to select locally between the non-S-initial policies DSI, DI and 1.
We simply find the minimum of the three values Ay ,(DSI,r,s), Ap (DI, r,s) and . If the first
one is the minimum, select DSI; if the second, select DI; otherwise, select I.

We can express the above more succinctly by defining a function scorey o, (a,r, s) where

n ifa=1,

SCOT€p, (a; r, 8) = { Ab,’w(a’ T, S) otherwise.

Then, for each decision point we consider the S-initial policy with the smaller score and the non-S-
initial policy with the smallest score.

To obtain our policy selection algorithm, we start by considering a policy that consists only of
the best S-initial components as determined above. Call this complete policy P. Now, consider m
decision points within this policy. Let pi,...,pl, be the best non-S-initial policies and py,...,pm
be the best S-initial policies for these m decision points. Furthermore, let P’ be the complete policy
that results from substituting pi,...,p, for p1,...,pm in P. The improvement in using P’ instead
of Pis

Kb,w(P) — Kb,w(Pl) ~

<Z[scoreb,w (pi,Ti, i) — scorep (P, 7, sz)]> + C'(b,b,0) — C'(b,b —m, h*), 9)

i=1
where h* is the number of I policies in p},...,pl,. Note that
C'(b,b,0) = C'(b,b —m, h*) = mo — h*n + «[p(b,b) — p(b, b — m)].

If we wish to use m non-S-initial policy components, it should be the m components that maximize
the value of the improvement shown in (9). Given that b and m are fixed for the moment, this
amounts to maximizing

(Z[Ab,w (Pz’ﬂ‘i, Si) - Ab,w(pi,n-, 51)]) —h*n (10)

To find the best m components we do the following. For each decision point, ¢, find the difference
between the scores of the best S-initial component, p;, and best non-S-initial component, pj}, (S-initial
minus non-S-initial). This in effect calculates one term of the sum shown in (10). Call this difference
the cost-competitiveness of the non-S-initial component. The full set of cost-competitiveness values
can be found in time O(b) for b decision points. Next, sort the decision points in decreasing order of
cost-competitiveness (O(blogb)). The m components maximizing (10) will be the first m components
in the resulting list. We finish the policy selection process by deciding how many non-S-initial
components to use. The O(b) algorithm in Figure 3 is applied to the sorted list of decision points
to determine this number. Thus, the complete algorithm takes time O(blogb).

18



BestM := 0;

BestImpr := 0;

Sum := 0;

form :=1to b do
begin

if pl, = ‘I’ then h* := h* + 1;

Sum := Sum + Ay o, (P, Ty Sm) — Do,w (Pl T S )
Impr := Sum + C’(b,b,0) — C'(b, b — m, h*);

if Impr > BestImpr then

begin
BestImpr := Impr; BestM := M
end
end
Figure 3: Algorithm for best number of defaults.
Method All Defaults Dynamic Ezhaustive Domain
SDI | Algorithm | Programming | Best | Worst | Average | Dependent
| Cost | 67.0] 572 | 57.4 | 574 ] 80.7 [ 70.0 | 65.0 |

Table 6: Comparison of expected costs with b = 5,r; = 0.4,s; = {.5,.6,.7,.8,.9} and n = 10.

3.6 Comparison of Performance

Tables 6 and 7 contain expected costs for two problems.

1. Five boxes with all default reliabilities equal to 0.4, and the five sensor reliabilities equal to
0.5, 0.6, 0.7, 0.8 and 0.9, respectively.

2. Ten boxes with all default reliabilities equal to 0.2 and all sensor reliabilities equal to 0.7.

3.6.1 Domain-Independent Strategies

Five different methods were used to derive the cost figures displayed. The first of these uses a policy
that consists entirely of SDI. The second uses the policy selected by the algorithm in Figure 3.
The third uses the dynamic programming approach outlined in [Krebsbach, 1993], while the
fourth provides best, worst, and average costs derived from checking all possible solutions. There
are a few things to make mention of in the third and fourth cases. First, the dynamic programming
method is a polynomial time version of the exhaustive method, both of which guarantee an optimal
solution. For this reason, these two methods come up with the same sensor strategy and thus

Method All Defaults Dynamic Ezhaustive Domain
SDI | Algorithm | Programming | Best | Worst | Average | Dependent
[ Cost [147.4 | 1346 | 1334 | * | * | * [ 1300 |

Table 7: Comparison of expected costs with b = 10,r; = 0.2,s; = 0.7 and n = 10. A * indicates a
value that we were unable to compute.

19



produce the same (minimal) cost. The exhaustive method is included both to provide and upper
bound and an average, (which is not possible with dynamic programming, since many paths are
pruned) and finally to emphasize the point that it was not possible for us to obtain an answer for
even a ten-box problem exhaustively. Asterisks are used to indicate this in Table 7.

