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ABSTRACT

In recent years a number of different vision models have been proposed to assist in the evaluation of image quality.
However, there have been few attempts to independently evaluate these models and to make comparisons between
them. In this paper we first summarize the work that has been done in image quality modeling. We then select two
of the leading image quality models, the Daly Visible Differences Predictor and the Sarnoff Visual Discrimination
Model, for further study. We begin by describing our implementation, which was done from the published papers,
of each of the models. We next discuss the similarities and the differences between the two models. The paper ends
with a summary of the important advantages of each approach. The comparison of these two models i1s presented in
the context of our research interests which are image quality evaluation for both computer imaging and computer
graphics tasks. The paper includes illustrations drawn from these two areas.

1. INTRODUCTION

Visual difference metrics are useful as tools for evaluating image processing algorithms, particularly algorithms
designed to leave the image visually unchanged (such as compression algorithms) and algorithms designed to improve
the image (such as by halftoning to enhance the print-ability). They also give us a new tool for optimizing the
time/quality tradeoff in image synthesis.

Working only from the references cited, we have implemented two metrics: the Daly Visual Differences Predictor,
and the Sarnoff Visual Discrimination Model.? Qur purpose was twofold: firstly, to provide an independent validation
of the models as described in the literature, and secondly to compare the two. We found the two models to behave
similarly in many respects (as might be expected of two models of the human visual system), however we found
strengths and weaknesses in both.

The remainder of the paper is structured as follows. We begin with a brief overview of visual difference models,
followed by short descriptions of each of the models. We describe the implementations at the functional level,
providing details only where they are not easily available from the literature. We show examples of the predictions of
the two models, and characterize their performance. After discussing the two models separately, we compare them,
pointing out particular advantages of each. Finally we conclude and make suggestions for further work.

2. BACKGROUND

The two models that are compared in this paper are the result of over twenty five years of research in image quality
evaluation. During this period of time, the effect of separate elements of the human visual system on 1mage quality
has been explored by researchers working in the fields of image processing, image science, and vision science. These
individual visual model components have been continuously refined and integrated, and the two image quality models
described in this article are the result.

The 1nitial work in this area was performed by image processors seeking a better way to identify whether the error
in a picture was visible to an observer. The nonlinear response of the human visual system to light formed the basis
of the first vision model employed for image processing.® This model made it possible to map image intensities to
more effectively utilize the dynamic range of a display device. The next addition to the image processing models was
spatial frequency filtering.*:® Better image coding was made possible by transforming an image into the frequency
domain and by taking into account the contrast sensitivity function of the human visual system.

The most recent advances in image quality modeling have been accomplished by vision scientists attempting
to build better models of human vision. Spatial frequency channels are one example of this.® As a result of this
discovery, computational techniques were developed so that a spatial frequency hierarchy could be determined and
spatial frequency selectivity could be included in the vision models.”® This lead to the incorporation of masking



effects as part of the image quality models.” Summing the outputs of the frequency channels'®!! resulted in a map

that could be used to visualize the perceived differences between two images. This set the stage for the two image
quality models that are considered in this paper.

3. THE DALY VISIBLE DIFFERENCES PREDICTOR

The Daly Visible Differences Predictor (VDP) receives as input two images and produces as output a difference
map, which predicts the probability of detection for dissimilarities throughout the two images. If the images vary
substantially, the probability of prediction will be one, and as the differences increase further, the probability will
not increase further. The predictor operates solely in the realm of differences below and near threshold.

The basic blocks of the predictor are shown in Figure 1. Key features are an initial non-linearity, frequency
domain weighting with the human contrast sensitivity function (CSF),12:13 and a series of detection mechanisms.
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Figure 1. Daly VDP Model

Each image is initially passed through a non-linear response function to account for both adaptation and the non-
linear response of retinal neurons. In the Daly VDP model, it is assumed that the observer’s visual system adapts
separately to each pixel. The adaptation model used approximates the relationship between brightness sensation and
luminance. At low luminance levels, it fits the cube-root power law, while at higher luminance levels it approximates
the logarithmic dependence. Both of these relationships are in common use, but neither on its own accommodates
the entire effect of lightness adaptation for human eyes.

