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ABSTRACT

An accurate and efficient model of human perception has been developed to control the placement of samples in a
realistic image synthesis algorithm. Previous sampling techniques have sought to spread the error equally across the
image plane. However, this approach neglects the fact that the renderings are intended to be displayed for a human
observer. The human visual system has a varying sensitivity to error that is based upon the viewing context. This
means that equivalent optical discrepancies can be very obvious in one situation and imperceptible in another. It is
ultimately the perceptibility of this error that governs image quality and should be used as the basis of a sampling
algorithm.

This paper focuses on a simplified version of the Lubin Visual Discrimination Metric (VDM) that was developed
for insertion into an image synthesis algorithm. The simplified VDM makes use of a Haar wavelet basis for the
cortical transform and a less severe spatial pooling operation. The model was extended for color including the
effects of chromatic aberration. Comparisons are made between the execution time and visual difference map for the
original Lubin and simplified visual difference metrics. Results from the realistic image synthesis algorithm are also
presented.
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1. INTRODUCTION

Realistic image synthesis involves the creation of a picture from a mathematical description of the world. Objects
in the environment are modeled, a synthetic camera is placed in the scene, and the transport of light is simulated.
Discrete samples are taken of the light energy at the picture plane, and the final image is reconstructed from these
samples. The process is accomplished entirely within a computer. Real objects, light sources, and cameras are
not required. The algorithms have become so sophisticated that the final result is often indistinguishable from a
photograph.

These image synthesis techniques can be extended to take human perception into account. The formation of the
image can be controlled by noting the places where improvements would be visually significant. Additional effort
can then be invested to refine these parts of the picture. This is an adaptive sampling technique that utilizes a
perceptual instead of an objective error metric. Image processing models of the visual system can be used to decide
where additional samples of the environment should be taken.

In this paper a perceptually based image synthesis algorithm is described. An efficient implementation of a visual
difference metric is used to direct the placment of samples as a picture is created. This work was first introduced in
reference 3. Additional information is provided in Section 1 of this article regarding the visual difference metric that
was utilized. The adaptive sampling algorithm is briefly described in Section 3. New results obtained by using the
approach are presented in Section 4 and concluding remarks are made in Section 5.

2. VISUAL DIFFERENCE METRIC

Two of the most comprehensive image quality metrics are the Visual Difference Predictor (VDP) by Daly® and
the Sarnoff Visual Discrimination Metric (VDM) by Lubin.!® A recent study by Li'!''? compared the results of
these two metrics. In this study it was found that although the Sarnoff VDM required somewhat more memory,
it executed faster and produced better difference predictions. Another advantage of the Sarnoff model is its use of
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Figure 1. Input and output of the visual difference predictor.

a pyramidal transformation to isolate spatial frequency and orientation selective channels. The nature of this type
of transform offers substantial efficiency benefits as will be seen in the adaptive sampling algorithm described in
Section 3. For these reasons, the Sarnoff VDM was selected as a starting point for the development of the quality
model discussed in this section. The new model has been modified to run efficiently, and it has been extended to
handle color. This color extension is necessary because the original Sarnoff metric was only designed for achromatic
images.

The input and output of the Sarnoff predictor are illustrated in Figure 1. In this example input 1 contains a
chapel image, and input 2 is the same image distorted by an equal energy sinusoidal grating. It should be apparent
that while the grating is uniform, its perceptibility is not. The distortion is most visible in the dark areas at the
base of the chapel and less perceptible in the bright regions at the top of the image. The grating is also completely
invisible inside the upper right archway because the lattice work in this area hides, or masks, the detectability of
the grating. The output of the predictor is shown in the visual difference map on the right side of the figure. This
image utilizes increased brightness to indicate areas with more perceptible differences as measured in terms of just
noticeable differences (JND’s). The difference map can be seen to have a good correspondence with a subjective
comparison of the two inputs.

In this section the stages of processing involved in this visual difference predictor will be discussed. A block
diagram of the model is given in Figure 2. This diagram illustrates the various processing steps that are involved.
Each input image is independently passed through the steps labelled cone fundamentals through spatial pooling. The
differences between the two images are accumulated in the distance summation step.

