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Abstract

This paper examines the effects of real-time lighting and shadows on the
perception of low detail three-dimensional models. It does so through the
creation of a simulated slide projector that can be used to study the masking
effect of textures in a level of detail system. Surface textures have long been
known to have an effect on a viewer’s perception of model detail, but since
surface textures are generally static, they are of little use in dynamic LOD
systems. This paper looks at how a dynamically changing projected texture,
in the form of a simulated slide projector with realistic real-time shadow
generation, affects model detail perception. The results of this experiment
show that light and shadow falling on a model can have a dramatic effect on
the perceived quality of models, which could allow such factors to be taken
into account when developing a sophisticated level of detail system.



1 Introduction

Shadows are a vital part of the way humans perceive images. Without real-
istic shadows, a computer generated image will look flat and unconvincing.
Unfortunately, shadow generation is traditionally a computationally expen-
sive part of image rendering and is, therefore, often omited from real-time
graphic engines. There are, however, some shadow generation techniques
that are efficient enough to work at interactive rates on today’s graphic hard-
ware. Unfortunately these algorithms can require multiple rendering passes
for each frame, and are best best suited for scenes consisting of relatively few
polygons.

Level of detail (LOD) systems could be a valuable tool in enabling the use
of shadows in real-time graphics. LODs lower the rendering time of a scene
by reducing the number of polygons needed to draw a given mesh. They
simplify models while maintaining image fidelity by deleting those polygons
with a visual impact that is negligible in the given context. A key element of
LOD is the method used to simplify, or decimate a mesh in order to reduce
its level of detail. Traditional mesh simplification schemes rely on geometric
comparisons between the original mesh and the decimated one in order to
judge quality and guide simplification. Turk and Lindstrom[7] challenged this
approach when they introduced image-based simplification which compares
images taken of the models rather than the mesh geometry. Image based
comparisons allow simplification algorithms to take advantage of perceptual
phenomena such as texture masking and lighting effects.

Image-based analysis is a new development in the field of LOD, but it
is an important one. Though most LOD research judges the quality of a
simplified mesh based on its geometric similarity to the original, a user of
an interactive application will be more concerned with the visual fidelity of
the object. In simple scenes, geometric similarity and visual similarity are
roughly equatable, but modern graphic contexts usually contain scenes that
are anything but simple. Cutting-edge interactive graphics employ advanced
lighting, surface textures and other special effects, all of which can have a
significant impact on a viewer’s ability to perceive error in low-detail mod-
els. The next generation of LOD systems will need to take both visual and
geometric factors into consideration if they are to fully optimize meshes for
modern real-time applications. In turn, sophisticated, image-based LODs
could help make feasible some of the more expensive visual effects, such as
shadow generation, at interactive frame-rates.
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Figure 1: The results of placing two models of different complexities in front
of a simulated slide projector.
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This paper describes the creation of a simulated slide projector with real-
time shadow generation. The motivation for this project comes from the
need to develop a tool to help demonstrate the results of a new image-based
mesh simplification scheme. This new scheme uses lookup tables to allow the
use of a more sophisticated image comparison method to judge the quality
of a simplification. This image comparison method takes into account some
of the subtler aspects of human visual perception, including that of visual
masking.

It has long been known that a pattern or texture on the surface of a mesh
can affect a viewer’s ability to discern error in a polygonal mesh. This fact
allows for the reduction of a mesh based on it’s surface characteristics, but
has not, thus far, been used in the development of a LOD system that can
dynamically reduce the number of polygons in a mesh. One reason for this
is that, although many real-world objects have interesting surface textures,
these textures are generally static and will not change during the course of
an animation or simulation.

A simulated slide projector provides a natural way to alter the texture
of an object dynamically. While it is unrealistic and unintuitive to alter the
surface properties of an object during an animation, it is entirely natural to
expect a pattern of light projected onto a model to change over time, and
thus affect the way that model is perceived. Shadows help to add another
level of realism to the simulation, and can themselves be a natural way in
which the pattern on the surface of an object changes. Figure 1 shows how
a pattern of light cast onto an object can affect perception of error in that
object. The top row of the figure shows meshes of two different complexities
under a simple spotlight. The difference in quality of the models is quite
apparent in this context, but is almost imperceptible when the meshes are
each placed under a more complicated pattern of projected light.

2 About LOD Systems

LOD systems attempt to decrease the rendering time for a scene by reducing
the detail of polygonal meshes. LOD is mainly used in real-time graphic
applications, such as video games and interactive visualization programs, to
allow better frame rates and more complex scenes.