After the initial non-linearity, the image is converted to the frequency domain. The transformed data is weighted
with the CSF. That is, the scaled amplitude for each frequency is multiplied by the CSF for that spatial frequency.
The peak sensitivity in the CSF varies with environmental luminance. We found that the analytic Barten modulation
transfer function,'® although isotropic, gave reasonable detection results. The weighted data is then converted to
local contrast information by dividing each point (amplitude) by the original image mean.

Following the non-linearity and CSF weighting is the series of detection channels. At this point the data is
split into 31 independent streams or channels. The visual system is known to have specific selectivities based on
orientation (60 degrees per orientation division) and spatial frequency (approximately one octave per channel). In
the Daly VDP, each of five overlapping spatial frequency bands is combined with each of six overlapping orientation
bands to split the image into thirty channels. These, with the orientation-independent base band, give a total of 31
channels. At this point the individual channels are back-transformed into the spatial domain.

Each channel has associated with it a mask contrast which is a function of location in the image. The presence of
masking information at a specific location, spatial frequency and orientation increases the threshold of detectability
for a signal with those characteristics. For each channel, a threshold elevation map is computed as a function of



the mask contrast.'* Finally, mutual masking is applied between the two sets of threshold elevation maps from both
input images, to give a single threshold elevation map per channel.

Now we are ready to compute the detection probability. The contrasts of corresponding channels in one image are
subtracted from those of the other image, and the difference is scaled down by the threshold elevation. The scaled
contrast differences are used as the argument to a psychometric function to compute a detection probability. The
psychometric function yields a probability of detection of a difference for each location in the image, for each of the
31 channels. The detection probabilities for all of the channels are combined using the assumption of independent
probabilities, giving an overall signed detection probability for each location in the image.

4. SARNOFF VISUAL DISCRIMINATION MODEL

The Sarnoff Visual Discrimination Model (VDM) has been designed for physiological plausibility as well as speed
and simplicity. While the Daly VDP is an example of a frequency domain visual model, the Sarnoff VDM operates
in the spatial domain. The key elements of the VDM include spatial resampling, wavelet-like pyramid channeling,
a transducer for just noticeable difference (JND) calculations and a final refinement step (CSF normalization and
dipper effect simulation). Given two input images and a set of parameters for viewing conditions, the output of this
model 18 a JND map. In this section, the influence and function of each stage of the Sarnoff VDM are addressed.
The general structure of the model is shown in Figure 2.
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Figure 2. Sarnoff VDM (after Lubin?)

The first stage of the Sarnoff VDM takes into account the optics of the eye and the retinal mosaic. A single point
spread function (PSF) is used to predict the foveal performance of the two-dimensional optics of the eye, under the
assumption that the PSF is circularly symmetric. The effect of the PSF convolution is a blurring of the input images.
A spatial resampling (120 pixels per degree) is then performed to account for the fixed density of cones in the fovea.
The resampling is essential in a spatial domain approach since the extraction of the different frequency bands is
totally dependent on the resampling kernels and resampling rates. Special steps must be taken if the original image
is too big and the local image quality cannot be assessed in a single glance. This leads to a block dividing process in
which a big image is divided into N smaller blocks.

In the Sarnoff VDM a Laplacian pyramid!® is used to store the wavelet representation of the resampled input image
and a quadrature mirrored pair of convolution kernels is used to record information along each of four orientations.
After this stage, the raw luminance signal has been converted to units of local contrast. A Laplacian pyramid is used
to record decomposed information for all seven band-pass levels. Due to the use of a spatial domain convolution
approach, the peak frequency of each level has to be a power of two. The seven bandpass levels have peak frequencies
from 32 to 0.5 cycles/degree, where each level is separated from its neighbors by one octave. For reasons of simplicity
and performance, a steerable pyramid was actually used to perform the decomposition in both the Sarnoff VDM



and our implementation. The steerable pyramid is a multi-scale, multi-orientation, image transform with both
frequency and orientation components.®1® The final step in the decomposition process is the computation of a
phase-independent energy response by squaring and summing odd-phase and even-phase coefficients. They are
obtained by convolving the quadrature mirrored pair filters (oriented operators and their Hilbert transforms) with a
certain frequency band.