Some explanation is necessary for the fact that the cost in the Defaults Algorithm column of
Table 6 is smaller than the Dynamic Programming cost and the Best-case Exhaustive column which
describes the optimal expected cost over all strategies. The cost in the Defaults Algorithm column
is calculated using the same approximations for the cost of recovery from bad data as are used in
the algorithm itself while the Exhaustive search costs use the actual expected costs of recovery from
bad data with the full recovery context taken into account. It is important to note that the same
sensing policy was obtained in both cases, so the Defaults Algorithm did find the optimal strategy.
Furthermore, the closeness of the costs in these two columns suggests that the approximations used
in the Defaults Algorithm result in a cost that is a reasonable approximation to the actual expected
cost.

3.6.2 Domain-Dependent Strategies

The final column of these tables gives an estimate assuming a special-purpose domain-dependent
technique such as Sense Before Closing. There are different ways to design such a strategy. The data
in the table assumes the following simple two-pass method. One pass is made to sense all bolts in all
boxes and pick up every wrench found (under the assumption that they will all be needed). A second
pass is then made to perform all actions to achieve the goals. While this method eliminates premature
action completely, costs due to bad data are still present (we assume 10 actions to recover in 30%
of the cases, based on the sensor reliabilities given here). In addition, SBC produces many more
goto actions and, more importantly, is extremely dependent on the number of wrenches included in
the domain, which is conservatively assumed here to be the same as the number needed. Even with
these generous assumptions, it can be seen that this domain-dependent strategy only performs on
par with the best domain-independent strategies.

In reviewing this line of research, a number of our colleagues have asked the following question,
in some form or another:

“Why explore general purpose strategies like Stop and Execute (SE) and Continue Else-
where (CE) in a domain like the Tool Box World when they are known to lead to prema-
ture action in some cases? Why not use a strategy like Sense Before Closing (SBC)? Since
by definition such a strategy would obtain all sensor data before closing any boxes, there
is no chance for premature action. Why not eliminate premature action altogether?”

The answer to this question depends upon what you think is an interesting research question
to ask. The rest of this section is intended to demonstrate how easily a specific strategy like SBC
breaks down with relatively slight perturbations to the problem. It should be noted however that
the authors of this paper spent many hours exploring exactly how generally applicable strategies
like SBC really are. The following scenarios are exemplary of our findings.

Scenario One: Adding Wrenches. Suppose we now take the ten-box problem mentioned pre-
viously, except that the number of wrenches in the domain is 1000 instead of b. Since even the SBC
(two pass) strategy does not provide the agent with information about which wrenches to pick up
in time to be useful, the agent would have to pick up 1000 wrenches to guarantee no premature
action, but at what a cost! This would imply at least 990 unnecessary wrench pickup actions alone.
For matter’s of comparison, Krebsbach’s cost formulas [Krebsbach, 1993] would predict that adding
990 wrenches to the problem implies not 990 new actions, but only an additional 22.0 actions to the
optimal domain-independent strategies (155.4 vs. 133.4 actions).

Even in the worst case with the SE strategy (assuming every sensor and default fails, and that
human interaction is very expensive) we will be in much better shape than SBC in this case. In
this reasonable problem, SBC is equivalent to a mechanic starting his day by driving to auto parts

20



stores and filling a truck with all of the parts and tools that could potentially be needed on that day
without a clue as to the jobs to be performed.

It should be noted that a three pass strategy would be more appropriate to combat the problems
associated with the proliferation of wrenches. With this strategy, a middle pass could be used to
collect only the 10 matching wrenches. Here the penalty is in extra goto actions. The number of goto
operations would be between 19 and 30 inclusive, depending on how the wrenches are distributed
and how sophisticated the algorithm is at minimizing gotos.® The number of gotos alone is likely
to be enough to overwhelm what Krebsbach [Krebsbach, 1993] predicts as premature action cost for
this problem, which of course is all that is being saved.

Scenario Two: Expensive Gotos. The brittleness of SBC is further demonstrated if we allow the
cost of gotos to vary with an aspect of the domain (e.g., distance between boxes). Suppose we again
are faced with the problem described in scenario one, except that costs associated with travelling
between boxes (i.e., gotos) depend on distances between boxes (a more reasonable assumption) and
that such costs are generally fairly high in relation to the unit cost of other actions. Since SBC
depends heavily on visiting each box two or three times, SBC could be badly inefficient. SBC is
specific to a very small class of problems, and becomes largely inefficient with small perturbations
to the problem; a bad quality in a strategy.