The input image is first encoded into the responses of the short (S), medium (M) and long (L) receptors found
in the retina of the eye. This happens in the first stage of the vision model labelled cone fundamentals. The
transformation used to convert from CIE XYZ space to SML space employs the following matrix equation'4

S 0.0000 0.0000  0.5609 X
M | = | —04227 1.1723 0.0911 Y |. (1)
L 0.1150 0.9364 —0.0203 A

The next step in the model is to apply a cortex filtering operation. The decomposition of an image into spatial
frequency and orientation tuned channels is the most expensive operation performed by a visual model. Therefore,
in order to significantly improve the execution time of a model, a high speed transform must be selected. The
choice of this transform should also be influenced by the desire to incorporate the quality model within an adaptive
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Figure 2. Block diagram of the visual difference predictor.

sampling algorithm. During the progression of an adaptive algorithm it is necessary to make numerous, iterative
judgements about the quality of an image. Successive judgements are often made after modifying only a small region
of the image. It would therefore be advantageous if small image modifications had a limited effect on the cortex
representation, and if this effect could be rapidly calculated.

In order to satisfy these requirements, the Haar wavelet transform was selected to model the spatial frequency
and orientation selectivity of the human visual system. This transform provides the fastest mechanism capable of
decomposing an image into these selective channels. The Haar transform can be computed in O(N) time, and, as
will be shown in Section 3, it can be updated in O(log N) time during the progression of an adaptive sampling
algorithm.

A number of other transforms were considered for this stage of the model. The cortex transform by Watson!?
was one option. The disadvantage of this method is that it is based on a Fourier transform of the image. This
transform requires O(N log N) time to compute. In addition, iterative refinement is slow because modifying the
intensity of a single pixel affects all of the terms in this representation. A variety of other pyramidal transforms
were also investigated. These included the steerable pyramid used in the Sarnoff model,'®> Daubechies’ family of
wavelets,® and the biorthogonal bases of Cohen, et. al..* These methods were deemed undesirable because of the
larger, overlapping spatial filters that are used in the transforms. The size of these filters slows down both the direct
and iterative calculation of the transform, and the fact that the filters overlap would have complicated the error
estimation stage of the adaptive sampling algorithm discussed in Section 3.

The Haar transform employed is the two-dimensional non-standard decomposition. This transform can be ex-
pressed as:

aalz3) = (aleyl+ale+ 1yl +aley+1]+ale+ 1Ly +1)/4
di[5.5] = (aleyl—alr+ 1yl +aley+1) —afe+ 1,y +1)/4
(5.5 = (aleyl+alz+ 1yl —aley+1) —afe+ 1,y +1)/4
dia(5.5] = (aloyl—alr+ 1y —aley+ 1 +ale+ Ly +1)/4 (2)

where ¢; specifies the lowpass coefficients of the level | Haar basis, d}, d? and d} are the detail coefficients of the three
two-dimensional level | Haar wavelets, and ¢jepers—1[, y] corresponds to the response of either the small, medium or
long receptors at a pixel location (where levels represents the number of levels in the quad-tree used to store the
Haar decomposition).
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Figure 3. Flow graph of the cortex filtering stage of the visual difference predictor.
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Figure 4. Flow graph of the chromatic aberration stage of the visual difference predictor.

Figure 3 illustrates the Haar transform applied to one of the SML color channels. In the image on the right,
increased brightness indicates larger detail magnitudes. The highest frequency terms are arranged in the bottom and
right side of the image and the lowest frequency term is in the upper left. At each level there are three blocks of detail
coefficients. The top right, lower left, and lower right blocks respectively contain the horizontal (d'), vertical (d?),
and diagonally (d3) selective terms. The frequency selectivity of the detail terms at a given level of the representation
is defined as the frequency in cycles per degree (cpd) to which the wavelet at that level is optimally responsive. The
orientation and frequency selectivity of the Haar transform is a limitation of this approach. There are significant
efficiency gains, however.

