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Visual models are often used to analyze the performance of image processing

systems
 Two of the leading models are the Daly and the Sarno� model which have

been designed to predict the visibility of luminance di�erences between static input

images
 They accomplish this by attempting to reproduce the functional responses

of every physiological mechanism in the visual pathway of the brain


These two models are based on the same set of psychophysical facts about

human vision
 Therefore� they have a similar basic architecture and some similar

mechanistic features
 However� the Daly and the Sarno� models take totally di�er	

ent approaches to modeling visual perception� the frequency domain approach and

the spatial domain approach respectively


A comparison of these two models is made based on a detailed description of
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their structures and on detection test results
 Similarities and di�erences of both

models are discussed along with their strengths and weaknesses
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CHAPTER I

INTRODUCTION

Human visual models have been developed for a wide variety of applications


These include image compression� distortion detection� halftoning� image synthe	

sis� and image quality measurement
 The ultimate goal is to render imagery with

optimal visual quality given constraints on computational speed� memory� bit rate�

and display
 For instance� visual metrics can be used to help assess simulated print

quality for di�erent printing speci�cations
 These metrics can be exploited to syn	

thesize more pleasant images to the human eye with limits placed on resolution
 A

psychologically meaningful quantitative quality metric is very useful in evaluating

images
 Visual models provide such objective and reproducible metrics


There has been a wide range of di�erent approaches taken to the measurement

of image quality
 The most straight	forward but also the most expensive way to

measure the �delity or quality of an image is to collect data from the responses of

human assessors
 It is a time consuming and subject dependent process
 Moreover�

the results are hard to reproduce


There is a need for so	called objectivemeasures� that is� mathematical formulas

or algorithms which will predict the visual quality of an imaging system
 The

most common objective measure of image �delity is the root mean squared error





�RMSE�
 Objective metrics performed on machines are less expensive� repeatable

and independent of subjective assessment
 They are more suitable for the increasing

demand on image quality assessment


Simple objective metrics such as RMSE do not include elements of human

vision
 The RMSE is not an appropriate measure for many image quality testings�

because it incorrectly assumes that errors of equal magnitude are equally visible
 It

also assumes that the �nal combined perceptual error is simply the addition of all

errors
 RMSE is widely used only because of its simplicity


Many early visual discrimination models fail in many situations where local

luminance adaptation or spatial masking is involved
 A visual model has to model

many features of the human visual system �HVS� before it can serve as an accurate

measure of image quality or �delity
 These features must also be based on psy	

chophysical measurements
 In general� they consist of various sorts of channeling

and non	linear processing of the images


Psychophysical measurements of perception provide guidance for understand	

ing and building visual models
 For example� we can determine the threshold of

perception of various components of an image
 All information below this threshold

can be removed from the image without human detection of the loss
 Based on this

observation� the contrast sensitivity function has played a critical role in the �rst

vision systems
 Some important psychophysical discoveries are discussed in Chapter

II


A new class of visual models have been proposed to accommodate the underly	
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ing psychophysical facts about human vision� mechanistic visual models
 They have

a similar basic architecture and similar mechanical features
 These models can be

classi�ed into two categories� frequency domain models and spatial domain models


The �rst class mainly operates in the frequency domain and the second one only

in the spatial domain
 They are two totally di�erent approaches to capturing the

central features of human visual perception


The Daly model and the Sarno� model are typical examples of the frequency

and spatial domain approaches respectively
 They are considered the leading visual

models nowadays
 Both models share the same structure in their mechanistic visual

system �Lubin� ������ particularly when it comes to modeling early vision


In the Daly and the Sarno� model� the following characteristics of human

vision are simulated� �� It is the contrast� and not the linear di�erence� that de	

termines the visibility of luminance variations
 � Brightness �or the perception of

lightness� is a nonlinear function of luminance
 Brightness contrast is processed in a

nonlinear fashion
 �� Human contrast sensitivity is a function of spatial frequency


�� Spatial frequency processing in the human cortex has the properties of radial

selectivity and orientation selectivity
 �� Spatial masking reduces the detectability

of a given stimulus by the �simultaneous� presence of an additional stimulus


Both models embody the same known fundamental psychovisual observations

and their detection results are psychophysically plausible
 Although these two mod	

els have evolved and been tested for years� there is relatively little literature devoted

to comparing the two
 In the interest of comparison we give a thorough analysis of