Scenario Summary The point we wish to make with this example is not simply that one special-
purpose strategy works poorly with one particular domain assumption (e.g., number of wrenches) or
cost assumption (e.g., expensive gotos). The principle is that the more general techniques presented
here allow the user to take the specific constraints of one of a large class of problems into account
by building them into the cost formulas. For example, SBC is good for a small class of problems
in which recovering from premature action is very expensive, (since it eliminates premature action
completely). However, by altering the cost formulas to reflect this (either analytically or empirically),
our approach would work as well, and for a much larger class of problems. By identifying and
accounting for the factors which influence sensor decisions in the cost formulas, specific strategies
for every problem and variation thereof can be largely avoided, allowing a technique like dynamic
programming to minimize these costs automatically.

3.6.3 Application to Other Domains

Our principle goal in this paper is not to provide the precise formulas for the Tool Box World, but
rather to gain a sufficient understanding of the factors that influence policy selection. Although we
have analyzed these factors mathematically, the algorithms that have come out of this understanding
can be used in other domains without performing a similar mathematical analysis. To apply the
algorithm in another domain, the following things must be true:

1. There is a way to determine the decision points prior to planning.
2. p(b,u) is known or can be approximated.

3. I5(b,w), Ip(b,w) and I (b,w) are known or can be approximated.
4. The constants §,0,n and 7 are known or can be approximated.

Approximations for items (2)—(4) can all be obtained empirically by actually running the planner
on sample problems. This would allow the use of the algorithm in most realistic domains that are
too difficult or time-consuming to analyze mathematically.

8The middle pass could probably be optimized somewhat by trying to pick up a wrench on the first pass if we
already know that we need it. The degree to which this can be done depends upon the placement of the wrenches.

21



4 A Success-Based Analysis

In this section we analytically determine the expected success rates for the Tool Box World. We then
use this analysis to obtain an algorithm for optimizing success rates by selecting a sensing policy.
This method is appropriate when the robot is unable to recover from premature actions and bad
data. The result of this analysis will be the demonstration that the domain-independent extensions
studied in this paper are not sufficient when success is the criterion and domain-dependent strategies
are most likely required.

4.1 Predicting Success Rates

In this analysis we make the same assumptions as made in the cost analysis. Namely, we assume
the top level goals are reordered, as described in Section 2 so as to maximize the average success
rate, and we use the Stop and Execute control strategy. As a starting point we consider cases where
there are b boxes and exactly 2 unknowns. We then generalize this result to the success rate for b
boxes and v unknowns which will be denoted by Q (b, u).

Let us reconsider our examples from Section 3.2.1. To review, there are 3 tool boxes S, T and
U that are to be bolted closed with bolts b, b; and b,,, respectively. The sizes of these three bolts
are 4, 5 and 6, respectively with only b, known. The goals are considered by the planner in the
order S, T then U. Also, b, isin S, b; is in T and b, is in U.

In our earlier empirical study of these problems we found that out of the 27 cases in this example
there are 10 failures, and all of them have the following characteristic: either wrench 5 or wrench 6
(or both) is prematurely locked in box S. In both cases the premature action must occur before bolt
b; is sensed since once this sensor operation occurs the planner has all necessary information and a
complete plan is found. BUMP can succeed if something causes it to sense b; before closing S. This
will happen whenever the robot must travel to box T (the location of b;) before closing S, and this
in turn will happen if wrench 4 is in T.

We can concisely describe the failures in this case by the logical formula

44T ANGBeSV6EDS)
Negating this gives the successful cases
4eTV(5&SAN6ES)

The first disjunct, 4 € T is true in 1/3 (= 9/27) of the problems. When it is false, BUMP still
succeeds if the second disjunct is true. This combination occurs in (2/3)3 = 8/27 of the cases, all
of which are distinct from the previous 1/3. Given 27 problems in the three box domain, we have
accounted for the 17 successful cases.

Now let us extend our analysis to the case where there are b boxes and 2 unknowns. Using
our earlier notation, BUMP will be successful if and only if none of the wrenches are bolted inside
B(g1). There are two ways to guarantee this. The first is that W(g1) € B(g2) since this will result
in the construction of a complete plan before any boxes are closed. The second is that none of the
wrenches W (g2), W (g3),- .., W(gs) are in B(g1). The first of these conditions is true in b*~1 of the
b-box problems. When this condition is false (i.e., W(g1) € B(g2)), there are b — 1 possible places
for W(g1). Since none of the other wrenches can be in box B(g:) there are also b — 1 places for
each of those wrenches. This gives success in (b— 1)? problems (all distinct from the previous ones).
Adding and then dividing by the number of b-box problems gives us the success rate:

bO-D 4 (b—1) 1 (b— 1)”

Qb =—F L =+ (2

o 5 (11)

Figure 4 contains a plot of Q(b,2).
Tt is interesting to examine what happens as b grows with u fixed at 2. Taking the limit of Q (b, 2)
as b approaches infinity yields the following:
L (b=t ’
b b

lim Q(,2) = lim

b—o0 b—oo

22



0.8 - i

0.6 - i

Q(b,2)
0.4 F i

0.2 - .