The next step in the image quality model incorporates the effect of chromatic aberration. This model is novel in
its inclusion of this effect. Chromatic aberration describes the defocusing of light as a function of wavelength by the
optics of the eye. This defocusing most strongly affects the response of the short wavelength receptors, and severely
attenuates the visibility of high spatial frequency detail in this channel. The center graph of Figure 4 depicts a plot
of the sensitivity loss due to chromatic aberration in the short wavelength channel. This plot shows that sensitivity
drops to less than half its original value at 4 cpd and is virtually non-existent at frequencies higher than 8 cpd. The
original chromatic contrast sensitivity experiments performed by Mullen'® corrected for chromatic aberration. In
order to accurately apply the results of her work at the latter stages of the model it is necessary to reintroduce this
effect.

Figure 4 illustrates how chromatic aberration is included in the image quality model. The unmodified cortex
representation of the S cone receptors is illustrated on the left side of the figure. The response of these receptors
are attenuated by the effect of chromatic aberration as a function of spatial frequency. The lowpass filter used is
contained in the center graph. This filter was generated by a fit to the data of Marimont and Wandell.!6 The
lowpass filtering operation can be performed very rapidly because the cone responses are stored in a frequency based
representation. Filtering in this domain is accomplished by merely scaling the detail coefficients by the amount of
attenuation at the associated spatial frequency. The decreased response at high spatial frequencies can be seen in
the resulting image on the right of the figure.

The eye’s non-linear response to light is modeled in the stage labeled local contrast. The standard cone contrast

calculation of %, %, and % is accomplished by dividing the detail coefficients of each cone channel by the
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Figure 5. Flow graph of the CSF filtering stage of the visual difference predictor.

appropriate lowpass coefficient one level up in the quad-tree. This avoids the assumption, used in other models,>”
that the eye can adapt at each pixel.

The opponents contrast space stage of the model comes next. The conversion of the cone contrasts to an opponents
contrast space is accomplished using the transformation matrix':

A 0.0001 0.2499  0.7647 S
Cy | = 0.0018 2.9468 —2.5336 M |. (3)
Cs 1.0111 -0.3877  0.2670 L

This equation shows that the achromatic channel is primarily determined by the combined responses of the medium
and long wavelength receptors, the C; channel is composed of the difference in the responses of the medium and long
wavelength receptors, and the C; channel largely isolates the responses of the short wavelength receptors.

A diagram of the sixth stage, labeled CSF filtering, is contained in Figure 5. Different contrast sensitivity functions
are used for the achromatic and chromatic channels. For the achromatic channel the human visual system has a peak
sensitivity to signals of around 4 cpd, and significantly less sensitivity at higher and lower spatial frequencies. The
model uses the equation for the achromatic contrast sensitivity function that was presented by Barten.! For the
chromatic channels visual sensitivity is strictly lowpass, with a lower peak sensitivity and a lower frequency cutoff
than is present in the achromatic channel. The chromatic contrast sensitivity function that is used in the model
is implemented with a Butterworth filter that has been fit to the chromatic sensitivity data from Mullen.!> The
square of the contrast for each of the A, C; and Cy channels is multiplied by the square of that channel’s contrast
sensitivity as a function of spatial frequency. The square of the contrast and contrast sensitivity function is used to
model the energy response that occurs for complex cells, as described in the Sarnoff VDM.

The images on the right side of Figure 5 show the results of applying the achromatic and chromatic contrast
sensitivity functions to the opponent contrast images. In the achromatic image, contrast response has been attenuated
for both low and high spatial frequencies. For the chromatic channels contrast response declines with increasing
spatial frequency. The fact that the C5 channel has a lower frequency cutoff than the C; channel is the result of
attenuation due to chromatic aberration that was modeled at an earlier stage of the algorithm.
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Figure 6. Flow graph of the spatial pooling stage of the visual difference predictor.