The normalization stage, as a preprocess to the transducer stage, is the counterpart to the contrast sensitivity
function normalization in the Daly VDP. The energy measure is normalized by the square of the reciprocal of the
contrast sensitivity function. A transducer is then used to refine the JND map by taking the spatial masking dipper
effect into consideration. The dipper shape reflects one characteristic of the contrast discrimination function. This
stage involves the transformation by a sigmoid non-linearity. Finally, the model includes a pooling stage in which
transducer outputs are averaged over a small region by convolving with a disc-shaped kernel.

After getting the JND difference map for each channel, the last stage is devoted to putting together the contri-
butions from all the channels. This leads to the concept of a space of multiple dimensions. There are 28 channels
involved in the summation: seven pyramid levels times four different orientations. For each spatial position, the final
JND distance can be regarded as the distance between two 28-dimensional vectors.

Calibration is used to avoid selecting the model parameters on a case by case basis. The procedure is divided into
two steps. The first step makes sure the CSF fits the psychophysical data.!” The second step adjusts the variables
in the transducer function so that its outputs match those from human vision. Calibration of the transducer was
found to have a large impact on the accuracy of the final detection results. An analysis was done to show the impact
that each parameter of the transducer function has on the dipper effect. From these studies the range for reasonable
values of the parameters was determined. Informal studies with human subjects further refined the choice of the
parameters and showed that optimal detection results are obtained when the parameters are within the predicted
theoretical range.

5. DETECTION RESULTS AND PERFORMANCES
5.1. Daly VDP Detection Results

In this section, both the input images and the output detection images of the Daly VDP are discussed and compared.
To facilitate comparison with the results from the Sarnoff VDM, the visualization of detection maps is slightly
different from that used in the original Daly VDP. Instead of using signed probabilities, we show absolute values.
The brightness of each pixel in the detection map is proportional to the probability that distortion can be seen at
this pixel. The brighter a pixel, the more likely the distortion will be noticed.

Figure 3. Mountains with Different Levels of Detail

The input images tested include computer generated patterns, synthesized images (the mountain image from
Bolin and Meyer!® in Figure 3), and natural pictures (the chapel image in Figure 6). The distortions introduced into
the original images and to be detected by the Daly VDP include blurring (Figure 7a), patterned noise (Figure 4a,
8a), and quantizations (Figure ba). A standard computer monitor with a resolution of 100dpi was used as a display
device. The maximum luminance of the monitor was 50 ¢d/m? and gamma correction was done. The results shown
below were obtained at a viewing distance of 0.5 meter.



Figure 5. a. Quantized Mountains (4 Bits/Pixel); b. Daly VDP Detection Map

The image in Figure 3 illustrates two mountains with different levels of detail. The gray scale depth of the image
is 8 bits/pixel. Tt is a good test image because it has two distinguishable regions with different frequency ranges.
When a sine wave noise pattern (14 cycles/degree) is added onto the original mountain image (Figure 4a) the noise
is visible everywhere except in the part of the image containing the rough mountain. The corresponding detection
map is shown in Figure 4b. When the image is quantized to 4 bits/pixel (Figure 5a), the banding effect is more
visible in the smooth surface of the left mountain than in the rough surface of the right one. The prediction of the
model is shown in Figure bb.

From the previous detection maps we can see that the masking effect is captured by the model. Overall the
detection results match what we see when we look at the pictures. However, for these images, the model over-
predicts noise in the lower luminance regions. For example, the masking effect 1s actually stronger in the dark rough
mountain surface than predicted by the model. In contrast to that, the model is not sensitive enough to detect the
minor distortion in the high luminance background.

For the chapel image in Figure 6, two kinds of distortion were also introduced: blurring and sine waves. The
image in Figure 7a is obtained by convolving the original chapel image with a 3 by 3 blurring window. In Figure 7a
the blurring effect is very obvious in the area of the window pane, along the edges of the walls, and at the borders of
the shadows. The detection results from running the Daly VDP are consistent with these observations (Figure 7b).
Sine waves at a frequency of 8 cycles/degree are added as phase-coherent noise in Figure 8a. In this image, the sine
wave noise is less noticeable in the window pane area, especially in the right hand roof where the lighting is brighter.
The detection map is presented in Figure 8b.