0 10 20 30 40 50 60 70 80 90 100

Figure 4: Graph of Q(b,2).

_ e (1)
I = '

Using the substitution b= 1/x we convert this limit to

lim (1 —z)'/*. (12)

z—0t

Taking the natural logarithm of (12) and using L’Hopital’s rule we get

-1
lim In(1—2)/* = lim
z—0+ z—0t 1 —x
= -1

Thus,
lim Q(b,2) = e~ ! ~ .3678.
b—oo

As with cost, this limit suggests that in this domain it is not the number of boxes that makes
a problem difficult, but the number of unknowns. Having more boxes interacts with this for small
values of b, but past a certain point it makes virtually no difference how many boxes there are, and
with only 2 unknowns we are guaranteed of a success rate of at least 36%.

4.2 Generalizing to Q(b,u)

In generalizing our result from the previous section it is convenient to talk about the number of
successes in addition to the success rate. We will use the notation S(b,u) to refer to the number of
successes (considering the entire problem space) with b boxes and u unknowns. There is a simple
relationship between S and Q.
S(b,u) = Q(b,u) - b°. (13)
With zero or one unknown there are no failures due to premature actions since no boxes are
closed prior to completion of the plan. So

S(b,0) = b (14)
S(b,1) = b (15)



Unknowns
Boxes 2 3 4 ) 6 7 8 9 10
2 || .750
31 .630 .370
4 || .566 .281 .168
5 .528 .241 .121 .072
6 || .502 .218 .100 .050 .030
7| .483 .203 .088 .040 .020 .012
& || .469 .192 .081 .035 .016 .008 .005
9|l .458 .18 .076 .032 .014 .006 .003 .002
10 || .449 .179 .072 .030 .013 .005 .003 .001 .001

Table 8: Q(b,u) for 2<b<10and 2<u < b.

Using our result (11) from the previous section, along with formula (13), we also know
S(b,2) =1+ (b—1)". (16)

We now derive a recurrence relation for S(b,u). Consider g;, and assume v > 2. If none of
the wrenches for goals ga2,93,...gp are in B(g;), then no matter where W(g;) is located BUMP will
not lock any needed wrenches into B(g;). Assuming that the wrenches for the remaining b — 1
boxes (u — 1 of them with unknown information) are arranged so as to avoid any premature actions,
BUMP will succeed on the problem. Using recursion, this gives b-S(b— 1,u — 1) problems on which
BUMP will succeed. The only other cases that do not involve locking a wrench in B(g;) are when
Wi(g2) € B(g1) AW (g1) € B(g2) (i-e., a flipped condition). Obviously, none of the wrenches for the
other goals can be in B(g;) since this would produce a 2-back failure. Similarly, none of them can
be in B(g2) since W(g2) € B(g1) and

1. having W (g3) in B(g2) would produce a half-flipped failure, and
2. having any of the wrenches W (g4),..., W (gs) in B(g2) would produce a 2-back failure.

Thus, with the first two wrenches flipped, BUMP will succeed whenever the wrenches for the remaining
b— 2 boxes (with u — 2 having unknown information) are in a successful configuration involving only
those b — 2 boxes. This is another S(b — 2,u — 2) cases. Combining these two distinct classes of
success gives

Syu)=b-Sb-1Lu—-1)+Sb—-2,u—2) (17)

where u > 2. The base cases for this recurrence are given in (15) and (16).
From this we can find a recurrence relation for the expected success rate for any b box, u unknown
tool box problem.

Qb = 20
b Sh-1Lu—-1)+Sb-2,u—2)
= 7
b(b—1)"1Q(b—1,u—1)+ (b—2)"2Q(b - 2,u—2)

Bo
The values of Q(b,u) for b=2,...,10 and u = 2,...,b are shown in Table 8.

4.3 Selecting a Sensing Policy

Now we must account for the unreliability of sensors and default values. As before, let r; be the
reliability of a default value and s; the reliability of a sensor reading. We assume that if incorrect
default information is used, the robot will eventually detect an execution time error. This will

24



necessitate some amount of execution time error recovery, and the resulting execution will certainly
be inefficient. For irreversible actions, we consider this a failure, so the decrease in premature actions
by having extra “known” information must be adjusted by the reliability of that information. A
similar point can be made regarding sensor reliability.

In [Krebsbach et al., 1991, Krebsbach et al., 1992] we outlined an algorithm for selecting the
sensing policy that optimizes the success rate given that default and sensor information might be
erroneous. This algorithm consisted of evaluating the expected success rate for all combinations of
default/sense decisions and taking the combination with the largest value. As an example, for the
3 box problem the expected success rates of each of the eight sensing policies are:

{rir2r3Q(3,0),717253Q(3, 1), 7152m3Q(3, 1), 817273Q(3, 1),
7‘18283Q(3a 2)7 817‘283Q(3a 2), 81827‘3Q(3a 2), 518233Q(37 3)}

Unfortunately, the complexity of this algorithm is O(b2°) where b is the number of decision points.
In this section we further analyze this problem and present an O(blogb) algorithm for selecting
the sensing policy that maximizes the expected success rate. This algorithm is similar to the one
presented earlier for cost-based policy selection, although the current one is somewhat easier to
understand and does not require any approximations.