Polygonal meshes are an integral part of many real-time graphic engines.
Characters in computer games, furniture in architectural models, and scien-
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Figure 2: Multiple levels of detail of a single model. From Hoppe[4].

tific visualization data can all be represented using models that consist of a
network, or mesh of simple polygons, usually triangles. A mesh that contains
more polygons will have a more refined shape and better visual fidelity but
will take longer to render and therefore reduce the frame-rate of an inter-
active application. A mesh with a low polygon count will take less time to
render but will contain much less detail.

LOD attempts to improve the performance of real-time graphic software
by swapping complex meshes for simpler ones without significantly reducing
the quality of the rendered image. Image fidelity is maintained by taking ad-
vantage of a number of different aspects of human perception, substituting
low detail models in situations where the difference will not be noticed by
the average viewer. Many systems pre-compute a finite number of simpli-
fied meshes and swap the appropriate version into the scene where necessary.
This is called discrete LOD. Other systems perform mesh simplification dy-
namically, allowing a mesh to be simplified to any level. This is known as
continuous LOD. Figure 2 shows a single model at various levels of detail.

Most LOD research relies on the fact that objects in the distance appear
smaller on the screen than those that are close to the virtual camera, and
that a person looking at an image of a scene will be less able to discern
details on models that take up less screen space. This fact allows the use
of different LOD meshes based on an object’s distance from the eyepoint.
There are other factors, however, that can affect our ability to perceive de-
tail. Lighting, object motion, and surface texture can all help or hinder our
ability to distinguish between low and high detail models. Since these fac-
tors are visual rather than geometric, an image based simplification scheme
is required, such as the one developed by Lindstrom and Turk[7] or the one
this project was designed to test.
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3 The Masking Effect of Textures

Interactive graphics applications often use surface textures (like wood grain
on a table or leopard print on, well, a leopard) on models to increase the
realism of a scene. This type of texturing, known as decal texture mapping,
adds realism to three-dimensional models by pasting a bitmap image onto
the surface of the model. The wood grain pattern on the table in Figure 4 is
an example of decal texture mapping. Besides making models more visually
appealing, texture mapping can have the added bonus of making the faceting
of a low detail model less noticeable. This effect is known as visual masking.
Masking has been studied since the 1950s and applies to other perceptual
fields such as auditory processing[14]. Walter et al describe visual masking
as “the ability of a (base) visual stimulus to obscure or hide a superimposed
(test) stimulus.”[12] They further note that this ability depends on a number
of factors including the frequencies and contrasts of both the pattern to be
hidden, and the applied texture pattern. Figure 3 demonstrates the masking
effect of textures of varying contrast, frequency, and orientation on a tes-
sellated cylinder. A full analysis of frequency masking effects would require
a thorough discussion of human psychology, physiology, neuroscience, and
mathematics. As such it is beyond the scope of this paper, but interested
readers should see Ferwerda and Sumanta[14] for a detailed discussion of
visual masking in computer graphics.

4 A Simulated Slide Projector

Although the application of textures to a model surface can be a useful
way of improving the appearance of low definition models, surface textures
are mostly static and are therefore of little use in LODs. It is difficult to
think of a real-world situation where an object changes its surface texture
dynamically. Our aforementioned leopard, the old adage tells us, is highly
unlikely to change his spots. Decal texturing is not the only way to apply
texture to a model, however, and it is not the only way to achieve the desired
masking effects. Shadows and light projected onto a model can also affect
how an image is perceived. An object sitting in the shadow of a tree branch
that is swaying in the wind, for example, will be covered in a pattern of light
that shifts and changes as the branch moves.

This paper discusses the creation of a model viewer that allows images
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Figure 3: The masking effects of surface textures. From Ferwerda et al[14].
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Figure 4: An image showing both decal and projective texturing. From
Everitt[5].

to be projected onto an object in order to examine the effect a projected
texture has on the perception of that object. This involves creating a virtual
slide projector using projective texturing. In order to increase the realism
of the images and to make the output more interesting, real time shadow
generation is also examined.

The slide projector setup is extremely flexible, allowing any image or
animation to be projected onto any object that can be rendered. For example,
a spotlight can be easily simulated by projecting an image representing the
cross-section of the light’s beam[11, 2].