Spatial masking is most effective when the signal frequency equals the noise frequency. By running the Daly
VDP on a star image with continuously changing frequency and orientation (taken from the IEEE Facsimile Chart),
we found that the VDP correctly detects this effect. When one sine wave 1s superimposed on top of another, the
interference pattern becomes strongest when the two waves are orthogonal and weakest when they are parallel. This
effect is captured by the model as well.



Figure 6. Original Chapel

Figure 7. a. Blurred Chapel; b. Daly VDP Detection Map

5.2. Daly VDP Performance

The most time-consuming operations in the Daly VDP are the Fourier transformations. The complexity of the
Fourier transformations is O(N?) where N is the number of entries in the two dimensional matrix. If the FFT
and the FFT~! are used before the CSF normalization stage and after the spatial masking stage respectively, the
complexity for transformations between spatial and frequency domains can be reduced to O(N log N). Our analysis
shows that up to 40% of the time is used in the FFT and FFT ' stages. The complexity of the FFT determines
the overall complexity. The complexity of the model is therefore O(N log N') with an upper bound of O(N?).
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Figure 8. a. Chapel with Sine Waves (8 Cyc/Deg); b. Daly VDP Detection Map




5.3. Sarnoff VDM Detection Results

For comparison, the same input images that were used to test the Daly VDP were also used to evaluate the Sarnoff
VDM. The tests were done in the same lighting environment with a standard computer monitor that has resolution
of 100dpi. The maximum luminance of the monitor was 50cd/m? and the viewing distance was 0.8 meter. The reason
for choosing 0.8 meter and not 0.5 meter as in the Daly VDP test was that at that distance and with the above
display resolution the resampling rate of the retina is roughly 60 cycles/degree which leads to an integer expansion
rate in the resampling stage. Convolution interpolation in resampling is easier with an integer expansion rate.
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Figure 9. Mountains with Sine Waves (a. 8 Cyc/Deg, c. 9 Cyc/Deg) and Sarnoff VDM
Detection Maps (b. 8 Cyc/Deg, d. 9 Cyc/Deg)

The reconstructed image in Figure 9a has a sine wave mask of 8 cycles/degree (one of the seven peak frequencies
in the steerable pyramid representation). Due to spatial masking a large distortion difference exists between the two
mountain areas in Figure 9a. This distorted image is fed into the Sarnoff VDM along with the original mountain
image in Figure 3. As shown in Figure 9b, for this picture the masking effect is accurately predicted. The noise
pattern in the background is also properly detected. The maximum JND of this detection map is 4.33 and the mean
JND is 2.36.

The quantized mountain image (Figure 10a) at 4 bits/pixel and the original mountain image (Figure 3) at 8
bits/pixel were used as another test pair. The severe quantization aliasing shown in the smooth mountain surface
and the strong masking effect in the rough surface of the mountain are both correctly predicted by the Sarnoff VDM.
The detection map is shown in Figure 10b with a maximum JND of 2.86 and an average JND of 0.31.

The detection map of the blurred chapel (Figure 11a) is shown in Figure 11b. As in the Daly VDP, the most
distorted part of the image, the panes and the edges, is correctly detected. But the detection results indicate a
somewhat stronger distortion across the wall than can be observed by the human eye. The maximum and average
JND of this detection map are 3.92 and 1.04 respectively. The detection map in Figure 12b for the input image pair
of the original chapel (Figure 6) and the chapel with sine waves (Figure 12a) shows a similar prediction, for this
image, of the masking effect to that from the Daly VDP. However, the model over-predicts the distortion in the dark
area (e.g. the walls in the shadow). The maximum and average JND’s for this picture are 7.46 and 1.41.



Figure 10. a. Quantized Mountain (4 Bits/Pixel); b. Sarnoff VDM Detection Map

Figure 11. a. Blurred Chapel; b. Sarnoff VDM Detection Map

5.4. Sarnoff VDM Performance

The Sarnoff VDM functions purely in the spatial domain with simple operations. The modeling of each perceptual
stage is interpreted either as one-pass filtering (e. g. the PSF blurring, pooling stage), two-pass filtering (e. g. cortex
channeling), or as straightforward pixel-by-pixel calculations (e.g. , the CSF normalization). Theoretically, the
complexity of the model is linear to the number of pixels in the resampled input images. The upper bound of the
complexity is O(N), where N is the number of the pixels. This linear relationship between the execution time and
the size of the detected images has been verified by making performance measurements.