As a starting point, consider the case where we decide to use a sensor to determine the wrench
required for each of b decision points. The expected success rate is

b

Q,0) [ s:- (18)

i=1

Now consider the effect on the success rate of using a default for one of those b decision points, d.
This implies one fewer unknown and a change in reliability. So the new success rate is

b

Qb — 1) ] - (19)

8d ;5
Dividing (19) by (18) gives the factor of improvement

ra Qb= 1)
Sd Q(bab) ‘

There are two important contributions to this factor of improvement. One is the comparative
reliabilities, rq and sq, of the default and sensor, respectively. We will call the ratio rq/sq the
competitiveness of the default. The other factor represents the improvement gained from using one
default (as compared to zero). This factor will be the same no matter which default we use. From this
it is clear that if we use exactly one default, it should be the one with the maximum competitiveness
ratio. Taking any other default instead could never lead to a larger factor of improvement.
More generally, the factor of improvement in taking m defaults i1, ..., 4., is
Tis Ty Tin Q(b,b—m)

Siy Siy o Sim Q(b, b)

Again, there are two contributions to this improvement:

1. the product of the competitiveness ratios of the m defaults, and
2. the improvement Q(b,b — m)/Q(b,b) from taking m defaults.

Since the second contribution is independent of the defaults that are selected, it is best to take the
m defaults with the largest competitiveness ratios. Substituting other defaults could only reduce the
improvement factor. Now the problem of deciding which defaults to take is reduced to the problem
of deciding how many defaults to take. This is a much easier problem.

25



BestM := 0;

BestImpr := 1;

Prod := 1;

form :=1to b do
begin

Prod := Prod X ., /$m;
Impr := Prod x Q(b,b—m)/Q(b,b);
if Impr > BestImpr then
begin
BestImpr := Impr; BestM := M
end
end

Figure 5: Algorithm for best number of defaults.

We first add the following convention: the decision points are sorted in order of decreasing

competitiveness. That is,
T1 T2 > Ty

S1 S9 Sp

Now, the optimal sequence of sense/default decisions is defined as follows. Take defaults d;,ds, . . . dp,
for 0 < m < b where m produces the maximum value for

ﬁ i\ Q(b,b—m)
i—1 Si Q(b7 b) .
Sorting the decision points takes time O(blogb). Figure 5 shows an O(b) algorithm to find the
number of defaults that produces the maximum improvement (assuming the Q-values have been
precomputed). Combining the sort with the algorithm in Figure 5 yields an O(blogb) algorithm.

In summary, if we know the Q-values and the reliabilities of the sensors and defaults, we can find
the sensing policy that optimizes the expected success rate. This can be done in time O(blogb).
Furthermore, the primary factor that determines the usefulness of a default is its competitiveness
ratio, which can be calculated prior to planning and appears to be a more useful measure than the
reliabilities themselves.

4.4 Practical Implications

Although the algorithm described in Section 4.3 produces the optimal sequence of sense/default
decisions, it does not guarantee a very high success rate. For example, consider the 6 box problem.
For simplicity let us assume that r; = p and s; = o for all ¢ (1 < i < 6). In this case, all of the
competitiveness ratios are p/o. The optimal policy is determined by the value of m that maximizes

m Q(b,b—m)
(5) Qb,0)

For p = 0.4 and ¢ = 0.8 the optimal policy has m = 4. The expected success rate will be
p*o%Q(6,2) = 0.8%. We have given BUMP an extremely difficult task. It is missing six pieces
of crucial information, has sensors that work only 80% of the time, and we asked it to solve the
problem without making any mistakes. It cannot do this well using only the domain-independent
techniques explored in this paper. Special-purpose domain-dependent strategies are almost certainly
needed.

26



5 Related Research

Traditional approaches to planning assume that the planner has access to all of the world information
needed to develop a complete, correct plan—a plan which can then be executed in its entirety.
Unfortunately, information about the world is not always available at plan time.

Several solutions have been proposed to deal with incomplete knowledge. They range from
eliminating planning altogether in favor of reactive planning [Brooks, 1986] or situated systems
[Agre and Chapman, 1987, Kaelbling, 1988], to combining reactivity and planning [Georgeff and
Lansky, 1987, Firby, 1987, Wilkins et al., 1994], to verifying, before execution, the executability
of plans and adding sensing whenever needed to reduce the uncertainty [Doyle et al., 1986), to
preplanning for every contingency [Schoppers, 1987, Peot and Smith, 1992].