4.1 Texture Projection

Segal et al[11] describe a method called projective texture mapping that ap-
plies a texture to an arbitrary surface through a perspective-correct projec-
tion transform. This method creates the appearance that the texture image
has been projected onto the scene from an arbitrary point. The smiley face
texture in Figure 4 is applied to the scene using projective texture mapping.

Texture mapping involves taking a point on the surface of an object
(in object-space), converting that point into coordinates in the texture im-
age (texture-space), and then drawing the color of our image at that point
onto the screen (screen-space). The conversion from object space to texture
space is what determines how and where the texture will be mapped to the
scene. The conversion process necessary to perform decal texture mapping
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is quite straightforward and is built into many graphic environments such as
OpenGL.

By using a different method of converting from object space to texture
space, we can achieve different texture mapping effects. Imagine that the
texture image is sitting somewhere in object space. By projecting the ob-
ject space points onto that image, we get a conversion that results in the
appearance that our texture is being projected onto our object with a slide
projector[5]. Since computer graphics already uses projective transforms to
convert from object to screen space (we project our scene onto the screen
to achieve perspective-correct images) this is generally a very efficient op-
eration. The technique can be used to create fast and convincing lighting
effects.

4.2 Projective Textures in OpenGL

OpenGL allows for projective texture mapping with relative ease using the
built in texture coordinate generation functions[13, 5, 2]. These facilities take
care of the details of converting points from object space to texture space. In
OpenGL, there are a number of different methods by which this conversion
can take place, allowing for a variety of interesting texture effects including
projective texture mapping.

4.3 Shadow Mapping

Shadows help add to the realism of a scene and can help to make the pro-
jected texture effect much more pleasing. The lack of shadows in Figure 4
prevents the projected texture from looking like a realistic light projection.
A number of real time shadow techniques have been developed including
stenciled shadow volumes, planar shadow projection, and shadow mapping.
Williams[8] describes a shadow generation scheme that uses the z-buffer to
determine the visibility of a polygon from the light’s point of view. Because
of the use of a two-dimensional image map to calculate shadow placement,
this method has become known as shadow mapping.

Shadow mapping involves rendering the scene from the light’s point-of-
view to determine what the light can see so that only those areas are lit.
Once this image has been rendered, the z-buffer is saved to memory. This
buffer contains the distance from the object rendered to the light for every
pixel in the image. The camera is then placed at the eye-point and the scene
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is rendered once more. As each pixel in the scene is drawn, the point at that
pixel is converted from screen-space to object-space and then to light-space.
The x and y components of the converted point are used to look up the depth
value in the shadow map, and this shadow map value is compared to the z-
value of the light-space point. If they are the same then the light can see
the object at that point. If the calculated z-value is greater than the stored
value, then the given point is behind some polygon from the light’s point-
of-view and is therefore in shadow. In Figure 5, s represents the distance
from the light to the nearest polygon the light can see, while d represents
the distance from the light to the point being rendered. Since the point
conversions needed for this process are identical to those needed to project
textures, Segal et al[11] suggest using projective texture mapping to do the
shadow map comparisons.

To perform the shadow test, the shadow map created in the first step is
projected onto the scene from the light’s position. If the shadow map value
that has been mapped onto a given point is less than the actual distance from
the point to the light, then the point is obscured from the light by another
polygon and is therefore in shadow. This technique works well in real-time
engines, as interactive graphic environments such as OpenGL and Direct3D
usually provide depth buffer calculations and projective texturing, and these
operations are often hardware accelerated.

5 Shadow Mapping Implementation

Implementing shadow mapping is extremely straightforward using a real-
time graphics environment such as OpenGL or Direct3D since many of the
required functions are either built-in to the environment, or available through
extensions. This section examines the use of shadow maps using OpenGL,
but most of the concepts described will work in any graphic environment.

There are 5 steps involved in rendering a scene using a shadow map:

1. creating the shadow map,

2. projecting the shadow map onto the scene,

3. projecting a light-distance texture onto the scene,

4. comparing the shadow map and light distance map, and
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Figure 5: Shadow map comparison. The value s is the distance from the
light to the nearest obscuring polygon, and d represents the distance from
the light to the shadowed polygon.
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5. rendering the scene wherever the two maps are the same.