However, the Sarnoff VDM gains its speed at the cost of memory. Its image decomposition must record data
at all frequency levels and all orientations. The generation and maintenance of the wavelet pyramids, local mean

Figure 12. a. Chapel with Sine Waves (8 Cyc/Deg); b. Sarnoff VDM Detection Map



pyramids, and contrast pyramids takes a considerable amount of memory. By comparison, in the Daly VDP only
one representation of the image in the frequency domain is needed.

6. COMPARISON OF THE DALY VDP AND THE SARNOFF VDM

The Daly VDP and the Sarnoff VDM each have their respective advantages and disadvantages. The differences
between the two models come from 1) the different approaches they represent (i.e. the frequency domain approach
vs. the spatial domain approach, accurate threshold modeling vs. good overall supra-threshold results), 2) emphasis
on different aspects of human visual perception, and 3) different implementation techniques.

6.1. Similarities Between the Models

While mathematical metrics such as the root mean squared error (RMSE) measure tend to treat the entire human
visual system as a “black box,” both the Daly VDP and the Sarnoff VDM use physiological and psychophysical data
to open the black box. As a result, input images and parameters are needed not only for the system as a whole but
also for a number of component mechanisms within.

The threshold concept is used in both models. They both use JND as the metric to quantify the differences
between the input images. To generate a JND map as a function of pixel location, the luminance contrast at each
pixel must first be calculated. At the next stage it is necessary to apply the CSF normalization to convert the
contrast into the JND metric. Spatial masking based on spatial tuning is the final modification of the JND values.

Both models have a decomposition and a summation mechanism. Decomposition based on frequency channeling
and orientation tuning makes spatial masking an easier task. The output of the filters which are tuned to different
frequencies, orientations, and spatial positions are passed through the summation mechanism to convert the output
of those channels into a single map as a function of pixel location.

A pipeline structure is shared by both the Daly VDP and the Sarnoff VDM. Each stage of both models can be
modified without interfering with its neighboring stages. Since there are various alternative theories and models to
explain each element of the human visual system as a whole, we can always select the most appropriate model for a
given application. If there is any advancement in psychophysical study of the human visual system, refinements of
the mechanistic models can be easily done without major changes to their basic architecture.

6.2. Differences Between the Models

In the Daly VDP the optics point spread function (PSF) is not explicitly modeled as an element of the human visual
system to avoid a shift-variant nonlinearity and the accompanying problem of noninvertibility. If the PSF were
used, the blurring effect from convolving the PSF with the input images could lead to a better approximation of the
adapted luminance in the retina. This is a coarse approximation, although the process is invertible, which is what is
usually preferred for signal processing. In the Sarnoff VDM there is a stage devoted to the optical PSF. However in
this model it is assumed that the PSF is circular symmetric, which it is not.

The Daly VDP includes a separate stage to handle the non-linear relationship between brightness and intensity:
amplitude nonlinearity. A lightness curve is used to convert the raw luminances into sensitivities. The Sarnoff VDM
does not explicitly include brightness nonlinearity.

Although eccentricity can be used as an input parameter in the Daly VDP, the model is mainly dedicated to
foveal vision. The original application of the model is the assessment of image fidelity which primarily uses foveal
vision. The Sarnoff VDM can be applied to more general situations like aircraft cockpit vision simulations. When an
application is limited to image quality measurement, these two models can be regarded as the same as far as foveal
vision is concerned.

The Daly VDP is a typical example of the frequency approach. It employs FFT and filtering mechanisms to
construct a spatial frequency hierarchy. The Sarnoff VDM only operates in the spatial domain. It builds a steerable
pyramid instead of a frequency hierarchy.

The averaging effect in the pooling stage of the human visual system (HVS) is simulated in the Sarnoff VDM
when the output of the transducer is convolved with a disc-shaped kernel. The same disc-shaped convolving kernel
1s used for each transducer output resolution. Therefore, the contributions from the lower frequency signals are more
extensively blurred. The Daly VDP does not consider this property of the HVS.