Since our work is an extension of classical planning, we will limit our comparison to solutions
that are fundamentally based on planning.

5.1 Planning with Incomplete Information

There have been a number of efforts to characterize the role of information in the context of classical
planning. Moore [1985] first focused attention on the role of the knowledge of an agent in planning
and acting to achieve a goal. When the knowledge is incomplete, the agent has to check whether it
has the knowledge necessary to carry out the plan, and to reason about how to obtain the missing
information.

The need to include actions to acquire information has prompted a number of extensions to
methods for representation of actions. For instance, Pednault [Pednault, 1989] allows actions with
context-dependent effects [Pednault, 1989]. A language has been proposed [F. Giunchiglia, 1994] to
represent and reason about actions and plans that are not guaranteed to succeed.

Etzioni and coworkers [1992] make a distinction between information goals, i.e., goals to gather
information, and information gathering actions, i.e., actions that change the world and, as a result,
force the world to be in a known state. They show how both can be represented by annotating
preconditions and postconditions of STRIPS operators, and they present a provably correct planning
algorithm based on their representation. We have not addressed representation issues because for
the domain we examined STRIPS-like operators are sufficient.

The XII planner [Golden et al., 1994] allows planning with incomplete information. It takes a
middle ground between the traditional closed world assumption (which states that information not
known is false) and the open world assumption (which states that information not explicitly known is
unknown). XIT uses a local closed world database to store the information that has been acquired. No
specific control strategy is used for deciding when to execute. It appears that, as soon as XII detects
the need for missing information, it plans on acquiring it and goes ahead to execute the plan. The
interleaving of execution with planning makes XII incomplete when actions are irreversible. Our
work proposes an algorithm for evaluating and selecting rationally a sensing policy, given some
criteria for plan quality. We have proposed and analyzed different control strategies to be used by
the planner in deciding when to sense, and we have shown how the choice of the control strategy
depends on the plan quality criteria.

Genesereth and Nourbakhsh [1993] describe rules for pruning the graph of possible states when
the information is incomplete. Their analysis focuses on incomplete information about the initial
state. For non-trivial problems the state graph becomes so large that, even with massive pruning,
finding a solution might be infeasible in practice. In BUMP we use the more traditional approach
to planning in which search is performed in the space of partial plans as opposed to the state-space
graph, and so the search space never grows so large to be unmanageable.

Conditional planning [Peot and Smith, 1992] and contingency planning [Schoppers, 1987] create a
plan that will work under all circumstances by creating tree structured plans that branch depending
on sensor outcomes. Conditional planning is a way of avoiding the problem of interleaving planning
with execution. Unfortunately, the search space becomes prohibitively large, and this makes this
approach impractical for any reasonably complex problem.

27



5.2 Interleaving Planning with Execution

Interleaving planning with execution has been proposed by many as a way of getting around the
issue of missing or uncertain information [McDermott, 1978).

Our work has been inspired, among others, by the work of Turney and Segre [1989], who studied
strategies for alternating between improvising and planning. Since sensing is assumed to be expen-
sive, their system prefers actions with the fewest sensor requests first. Their results show that the
quality of the heuristic improvisation strategy has the largest effect on the quality of the solution.

Wilkins [1994] interleaves planning with execution, but uses two different systems, one for plan-
ning (SIPE-2) and one for reactive execution (PRS-CL). His interest is in designing a complex system
that can react to changes in the environment and replan. He does not address explicitly the issue
of when and how to acquire missing information, and what is the effect of this choice on the quality
of the plan produced.

5.3 Planning with Uncertainty

There is a difference between planning with uncertainty and planning with missing information like
we do. Most methods of planning with uncertainty resort to monitoring information using sensors
to keep the uncertainty bounded [Doyle et al., 1986], and often use stochastic models [Hager and
Mintz, 1991, Cassandra et al., 1994, Draper et al., 1994]. For instance, Hager and Mintz [1991] have
proposed methods for sensor planning based on probabilistic models of uncertainty. Draper et al
[Draper et al., 1994] have introduced a variety of actions, such as information producing actions,
imperfect sensing, and informational dependencies in the context of classical planning, and extended
the applicability of planning by creating probabilistic planning algorithms.

5.4 Decision Theoretic Methods

The idea of planning to gather information is common in decision analysis. A number of authors
have proposed decision theoretic approaches to decide what and when to sense to produce optimal
(or near optimal) plans. Horvitz [1989] proposes a general model for reasoning under scarce resources
that is based on decision theory. Chrisman and Simmons [1991] produce near optimal cost plans
by using Markov Decision Processes to decide what to sense. Hansen [Hansen, 1994] incorporates
sensing costs in the framework of stochastic dynamic programming.