5.1 Creating the shadow map

Creating the shadow map means rendering the scene from the light’s point-of
view and extracting the z-buffer from the resulting image[10]. This is entirely
straight forward in OpenGL because z-buffers are the default method of
hidden surface removal in this environment. The down-side to this approach
is the inaccuracy that comes from the limited z-buffer precision on most
graphic cards. To overcome this, Cass Everitt[1] suggests projecting the
distance values directly onto the scene as alpha values while rendering. This
means creating a 1 dimensional texture containing a ramp of alpha values
from 0 to 1, and projecting that texture onto the scene such that a point’s
alpha value represents its distance from the light. Performing this calculation
from the light’s point of view creates a shadow map in the alpha channel of the
frame buffer that contains the distance from the light to every point that is
visible from the light’s position. In order to maximize the available precision,
Everitt also suggests using a cubic alpha ramp for the distance texture rather
than a linear one. This means that there are more discrete values for the
depth of objects which are closer to the light, improving precision where it
is needed most.

Another improvement made by Everitt is to draw the slide image into
the unused red, green and blue channels of the shadow map. Then when the
final rendering is done, the depth comparisons can be performed using values
in the alpha channel while the slide image is projected on the scene in the
three color channels. This technique reduces the number of rendering passes
needed to produce the final image.

5.2 Rendering the Scene

The last four steps of the algorithm can be done simultaneously using multi-
texturing and alpha testing. Alpha testing allows pixels to be drawn or not
drawn to the destination buffer based on a function of the values in the alpha
channels of the source buffer (in this case the shadow map texture) and/or
the destination buffer (in this case the screen). Alpha testing is available in
OpenGL and is quite fast.

Multitexturing allows a polygon to be rendered with more than one tex-
ture mapped onto it. It is not built into OpenGL, but is available through an
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extension. Without multitexturing the scene would have to be rendered once
for each texture projected onto the scene. This means one rendering pass to
project the shadow map, and one for the light distance map. Multitexturing
provides a finite number of texture units that can each be configured with
a different texture bitmap and mapping scheme[6]. Thanks to the combined
slide image/shadow map texture created in the first step, the shadow effect
can be accomplished with only two texture units.

The first texture unit contains the same one-dimensional alpha-ramp tex-
ture used in creating the shadow map, projected in the same manner. This
creates an image map (in the alpha channel of the screen buffer) containing
the distance from the light to every point visible from the eyepoint. The sec-
ond texture unit contains the shadow map, which is also projected onto the
scene using a straightforward projective texturing operation. The red, green,
blue and alpha values for a given point are a combination of the values calcu-
lated by the texture mapping function of each texture unit. The method of
combining these values can be adjusted, allowing for various multitexturing
effects.

For the slide projector, the color values at each point are simply the
product of the values in the color channels in the shadow map (the slide
image) and the color of the objects in the scene. This gives us the effect of the
slide image being projected onto the objects by simulating the additive nature
of light. The alpha values should be the result of a comparison between the
value in the shadow map and the value in the distance map at each projected
point. This involves performing the add signed operator on these two values.
If the values in question are a and b, this operation is

c = a + (1− b)− 0.5,

which means that c is less than or equal to 0.5 when a <= b and greater
than 0.5 when a > b.

Rendering a scene with shadows means drawing to the color channels of
the screen buffer wherever the alpha value of the shadow map is less than or
equal to the alpha value of the distance map. Since the add signed operator
ensures that the alpha value of the screen buffer will be less than 0.5 when
this is true, drawing shadows is simply a matter of setting up an alpha test
to check the whether or not the screen buffer’s alpha value is less than or
equal to 0.5. The result of rendering the scene with multitexturing and
alpha testing enabled is an image with the slide texture projected onto it
and realistic shadows.

12



Simply drawing the scene once in this manner produces a picture in which
shadowed pixels are not drawn and are therefore just rendered in the back-
ground color. This does not make for a very realistic image as most real-life
scenes have some ambient light that illuminates even shadowed areas to some
degree. To account for this ambient factor another rendering pass is required.
The ambient pass is performed before the slide projector pass, and is done
with just ambient lighting enabled. This makes the total number of render-
ing passes for this effect three: one to create the shadow map, one for the
ambient light, and one to create the lighting effect. Two additional passes are
also required for each additional spotlight or slide projector that is added to
the scene. This makes the technique quite computationally expensive, but it
is fast enough to render moderately simple scenes at a reasonable frame-rate
using current graphic acceleration hardware.

6 Results

The model viewer developed in this paper was designed as a tool to aid in
the demonstration of a mesh decimation technique and, as such, is not suited
for an in-depth analysis of visual masking. It does however provide some feel
for the factors involved in model error perception.