As opposed to the Sarnoff VDM, the Daly VDP uses a simplified spatial masking function without taking the
dipper effect into account. When the mask contrast is below the CSF value, no masking is considered. For higher
mask contrasts, a constant slope is used to simulate the asymptotic behavior of the spatial masking function. In the
Sarnoff VDM, a careful calibration of the transducer is needed to achieve the right dipper effect.

The two vision models have different ways of visualizing the detection results. In the Daly VDP, a psychometric
function 1s used to convert the normalized threshold contrasts into detection probabilities. As a result, the final
output visualization is a map of the detection probabilities as a function of location. Omitting the psychometric
function, the Sarnoff VDM uses the JND map directly as the final result.

As mentioned in the last paragraph, a psychometric function describing the relationship between the threshold
contrasts and detection probabilities is used in the Daly VDP. The mechanical summation in the Daly VDP is the
summation of the probabilities, whereas in the Sarnoff VDM it is the computation of the distance between two
multi-dimensional JND vectors.

Since the Sarnoff VDM operates solely in the spatial domain, its ability to select signals of an arbitrary frequency
is limited. As shown in Section 6.2, the VDM performs best when the dominant frequencies (e.g. phase-coherent
sine wave noise) in the input images primarily fall into one of the seven bands. For example, when the frequency
of the sine wave noise is 8 cycles/degree, the detection result is correct and clear. If the frequency of the sine
wave falls between two neighboring frequency bands (e.g. 9 cycles/degree), the detection result does not produce
a distinguishable pattern. To illustrate this, sine wave noise of different frequencies has been introduced into the
original mountain image (Figure 3). Two distorted input images are shown in Figures 9a and 9¢. The sine wave
frequencies in these two input images are respectively 8 and 9 cycles/degree. The detection results are shown in
Figures 9b and 9d. In the same order, the maximum JND’s are 4.33 and 4.18. The mean JND’s are 2.36 and 2.27.

6.3. Common Problems Shared by the Models

Although the mechanism used to handle the local luminance mean in the Sarnoff VDM is more appropriate than
the one in the Daly VDP (Section 6.5), it is still not robust. Consider the following implementation problem: if
there is a big patch of uniformly black pixels in the input image, the local luminance mean for many pixels in this
area will still be zero even though some averaging has been done. If the local luminance mean of a pixel is zero, its
contrast computation will be undefined. In our current implementation, a non-zero local luminance mean is found
by increasing the number of neighboring pixels for averaging.

Both models face difficulties in finding a correct general CSF representation. In the Daly VDP, the peak sensitivity
1s picked for different environments. This parameter adjustment has to be done before each application of the VDP.
In the Sarnoff VDM, calibration is needed for CSF normalization. However, in different luminance environments,
CSF’s change and so do the CSF normalizations. Therefore, the question boils down to the following: at which
environment /adaptation luminance level should the CSF test and calibration be done to get optimal results?

The number of orientation filters used in these two models is either more than sufficient or just barely enough
(Section 6.4 and 6.5). A hybrid of the two could be adopted: four different orientation filters could be used for lower
frequency bands where orientation selectivities are relatively weak, and six different orientation filters (or more) could
be used for higher frequency bands where orientation selectivities are stronger.

In both models, spatial masking contributions from all channels are treated independently and equally. Cross
channel masking is not considered.

6.4. Advantages of the Daly VDP Model

The Daly VDP, like several other psychophysically based approaches, performs in the frequency domain. Frequency
domain analysis has given rise to the concept of frequency tuning or channeling which is quite prevalent in psy-
chophysical models. Frequency channeling assumes that there are pathways in the HVS specifically tuned to detect
certain spatial frequency stimuli. Moreover, frequency domain analysis (e. g. the CSF) can be easily performed using
some well-understood mathematical computations (e.g. FF'T and FFT~1).

Recall that the CSF describes the variations in visual contrast sensitivity as a function of spatial frequency. It is
more natural to make use of this function in the frequency domain. The advantage of frequency domain models, such
as the Daly VDP, is to have a precise and continuous CSF normalization. In the Sarnoff VDM, CSF normalization



is approximated by performing it in only seven discrete frequency bands (levels). For each band, a single peak
frequency is used to get the CSF values.