Abramson [1991] casts sensory integration as a decision problem and presents a formula for
deciding how often to sense depending on the rate of change of the environment. He assumes that
the plan is executed in an environment in which errors occurs “spontaneously” and so the problem
is that of finding what fixed rate of sensing is optimal. The problem we address in our research is
how and when to sense to acquire missing information, not how and when to monitor.

Wellman and Doyle [Wellman and Doyle, 1992] propose modular utility functions for decision-
theoretic planning. Modular functions allow specifying preferences, and composition methods allow
combining them. Unfortunately, constructing utility functions from goals requires significant mod-
eling of the problem domain.

Haddaway and Hanks [Haddawy and Hanks, 1993] propose a method for combining decision
theory with planning. They assume a context in which goals might be only partially satisfied and
have both a temporal and atemporal component. They define utility of goals and provide a rich
utility model, but they have not yet incorporated the utility models into a planning algorithm.

Work on extending the approach presented in this paper to use dynamic programming is de-
scribed in [Krebsbach, 1993]. A tree of possible sensing policies is generated offline using dynamic
programming, the optimal sensor decisions are cached at each level, and subsequently actual world
states are used as indexes into this structure to make a rational sensor choice online. The method
is polynomial in both space and time.

28



6 Concluding Remarks

Planning is a common and important human activity. Its essence is to predict the future and base
future actions on those predictions and the goals to be achieved. The advantage of planning over
simply reacting then, is to discover potential conflicts between the goals and the environment in
time to modify the plan of action (or perhaps the goals). We believe then, that planning is not only
a convenient, but an essential ingredient in the solution of a large class of problems.

This paper is intended to serve two purposes. The first is to demonstrate that important advan-
tages of planning need not disappear the moment we relax the classical assumption of an omniscient
(all-knowing) planner. We have shown this in a general way by endowing a fairly typical classical
planner with the ability to interleave planning and execution. This modified planner is able to solve
problems involving environmental uncertainty which classical planners, by definition, cannot.

Moreover, we identify what we consider to be the two major costs associated with the approach,
premature action and bad date, and provide a thorough analysis of these costs with regard to our
demonstration domain, the Tool Box World. While the analytic results we have obtained depend on
characteristics of this particular domain, we believe that the difficulties associated with premature
action and bad data are central to a large class of planning problems, especially those exhibiting the
characteristics outlined in Section 2.5.

The second purpose of the paper is to demonstrate how decisions involving adding sensing oper-
ations to a plan can be made rationally and in a computationally feasible way. We present a number
of algorithms toward this end. Through these algorithms we propose that making rational sensing
decisions involves defining a criterion or criteria one wishes to optimize (e.g., execution cost), and
then identifying the trade-offs inherent in the domain between the decisions made and their effect
on those criteria. Some of the effects may be treated in a context-free way (e.g., premature action)
while others may be more context-dependent (e.g. bad data). Again, while the cost analyses here
are specific to our domain, we intend the algorithms to be more general so as to provide practical
suggestions for computing costs feasibly in other domains, as well as encouraging further research
in the area of interleaved planning.

Acknowledgement

We wish to thank Mark Boddy for useful and influential discussions about topics in this paper, and
Tllah Nourbakhsh for comments on earlier versions of this work. We would also like to thank John
Schue for his assistance in computing the limits of functions.

References

[Abramson, 1991] Bruce Abramson. An analysis of error recovery and sensory integration for dy-
namic planners. In Proceedings of the Ninth National Conference on Artificial Intelligence, pages
744-749, 1991.

[Agre and Chapman, 1987] Philip Agre and David Chapman. Pengi: A theory of activity. In Proc.
of AAAI-87, pages 268-272, Washington, July 1987.

[Brooks, 1986] Rodney Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2(1):14-23, March 1986.

[Cassandra et al., 1994] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman.
Acting optimally in partially observable stochastic domains. In Proc. Nat’l Conf. on Artificial
Intelligence, volume 2, pages 1023-1028, 1994.

[Chrisman and Simmons, 1991] Lonnie Chrisman and Reid Simmons. Sensible planning: Focusing
perceptual attention. In Proc. of AAAI-91, Los Angeles, CA, 1991.

29



[Doyle et al., 1986] Richard Doyle, David Atkinson, and Rajkumar Doshi. Generating perception
requests and expectations to verify the execution of plans. In Proc. of AAAI-86, pages 202-206,
Philadelphia, 1986.

[Draper et al., 1994] Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with
information gathering and contingent execution. In International Conference on AI Planning
Systems, 1994.

[Etzioni et al., 1992] Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal Lesh, and Mike
Williamson. An approach to planning with incomplete information. In Third International Con-
ference on Knowledge Representation and Reasoning, 1992.

[F. Giunchiglia, 1994] P. Traverso F. Giunchiglia, L. Spalazzi. Planning with failure. In International
Conference on AI Planning Systems, 1994.