�

the models as a whole and of each of their elements
 Like most other visual models�

these two were originally developed for some speci�c tasks
 For example� the Sarno�

model was speci�cally tailored to model vision in a cockpit environment
 They were

designed with di�erent resource priority considerations
 Both models have their own

advantages and disadvantages


In this thesis �rst the background of visual perception and human visual mod	

eling is established
 Some important facts drawn from well	known psychophysical

measurements are introduced
 For each visual model� a detailed description of the

model structure is given
 The functionalities of each stage are discussed with phys	

iological justi�cation
 Detection results and model performance are presented as

well
 In comparing the two models� the similarities and di�erences of the two are

analyzed along with their strengths and shortcomings
 Finally� conclusions are given

and future work is described
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CHAPTER II

PSYCHOPHYSICAL FOUNDATIONS

Both knowledge about human vision and an awareness of visual modeling

techniques are crucial to understanding and designing a good human visual model


The development of human visual models is closely coupled with advances in psy	

chophysical studies of visual perception
 More and more aspects of human vision

are being incorporated into visual models to make them more powerful


In this chapter� some time	tested facts from human visual perception are pre	

sented
 They are the foundation of all visual models
 Human visual perception

is so complicated that it is more plausible to design a visual model on the basis

of psychophysical facts than on the basis of speculation about physiological struc	

ture �Schreiber� �����
 Discussions are limited to the luminance �intensity� domain


Color vision is not covered in this thesis


Contrast Sensitivity

The absolute amplitude of luminance is not the major factor contributing to

the visibility of luminance variations
 This is because the human eye adapts over

a large dynamic range
 Instead it is the contrast that matters
 The de�nition of

contrast C is



�

C �
�L

L

where L is luminance


The human contrast sensitivity curve is shown in Figure � �Schreiber� �����


When the luminance levels are anywhere between ������ millilamberts and ����

millilamberts� the slope of the curve is around �
� �or simply �
�� on a log	log

scale


�Lmin

L
� KL���� �

Kp
L

� Cmin

where K is a constant


When luminance rises to the photopic range� the contrast sensitivity curve

begins to level o� on a log	log plot
 This can be seen in the �rst transition stage in

the plot above
 From ��� millilambert to ��� millilamberts� �L
L

is within a factor of

 of its minimum value
 The slope of the contrast sensitivity curve� known as the

Weber	Fechner fraction� remains constant over a large brightness range


�S

�L
�
dS

dL

�S �
dS

dL
��L � constant



�

FIGURE �� Contrast Sensitivity vs
 Luminance �after Schreiber
�����

where

S� Sensation


�S� Minimum detectable change in S


If brightness rises� saturation sets in and �L
L

falls again
 This is shown in the

second transition stage in the plot


Brightness vs
 Intensity� Nonlinearity

It is widely agreed that there is a nonlinear relationship between brightness

and luminance� or in other words� between the magnitude of the sensation and

the intensity
 There are a number of empirical scales that have been proposed to

approximate the relationship of these two quantities� linear� logarithmic� modi�ed



�

log� power law� bilinear� and Munsell
 This will be covered in depth in the Daly

model description
 We will see that there is a close relationship between the bright	

ness curve and contrast sensitivity
 Nonlinearity takes di�erent forms at di�erent

intensity levels
 There are nonlinearities within and across intensity levels


Point Spread Function of the Optics of the Eye

The perception of graphic primitives is a�ected by the pupil aperture which

causes them to be blurred
 As the light passes from the cornea through the pupil�

di�raction occurs due to fringing at the pupil�s edge
 As a result� when a point of

light enters the eye the image projected on the retina has a bell	shaped distribution


This is known as the point spread function �PSF�
 For line primitives� i
 e
 stimuli

restricted totally along one orientation� a line spread function �LSF� is applicable


A typical PSF and LSF are shown in Figure 


The LSF can be used to describe the retinal output image in one dimension


In contrast to that� the PSF can be used to describe the quality of the optical system

in two dimensions


To �nd a PSF that correctly re�ects the anatomy of the eye and the charac	

teristics of the optics system� a shift invariant optical system has to be understood

�rst
 Shift	invariance describes one of the properties of the eye�s optics
 When the

position of the input light is shifted� the output pattern on the retina will be shifted

by a corresponding amount� but the shape of the output pattern will remain invari	

ant
 For example� when the input is a harmonic �sinusoid� of a certain frequency�



�

FIGURE 
 Typical PSF and LSF

the output will be a harmonic �sinusoid� of the same frequency although it might

have a di�erent scale and phase
 The shift	invariance is due to the uniformity of

the foveal optics �foveal vision�
 Shift	invariant systems are a special form of linear

systems �Wandell� �����


We can take advantage of shift	invariant properties of the eye
 Under the

assumption that the PSF is circularly symmetric� a single PSF can be used to

predict the performance of the two dimensional optics of the eye in foveal vision


But actually the PSF is not circularly symmetric
 This will be discussed more in

Section IV
�
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Modulation Transfer Function

The modulation transfer function �MTF� is one of the major speci�cations of

an optical system
 It is used to describe the performance of the optical system� e
g


the imaging quality of an optical lens� or how well the lens can transfer information


For most optical systems� the MTF takes the form of a low	pass �lter if the system

is in focus
 But for the optical system of the human eye� the spatial MTF is a

band	pass �lter


From MTF to CSF� Plausibility and Restrictions

Humans are complex biological systems rather than simple mechanical sys	

tems
 When it comes to human subjects� a psychophysical measurement of sensitiv	

ity is adopted rather than an objective measurement of the human optical system


Correspondingly� the concept of the contrast sensitivity function �CSF� is used in	

stead of the MTF


The MTF can only be successfully used to describe homogeneous systems�

because the MTF contains no spatial description
 A system is called spatially ho	

mogeneous if its characteristics are constant across space
 The optics of the eye are

only homogeneous within the fovea or near the optic axis
 In the periphery of the

retina� the densities of the rods and cones vary
 In addition� the visual pathway

as a whole is inhomogeneous �Cornsweet� �����
 Fourier techniques only have a

limited application in such a case
 In the Sarno� model �Chapter IV�� where both
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the foveal and peripheral vision are considered� it is inappropriate to make use of

Fourier techniques


A single one dimensional MTF is not su�cient to describe an anisotropic sys	

tem like the eye
 However� two one dimensional MTF�s �or a two dimensional MTF�

are su�cient since all other orientations can be interpolated from them �Cornsweet�

�����
 A system is called isotropic if its characteristics are the same in all orienta	

tions


Due to the astigmatism of human eyes� their optics are anisotropic� which

discourages the use of a single MTF
 But since e�ects of anisotropy are relatively

small� a second MTF is not necessary �Cornsweet� �����


Contrast Sensitivity Function

As mentioned earlier� the human CSF is a band	pass function� instead of a low	

pass function
 The low spatial frequency drop	o� is due to lateral spatial antagonism

within the retina �Schwartz� �����
 A typical receptive �eld for photoreceptors will

vigorously respond when di�erent luminances are observed between the center of the

receptive �eld and its surroundings
 If spatial frequency decreases �which means�

not much brightness variation across space�� there will hardly be any luminance

variation within receptive �elds
 Thus sensitivity will drop


The high spatial frequency cuto� is due to the limited photoreceptor density

within the retina �Schwartz� �����
 Each photoreceptor can be seen as a sample

taker and all photoreceptors within the retina can be seen as a sampling matrix
 It
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is obvious that the �ner the sampling matrix� the better the resolution will be
 Due

to biological limitations� the density of the photoreceptor matrix is �xed� which leads

to a �xed upper bound of human eye acuity
 In addition� due to optical aberrations

any optical system shows high	frequency limitations even if it is perfectly in focus


There is a di�erence between the detection and the discrimination of contrast


It is easy to �nd a stimulus threshold in psychophysical experiments� but it is very

di�cult to deal with perturbations above the threshold �Schreiber� �����


Selectivities in Cortex

The cortex has both frequency and orientation selectivity
 It has been shown

that �under certain conditions� the visual system has the ability to separate signals

into di�erent frequency ranges
 This channeling concept is directly embraced in

many image processing applications� such as orientation analysis �edge detection��

subband coding� and multiresolution image splines �Burt and Adelson� ����B�
 It

was used in HVS	based coding �see the Daly model in Chapter III� and wavelet

coding �see the Sarno� model in Chapter IV� as we shall see later


It is safe to point out that the independent detection capability of each channel

does not exclude interactions between channels in human vision
 There is no reason

to assume an independent quantization of frequency	speci�c coe�cients
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Spatial Masking

The term masking is commonly used to refer to any destructive interaction

or interference among transient stimuli that are closely coupled in space or time