The Daly VDP has a fine simulation of the orientation selectivities. Six orientation filters are used for each
frequency band. Although this might be slightly over-complete, six filters do produce more accurate results. In the
Sarnoff VDM, only four orientation channels are used. This is acceptable but it introduces some degradation.

When two images are compared and assessed, the mask cannot be derived solely from any one of them. Otherwise,
it could not correctly predict bandwidth changes between the two images. The change in frequency content leads to
changes in spatial masking and thus the generation of masking maps. Mutual masking is adopted in the Daly VDP
so a minimum elevation threshold is used. This produces more plausible threshold elevation maps for all bands.

For the Daly VDP, there is no power-of-two limitation to the size of the image. However the FFT performs best
when the base of the image size is a prime number. On the other hand, in the Sarnoff VDM the size of the input
image (actually the image size after resampling) needs to be a power of two.

6.5. Advantages of the Sarnoff VDM

The Sarnoff VDM attempts to simulate the functionality of each element along the visual perception pathway. This
includes optics, re-sampling, channeling, and cortex spatial masking. Since there is no physiological evidence that
the HVS performs Fourier domain processing, the spatial domain model more closely parallels the underlying neural
process. The Sarnoff VDM tries to reproduce the same functions that happen along the visual pathway.

Since the Sarnoff VDM performs solely in spatial domain, it is possible to represent the CSF normalization as
a function of location. The CSF used in the Sarnoff VDM is a function of the local mean of each pyramid level.
Theoretically, a CSF with phase information (i.e. as a function of pixel position) should simulate local luminance
adaptation better. However, according to our tests, this refined CSF does not show a remarkable improvement over
the CSF obtained with a single adaptation luminance.

In the Daly VDP, the luminance of the pixel itself is used as the local luminance mean under the assumption of
an arbitrarily close viewing distance. In the Sarnoff VDM the local luminance mean of each pixel is the average of
the luminance of neighboring pixels, which is a better approximation. A more appropriate local luminance leads to
a better local contrast.

The complexity of Daly VDP is O(N log N), as opposed to O(N) in the Sarnoff VDM. The Sarnoff VDM operates
only in the spatial domain. It avoids the expensive FFT and FFT~! transformations which take up to 40% of the
execution time in the Daly VDP.

In the Sarnoff VDM the CSF normalization is done after the contrast pyramid is obtained. Therefore, distortion
introduced by the CSF cannot interfere with the image decomposition. On the other hand, in the Daly VDP the CSF
modulation 1s done before the cortex filtering. The signals in the frequency domain are therefore slightly distorted
before spatial selectivities are applied. According to Legge and Foley'? an important feature of the masking model
is the ordering of its elements. It is better to place the linear stages before the cone nonlinearities.

7. CONCLUSION

Working from the published references, two image quality models, the Daly VDP and the Sarnoff VDM, were
successfully implemented. Both models were tested on images similar to those in their original publications and
comparable results were obtained. This paper thus serves as an independent verification of the algorithms presented
in the articles where these two models were introduced.

Each of these methods takes a different approach to modeling the human visual system and computing image
quality. The Daly VDP emphasizes threshold accuracy by duplicating psychophysical results concerning the visual
system. This leads to a careful computation of the initial nonlinear response to light, the application of the contrast
sensitivity function in a continuous frequency domain, and the decomposition of the original image into a relatively
large number of orientation bands. The Sarnoff VDM focuses on modeling the physiology of the visual pathway.
This produces a careful simulation of the optical PSF, the handling of extra-foveal vision, and the incorporation of
an eccentricity dependent pooling stage.

The tests that were performed showed that both models are able to detect the major artifacts that they were
designed to identify. On our limited set of images, the Sarnoff VDM was somewhat more robust giving better JND



maps and requiring less re-calibration. However, its limited number of orientation bands did make it susceptible to
failure when the frequencies to be detected fell between the available bands. The Sarnoff VDM had better execution
speed than the Daly VDP model but at the expense of using significantly more memory.

On the overall, the most important contribution of this paper is the verification of the major features of these
models. Both models perform as their authors said they would. However, a complete evaluation would require a
larger number of test images and a careful set of psychophysical tests. In this way a more detailed analysis could
be performed under a greater variety of conditions, and the models’ ability to detect artifacts could be completely
characterized.
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