Figures 6–9 show the output of the viewer with models of varying com-
plexity, under patterns of varying frequency and amplitude. The model in
Figures 6 is the base model containing over 69,000 triangles, making it highly
detailed, but extremely expensive to render. Figures 7–9 show a number of
simplified meshes derived from the original using the QSlim model simplifi-
cation program[3]. They vary in detail down to the significantly decimated
300 polygon version in Figure 9. The slide pattern projected onto the models
in the upper left image of each figure is an image that represents the cross
section of a spotlight. This simple pattern does not serve to mask any of the
error in the simplified models, and a dramatic difference in quality can be
seen between the original mesh and the simpler ones. The slide image in the
the other three images in each figure have been modulated using a sin wave
of various amplitudes and frequencies in both the x and y directions. This
produces the effect of a spotlight shining through some sort of grid or lattice.

The slide used in the lower left of each figure does the best job of hiding
the faceting of all of the models. The pattern in this slide has the highest
frequency and the greatest amplitude of the three patterned slides. This
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Figure 6: The results of projecting slides of various frequencies and ampli-
tudes onto a mesh containing over 69,000 triangles.
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Figure 7: The results of projecting slides of various frequencies and ampli-
tudes onto a mesh containing 5,000 triangles.
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Figure 8: The results of projecting slides of various frequencies and ampli-
tudes onto a mesh containing 1,000 triangles.
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Figure 9: The results of projecting slides of various frequencies and ampli-
tudes onto a mesh containing 300 triangles.
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Figure 10: Two different textures applied to a mesh of 300 polygons. The
texture on the left does a better job of masking error.

suggest that patterns with higher frequencies and amplitudes are better able
to mask unwanted artifacts than patterns with lower frequencies and am-
plitudes. This is not always the case, and Ferwerda et al note that visual
masking is a function of the amplitude, frequency and orientation of both the
pattern being masked and the masking pattern[14]. Figure 10 demonstrates
this fact using the 300 triangle mesh. The low frequency pattern projected
onto it in the left-hand image does a much better job hiding the faceting of
this mesh than the high frequency pattern in the right-hand image. Figure 11
shows that the opposite is true for the 5000 triangle mesh.

These results show that an LOD system could adjust the polygon count
of a model based on the pattern of light and shadows that are projected onto
it. Such a system could improve performance by using simple models when
the scene allows, while maintaining visual fidelity when it doesn’t. These
images also indicate that deciding how much to decimate a model given a
projected pattern is not entirely straightforward. In order to build an LOD
systems such as this, a comprehensive model of visual masking like the one
described in [14] would be necessary, and this model would need to be fast
enough to run in real-time.

18



Figure 11: Two different textures applied to a mesh of 5000 polygons. The
texture on the right does a better job of masking error.

7 Conclusion

Shadows are extremely important to human perception. Though we rarely
notice them when they are present, their absence in an image can be ex-
tremely conspicuous. Photographers and film makers have long known the
power of shadows and often use them to impart meaning and to play with
their audiences emotions. Soft defining shadows can help bring out the shapes
of a still life, while the stark, eerie shadows of a moonlit night can help set
the mood for a horror film. The addition of shadows can have an important
affect on our response to a computer generated image too.

With the increasing popularity of video games, and the growing use of
three-dimensional interactive graphics in everything from scientific analysis
to engineering, real-time graphics have become an extremely important part
of computer science research. Because of the need for high frame rates in
interactive graphics, realism must be balanced with efficiency, and squeezing
every ounce of performance out of a both software and hardware is a must for
cutting edge graphics. Though reasonably fast, shadow generation techniques
are often too expensive to be used extensively in games and simulations.

LODs are a great way of increasing performance without significantly
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compromising realism. This performance boost can allow the addition of
special effects such as real-time shadows to interactive graphics. As this pa-
per shows, the addition of shadows to a scene could actually help improve the
performance of LOD systems by masking the error they produce. Shadow
mapping requires multiple rendering passes over the geometry of our scene,
but if it also allows us to reduce the complexity of that geometry, the per-
formance degradation it causes may be somewhat mitigated. As graphics
hardware improves and software techniques are refined, real-time shadows
will surely become an integral part of immersive games and simulations.
Image-based level of detail reduction is also likely to grow in importance.
Combined, these concepts have the potential to vastly improve the way we
render scenes, and change the look of real-time graphics for the better.

8 Source-Code and Demo

The source-code for the model viewer described in this paper, as well as a
Windows binary are available online at:

http://www.ronandowling.com/shadow/
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