Visual masking is handled in the stage of the model labeled masking transducer. This property of the visual
system, whereby strong signals of a given color, frequency, or orientation minimize the visibility of similar signals, is
incorporated by using the same non-linear, sigmoid transducer that was employed in the Sarnoff VDM:

9 42:25/2
TA) = o1 @
In this equation, T(A) is the transducer output and A is the weighted contrast produced from the previous stage of
the model. This transducer is applied independently to the contrasts of each of the A, Cy, and Cy color channels.
This function augments low contrasts and compresses high contrasts. The net result is that differences between
high contrast signals are reduced, whereas low contrast differences are increased. This simulates the masking and
facilitation effect described by Legge and Foley.19

The inputs and outputs of the spatial pooling stage of the model are illustrated on the left and right sides of
Figure 6 respectively. In this stage the transducer outputs are filtered to incorporate the fact that foveal human
sensitivity is greater for sine wave gratings containing multiple cycles than it is for single cycle gratings. The pooling
filter used in this model is contained in the center of Figure 6. The decision to use a 3x3 filter rather than the 5x5
filter specified in the Sarnoff VDM was made to improve the speed of the algorithm. This filter also corresponds
better with the results of Wilson,?® who indicated that sensitivity reaches its peak for gratings containing 2.5 cycles.

A visual difference map is computed in the final distance summation stage of the model. The local visual difference
(LVD) at each node of the quad-tree is defined to be the sum across all orientations (#) and color channels (¢) of the
differences of the pooling stages (P; and P») of the two images raised to the 2.4 power:

3 3
LVD =Y " (P[0, c] — P[0, c])**. (5)

6=1c=1

The final difference map is generated by accumulating local visual differences across levels. This is accomplished by
summing the local difference down each path in the quad-tree and storing the result in the leaves. The output of the
algorithm is given by the leaf differences raised to the 1/2.4 power. This distance summation stage is an application



Figure 7. The final visual difference map.

of Quick’s vector summation technique with a 2.4 exponent.'®

Figure 7.

The resulting visual difference map is contained in

Comparison of Figure 7 with the visual difference map in Figure 1 illustrates the differences between the results
obtained with the simplified model and the original Sarnoff VDM. In the simplified model, blocking artifacts are
produced by the Haar wavelet decomposition. Aside from this difference, the results of both algorithms are similar,
correspond well with a subjective comparison of the input images, and, as will be shown in Section 4, are usable in a
realistic image synthesis algorithm. The simplified model also executed in 1/60" of the time of the original Sarnoff
metric. This is true even though the Sarnoff VDM processed one channel in a gray-scale image representation and
the new model processed three color channels.

3. ADAPTIVE SAMPLING ALGORITHM

The vision model described in the preceding section has been integrated into a realistic image synthesis algorithm.
This algorithm constructs an image in such a way that the visual difference metric can be evaluated while the picture
is being created. This is accomplished by keeping track of the variance across the image and by constructing two
boundary images from this statistical information. The visual difference metric is run on the boundary images and
the results are used to determine where to take the next image sample. This section of the paper will briefly describe
each of the steps in the adaptive sampling algorithm shown in Figure 8. Additional details can be found in reference
3.

The algorithm computes a Haar representation of the image in SML space as it takes samples of the environment.
This is accomplished in the parts of the block diagram labelled cone fundamentals and refine cortex representation.
A technique similar to the “splat and pull” method described in Gortler, et. al.® is used to create the cortical
representation. Each sample taken is averaged into the leaves of the quad tree that it affects. This includes the
pixel at the most detailed level of the representation all the way up the quad tree to the lowest frequency terms that
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Figure 8. Block diagram of the basic adaptive sampling algorithm.




Figure 9. Illustration of the refine corter representation stage. The number of samples used to construct these
images increases from left to right, and from top to bottom.

contains this pixel. The fact that each sample only affects a few terms at each level of the quad tree is what makes
this algorithm feasible. Figure 9 shows how the image looks as the cortex representation is formed.

In the next two steps of the algorithm, refine error estimate and construct boundary images, two images are
created for evaluation by the visual difference metric. First the variance is determined for each of the lowpass and
detail coefficients of the Haar representation. The variance at a leaf node is just the variance of each sample in that
leaf divided by the number of samples.?? For an interior node in the quad tree the variance is equal to the sum
of the variance of the four children divided by 16. Two boundary images are constructed from the current Haar
representation and the variance information. The magnitude of the details for these two images are taken from the
25% and 75% points on a standard deviation curve with the spread of the curve determined by the variance.