[Firby, 1987] R. James Firby. An investigation into reactive planning in complex domains. In
Proceedings of the Sizth National Conference on Artificial Intelligence, pages 202-206, Seattle,
1987.

[Genesereth and Nourbakhsh, 1993] Michael R. Genesereth and Illah R. Nourbakhsh. Time-saving
tips for problem solving with incomplete information. In Proc. of AAAI-93, 1993.

[Georgeff and Lansky, 1987] Michael P. Georgeff and Amy L. Lansky. Reactive reasoning and plan-
ning. In Proceedings of the Sixzth National Conference on Artificial Intelligence, Seattle, WA,
1987.

[Golden et al., 1994] Keith Golden, Oren Etzioni, and Daniel Weld. Omnipotence without omni-

science: efficient sensor management for planning. In Proc. Nat’l Conf. on Artificial Intelligence,
volume 2, pages 1048-1054, 1994.

[Haddawy and Hanks, 1993] Peter Haddawy and Steve Hanks. Utility models for goal-directed
decision-theoretic planners. Technical Report 93-06-04, Dept. of Computer Science and Engi-
neering, University of Washington, 1993.

[Hager and Mintz, 1991] G. Hager and M. Mintz. Computational methods for task-directed sensor
data fusion and sensor planning. International Journal of Robotics Research, 10:285-313, 1991.

[Hansen, 1994] Eric A. Hansen. Cost-effective sensing during plan execution. In Proc. Nat’l Conf.
on Artificial Intelligence, volume 2, pages 1029-1035, 1994.

[Hendler et al., 1990] James Hendler, Austin Tate, and Mark Drummond. AI planning: Systems
and techniques. AI Magazine, 11(2):61-77, Summer 1990.

[Horvitz et al., 1989] Eric J. Horvitz, Gregory F. Cooper, and David E. Heckerman. Reflection
and action under scarce resources: theoretical principles and empirical study. In Proceedings of
IJCAI-89, pages 1121-1127, Detroit, MI, August 1989.

[Kaelbling, 1988] Leslie Pack Kaelbling. Goals as parallel program specifications. In Proceedings of
the Seventh National Conference on Artificial Intelligence, pages 60—65, St. Paul, MN, August
1988.

[Krebsbach et al., 1991] Kurt Krebsbach, Duane Olawsky, and Maria Gini. Deferring task planning
in the tool box world: Empirical results. Technical Report TR 91-60, University of Minnesota
Department of Computer Science, Minneapolis, MN, 1991.

[Krebsbach et al., 1992] Kurt Krebsbach, Duane Olawsky, and Maria Gini. Sensing and deferral in
planning: Empirical results. In Proceedings of the First International Conference on AI Planning
Systems, pages 136-144, College Park, Maryland, June 1992.

30



[Krebsbach, 1993] Kurt Krebsbach. Rational sensing for an AI planner: A cost-based approach.
Ph.d. dissertation, University of Minnesota Department of Computer Science, 1993.

[McDermott, 1978] Drew McDermott. Planning and acting. Cognitive Science, 2:71-109, 1978.
[McDermott, 1992] Drew McDermott. Robot planning. AI Magazine, pages 55-79, Summer 1992.

[Moore, 1985] Robert L. Moore. A formal theory of knowledge and action. In Formal Theories of
the Commonsense World, pages 319-358. Ablex Publishing Corporation, 1985.

[Olawsky and Gini, 1990] Duane Olawsky and Maria Gini. Deferred planning and sensor use. In
Innovative Approaches to Planning, Scheduling and Control: Proceedings of the DARPA Workshop
on Planning, pages 166-174, San Diego, CA, November 1990.

[Pednault, 1989] E. P. D. Pednault. ADL: Exploring the middle ground beween STRIPS and the
situation calculus. In International Conference on Knowledge Representation and Reasoning,
1989.

[Peot and Smith, 1992] Mark Peot and David Smith. Conditional nonlinear planning. In Proceedings
of the First International Conference on AI Planning Systems, pages 189-197, College Park,
Maryland, June 1992.

[Schoppers, 1987] Marcel Schoppers. Universal plans for reactive robots in unpredictable environ-
ments. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pages
1039-1046, Milan, Italy, August 1987.

[Turney and Segre, 1989] Jennifer Turney and Alberto Segre. A framework for learning in planning
domains with uncertainty. Technical Report 89-1009, Department of Computer Science, Cornell
University, Ithaca, NY, May 1989.

[Wellman and Doyle, 1992] M. Wellman and J. Doyle. Modular utility representation for decision-
theoretic planning. In International Conference on AI Planning Systems, pages 236-242, 1992.

[Wilkins et al., 1994] D. E Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley. Planning
and reacting in uncertain and dynamic environments. Journal of Experimental and Theoretical
Artificial Intelligence, 6:197-227, 1994.

31