The locations of perceptible error in the image are determined in the steps labeled local visual difference prediction
and update maximum error tree. The two boundary images are passed through the stages of the visual difference
metric labeled local contrast through spatial pooling in Figure 2. The local error stored at each node of the quad
tree is as specified in the distance summation stage of the vision metric. The maximum error for a node keeps track
of the largest visual difference below that point in the error tree. It is defined as the local error plus the largest
maximum error in one of the four children. The largest visual error contained at any location in the image plane
is the maximum error value stored in the root node of the quad tree. The maximum total visual difference at any
node in the error tree can be found by performing a depth-first traversal of the tree. This value is easily calculated
by summing the local visual difference contributions down the traversed path and adding this sum to the maximum
visual difference stored at the node.

The placement of the next sample is done in the stage labeled determine next sample location. To find this
position the quad tree can be traversed and the branch with maximum visual error taken until the bottom of the
tree is reached. A better approach is to take a sample in all regions of the image that are above the user specified
tolerance. These areas can be found by traversing the tree to locate all nodes at which the maximum total error
is greater than the desired threshold. A sample is then taken in a part of the image that lies below each of these
nodes in the quad tree. In addition, instead of acquiring a single sample in each of these areas, multiple samples
can be taken. The number of samples to take is based upon the observation that the perceptual error declines with
approximately the square-root of the sampling rate (see Figures 12 and 13). Sampling all regions that need work
and taking multiple samples in these areas minimizes the number of times that the expensive image quality metric
must be evaluated. The stopping condition for the algorithm occurs when the maximum error in the root node drops
below a specified tolerance.



4. RESULTS

This section compares the results of the new perceptually based adaptive sampling algorithm with the results of two
commonly used sampling strategies. This comparison will cover both the quantity of samples that are required to
produce images of a given visual quality and the overall expense of the algorithms. A number of example renderings
will be used to demonstrate the key features of the perceptually based technique. The two other sampling strategies
that will be employed in this comparison are uniform sampling and adaptive sampling based on an objective error
estimate.

Uniform sampling is the simplest and therefore one of the most prevalent methods for placing samples within
the image plane. In this technique a refinement test is not used and an equal number of samples are taken in each
pixel. The method begins by taking a single sample at each screen location. This sampling is performed left to
right, top to bottom across the image. After all pixels have been sampled once, a second sample is taken in each
pixel. This process continues until the final sampling density has been reached. Within a given pixel the samples are
randomly distributed and the intensity of a pixel is defined to be the average of the samples taken within it. One of
the drawbacks of this strategy is that it is the responsibility of the user to determine the sampling rate that produces
an image of the desired quality.

The second sampling strategy that will be used for comparison is adaptive sampling based on an objective error
estimate. This algorithm uses the variance of the sample’s radiance in RGB color space as its error metric. This
approach is similar to a number of the prior techniques that use sample statistics as the basis for their refinement
test.®!7 The actual adaptive algorithm was created by removing the stages that modeled the human visual system
from the basic perceptually based adaptive sampling strategy described in Section 3.

The objective adaptive sampling algorithm receives the sample’s RGB radiance as input. The goal of this algo-
rithm is to iteratively place each sample at the location containing the largest objective error. This is accomplished
by creating and refining a Haar wavelet image approximation and multi-resolution error estimate as described in the
refine cortex representation and refine error estimate stages of the basic perceptual algorithm (see Section 3). The
local error (LOD) at each node of the quad-tree is defined to be the sum of the detail variance (V) across all detail
orientations () and RGB color channels (c¢):

3

3
LOD =) "% "VI§,d. (6)

6=1 c=1

A maximum error tree is created by summing the largest local error up the branches of the quad-tree as described
previously. The result of this operation is that a value is stored at each node of the tree that represents the largest
variance present in the region of the image which that node is defined to cover. The next sample location is determined
by traversing the quad-tree in a top-down fashion and selecting the node with the largest variance. In this manner
samples are always placed in the location of the image plane containing the largest objective error.

4.1. Sampling Rates

This section will discuss the number of samples required by the different sampling strategies in order to produce
images of a given visual quality. This discussion compares the results of the perceptual algorithm with the results
of the uniform and objective adaptive sampling techniques described above. The examples show that the new
perceptually based adaptive sampling algorithm is able to produce images of equivalent visual quality using fewer
samples than either of the two existing sampling algorithms.

Two example renderings will be used to highlight situations where adaptive sampling with an objective metric
leads to erroneous results. In each of the examples the placement of samples by the three approaches will be discussed.
The images that are produced by the algorithms after an equivalent number of samples will be shown in order to allow
a visual inspection. Additionally, a visual difference prediction will be performed using the algorithm described in
Section 1 to compare the images with a high quality rendering. This will illustrate the areas of the image containing
visible artifacts and further verify the new difference predictor. Finally, a graph of the maximum visual difference
versus number of samples will be given for each of the three techniques. The maximum visual difference is defined to
be the largest difference found at any location in the image, using the new visual difference predictor. A rendering is
generally not considered to be of high enough quality until all regions of the image are computed accurately enough



Figure 10. Comparison of uniform (left), objective (middle), and perceptual (right) sampling strategies for the
contrast example. The rows contain the sample density maps (top), the images produced after an average of 20
samples per pixel (center), and the visual difference comparison with the high quality image (bottom).

so that the error is below the visual threshold. Therefore, if even a small region of the image contains significant
perceptible error, the image can be considered unusable. For this reason maximum visual difference is an appropriate
quantity in these comparisons.

In the first example we will see a situation where placing more samples in regions of large objective error will
create images with more perceptible artifacts than if the same number of samples had been placed uniformly. This
contradicts the common wisdom in computer graphics that adaptive algorithms based on objective error will always
outperform uniform sampling. However, a perceptually based sampling algorithm can efficiently handle this situation.

The scene for this example consists of a simple sphere that is illuminated by a small area light source. Blind
Monte Carlo integration is performed to evaluate the shading integral. This shading technique spawns many rays at
random directions from each surface intersection in order to evaluate the radiance that is incident at a point on the
sphere. Since this is a random process there is a certain amount of variance in the intensity of the samples taken of
the sphere. Because there is very little spatial variation in this image, intensity variation and the visibility of this
variation at different illumination levels are the primary factors that govern the appropriate sampling rate.

The sample density maps for the three sampling algorithms are shown in the top row of Figure 10. The map
in the center shows the sample density for the objective method. In this image we see that the most samples are
taken at the brightest regions of the sphere and the least samples in the dark regions. This is because the standard
deviation of the samples scales with the reflectivity of the sphere. Consider for example that the scene is illuminated
by a 100 c¢d/m? light source. At each point on the surface rays are spawned to determine the incident light. Rays that
strike the light source will return the intensity of the light. Rays that miss the light source will return an intensity
of 0 ed/m?. Therefore, samples that originate at the image plane and strike a point on the sphere that reflects 100%



of the incident light will return noisy values between 0 and 100 ed/m?, depending on the number of spawned rays
that strike the light source. However, samples from the image plane that intersect a point on the sphere that only
reflects 1/100" of the incident light will only vary between 0 and 1 cd/m? (the difference in the reflectivity of these
two points is the result of the orientation of the surface relative to the light source and eye position). Thus, the
amount of noise in the first case will be 100 times greater than the amount of noise in the second case.

As it turns out, the sampling pattern produced by the objective algorithm is extremely inefficient. This is because
the sensitivity of the human visual system varies with the local illumination level. The visual system is much more
tolerant of error in bright regions than in dark and is equally tolerant of error when % is a constant (where AL
represents the luminance error and L is the mean luminance). In this example the mean luminance at locations of
the image also scales with the reflectivity of the sphere. The net result is that the visibility of the error at a given
sampling rate is uniform across the face of the sphere. This implies that uniformly sampling the interior of the
sphere is an optimal solution. This is the sampling pattern used by the perceptual algorithm, as can be seen in the

rightmost sample density map.

The middle row of Figure 10 shows the images created by the three algorithms after an average of 20 samples
per pixel. Note that noise is very visible along the dark underside of the sphere in the image produced by the
objective method, whereas it is difficult to discriminate the noise anywhere on the surface of the sphere produced by
the perceptual method. Additionally, the image rendered by the perceptual algorithm has a somewhat higher visual
quality than the image generated by the uniform sampling strategy. This is because the perceptual algorithm cast
fewer samples in the constant background around the edges of the image and, instead, concentrated these samples in
the interior of the sphere where they were most needed. These observations are further demonstrated by the visual
difference maps contained in the bottom row of this figure.

The visual quality of the images produced by these algorithms is plotted versus the sampling rate in Figure 12. The
objective sampling algorithm has the worst performance in this example. Because of the poor sample distribution
used by this method a large number of samples are wasted in the bright specular region of the sphere before an
adequate number of samples are taken in the darker regions. The uniform sampling algorithm produced better
results, requiring only a quarter of the samples of the objective method. This is due to the fact that uniform
sampling is exactly the right thing to do within the interior of the sphere. The perceptually based algorithm faired
the best, requiring only half as many samples as the uniform method.

The second example demonstrates the effect of masking. This scene consists of two rectangles. The left rectangle
reflects a uniform gray. The right rectangle is texture mapped with the top view of a section of carpet. This scene
is illuminated with an area light source and blind Monte Carlo integration is performed to evaluate the shading
integral. This process results in significant variation in the intensity of the samples at any given location.

The sample density maps for this example are depicted in the top tow of Figure 11. The map produced by the
objective method shows that more samples have been taken in the right rectangle than were taken in the left. This
is because the additional spatial variation of the carpet creates a greater sample variance than in the left rectangle
where there is only intensity variation caused by the Monte Carlo integration. However, this sampling pattern is
inefficient. The texture map of the carpet contains significant energy at spatial frequencies to which the visual system
has a high sensitivity. This energy is additionally distributed across a number of frequencies and orientations. The
result of this energy distribution is that the white noise produced by the intensity variation is masked by the presence
of the carpet texture. Therefore, an equivalent amount of noise will be less apparent on the texture mapped rectangle
than on the uniform one, where no masking occurs. This effect is correctly incorporated by the perceptual algorithm
which takes more samples in the left rectangle than in the right.

The images produced by the three algorithms after 10 samples per pixel are shown in the middle row. At this
stage noise is still apparent in all of the images. Within the image produced by the objective algorithm the artifacts
are the strongest and occur within the left rectangle where there is no masking. The right rectangle contains little
perceptible error. The image produced by the uniform sampling distribution is somewhat better because an equal
number of samples are taken in each rectangle. However, the error is still more apparent in the left rectangle than in
the right. The image from the perceptually based algorithm is the only one with a visibly uniform error distribution.
This approach has significantly more objective error in the textured rectangle than in the non-textured one. Due to
the effect of masking, however, the two are of equivalent perceptual quality.

Visual difference maps of images produced by the algorithms are contained in the bottom row. The difference
maps for the uniform and objective algorithms show non-uniformity in how visible the error is in the two rectangles.



Figure 11. Comparison of uniform (left), objective (middle), and perceptual (right) sampling strategies for the
masking example. The rows contain the sample density maps (top), the images produced after an average of 10
samples per pixel (center), and the visual difference comparison with the high quality image (bottom).

The difference map for the perceptual algorithm is more uniform. In the early stages of sampling, the difference maps
for the perceptually based algorithm still exhibit some non-uniformity, with more error on the left rectangle than
on the right. This occurs because a number of samples are required before the algorithm can ascertain a reasonable
estimate of the spatial frequency spectrum.

Uniformity of perceptible error is a key idea in improving the performance of sampling algorithms. If the per-
ceptibility of error is uniform across the image plane then the peak visual error has been minimized. This concept
allows the perceptually based adaptive sampling algorithm to minimize the number of samples required to compute
images to a given visual tolerance.

For the masking example, visual difference is plotted against number of samples in Figure 13. In this graph it
is shown that the objective sampling algorithm required the most samples to accurately render the image, requiring
roughly 1,000 samples per pixel. This extraordinarily high sampling rate was required because of the large sample
variance and the inefficiency of the sampling pattern. Uniform sampling performed better in this instance, requiring
a little over half as many samples. By correctly incorporating the effect of visual masking, the perceptual algorithm
performed best of all, requiring only a third as many samples as the objective sampling algorithm.

4.2. Execution Time

This section presents the results of a number of timing tests that compare the perceptually based adaptive
sampling technique with two previous sampling strategies. The perceptual algorithm is shown to produce images of
a given visual quality in less time than is required by previous sampling methods.
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Figure 12. Sampling rates (left) and timing tests (right) for the contrast example.

The timing tests employ a similar technique to the one used to determine required sampling rates in the previous
subsection. Two example scenes will be rendered using three different sampling algorithms. The images that are
produced by these algorithms are output at specified intervals. The perceptual quality of the images is then computed
by a comparison to a high quality rendering of the same scene. This comparison utilizes the visual difference predictor
discussed in Section 1. These results are accumulated in a graph that plots the maximum perceptual difference
between the two images versus length of execution time. This is essentially a remapping of the required sampling
rate graphs along a time axis.

Figures 12 and 13 show the plots of maximum visual difference versus execution time for the scenes depicted
in Figures 10 and 11 respectively. Observe the aggregate speed of the perceptual algorithm in comparison to the
previous objective sampling technique. This comparison demonstrates the ultimate benefit of the new perceptually
based adaptive sampling method. The previous subsection discussed the number of samples required by the objective
method to produce an image of a given visual quality. This approach was shown to require three to ten times the
number of samples necessary with the perceptually based technique. This savings in the sampling rate translates
directly into a savings in overall execution time. In both examples, the perceptual algorithm is able to render images
to the visible threshold using less time than both the uniform and objective sampling techniques.

Figure 14 accumulates the results of the above timing tests and two more tests into a single chart. The additional
spatial frequency and chromatic spatial frequency tests are cases where uniform sampling does especially poorly. It
is well known that an adaptive approach is superior in situations involving high frequencies and direct light source
sampling. The spatial frequency and chromatic spatial frequency results for the objective and perceptual methods
confirm this fact. The values in the chart are derived by rendering the images to the visible threshold (visual difference
= 1 in the timing graphs), and the times are reported as a percentage of the worst case performer. In this chart we
see that the perceptual algorithm is able to render the example images using only 10.0 to 28.1 percent of the elapsed
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Figure 13. Sampling rates (left) and timing tests (right) for the masking example.
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Figure 14. A summary of the timing test results. The values are based on the elapsed time required to render the
images to the perceptual threshold. The time are reported as a percentage of the slowest algorithm.

time required by the existing algorithms. This is a significant decrease in execution time.

5. CONCLUSIONS

An efficient implementation of the Sarnoff VDM has been created. This version of the Sarnoff metric was extended to
handle color and it includes the effects of chromatic aberration. The visual difference map produced by this algorithm
compares favorably with the map generated by the Sarnoff VDM although some blocking artifacts are introduced
due to the use of the Haar transform. Even though it has three color channels to process, the new method executes
in 1/60%" of the time of the Sarnoff VDM.

This efficient visual difference metric was integrated into a realistic image synthesis algorithm. This made it
possible to use a perceptual instead of an objective error metric to control an adaptive sampling algorithm. The
perceptual algorithm was shown to preserve the superior behavior of adaptive sampling over uniform sampling in
simple illumination situations containing high frequencies. The perceptual algorithm was also shown to improve
the performance of adaptive sampling when high frequency color detail is present in these simple lighting cases. In
more complex Monte Carlo lighting simulations, the perceptual algorithm produced better results than the adaptive
approach with an objective error metric. This was shown to be true in cases involving both strong contrast and
spatial masking effects. The tests show that while uniform and simple adaptive sampling fail in certain cases, the
perceptual metric performs well in all situations.
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