�Legge� �����
 Masking designates the reduction of detectability of a given stimulus

by the simultaneous presence of an additional� in general� suprathreshold stimulus


Masking occurs between periodic patterns �e
 g
 sinusoidal gratings� with similar

orientation and radial frequency� and between aperiodic patterns �e
 g
 at luminance

borders�


Masking e�ects can be measured and described in terms of luminance threshold

elevation Te
 It is de�ned as the di�erence between two thresholds� �� the threshold

needed to distinguish the signal in the presence of the mask� and � the threshold

needed to distinguish the signal in the presence of the uniform background
 The

basic masking e�ect can be generalized in a generic masking plot� shown in Figure

�
 In this plot� zero slope indicates no variation in Te
 In other words� there is no

masking e�ect when the masking contrast is low
 The threshold elevation rises when

normalized mask contrast increases indicating a rising masking e�ect


The dipper e�ect� also known as negative masking� is not shown in Figure �


Several studies have shown that a low contrast masker increases the detectability

of a signal �Legge� �����
 Accordingly the threshold variation becomes negative


Correspondingly there should be a dipper segment in the Te curve when the mask

contrast is low
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FIGURE �� Threshold Elevation �Te� vs
 Normalized Masking
Contrast �Mn�
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CHAPTER III

DALY MODEL

The Daly model� also called the visible di�erences predictor �VDP�� interprets

early vision behavior� from retinal contrast sensitivity to spatial masking
 It predicts

the visible di�erence between images and mainly operates in the frequency domain


The VDP models many perception elements
 It takes into consideration

a number of exclusive issues like mutual masking� phase	coherent masking� and

phase	incoherent masking
 The Daly model is a threshold model that can handle

threshold detection well
 However it is incapable of discriminating among di�erent

suprathreshold errors and of quantifying them
 Although better formulas or mod	

eling structures could be used� it has been shown that the VDP is a working model

that produces reasonable results for a number of di�erent data sets


Description of the Model

The Daly model computes the visible di�erence map for two images
 Given a

pair of input images and a set of parameters for viewing conditions and calibration�

the output of the model is a probability map for detecting the di�erence between

the two input images
 The general structure of the model is shown in the block

diagram in Figure �
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FIGURE �
 Daly Model

The key element of the VDP is a model of the human visual system �HVS�


This model consists of three stages� amplitude non	linearity� the contrast sensitiv	

ity function �CSF�� and the detection mechanisms
 A simpli�ed HVS is shown in

Figure �
 While the �rst stage� amplitude nonlinearity� describes the relationship

between visual sensitivity and intensity in the spatial domain� most of the other two

stages operate in the frequency domain
 The CSF characterizes the human response

to contrast
 The most complicated element of the VDP� the detection mechanism�

incorporates visual selectivities and masking into the model
 After spatial masking�

the model returns to the spatial domain to sum up the detection results in the pool	

ing stage
 The �nal output of the model is a third image showing the predictability

of visible di�erence as a function of pixel locations
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FIGURE �
 Human Visual System

By using actual input images and pointwise operations� the VDP preserves

relative spatial information �i
 e
 phase relationships�
 For data transformation from

the spatial domain to the frequency domain and back� usually the fast Fourier

transformation �FFT or FFT��� is used
 The frequency domain is suitable for

applying the CSF and detecting spatial masking
 In addition� frequency domain

techniques are mathematically tractable and well understood
 Theoretically the

FFT followed by the modulation transfer function� or MTF �CSF is the inverse

of MTF�� is only suitable for linear systems
 Nonlinearities of the algorithm and

of the visual system itself thus pose problems to the FFT and the MTF
 However

the in�uence of nonlinearity on the mathematical computation can be shown to be

limited
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Local Non	linearity

Nonlinear amplitude response is regarded as one of the most important per	

ceptual behaviors
 As shown in Figure �� it describes sensitivity variations as a

nonlinear function of intensity


FIGURE �
 Perceptual Sensitivity vs
 Intensity


In Figure �� di�erent curves represent di�erent illuminance levels
 The slope of

each curve varies with intensity
 The way in which the slope varies is di�erent from

one curve to the other
 Nonlinearities exist both within and across intensity levels


In the Daly model� a major assumption is made concerning the intensity adaptation

of the human eye
 It is assumed that the observer may view the image at an
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arbitrarily close distance and that their visual system can adapt to the intensity

level of a pixel
 With this in mind� the amplitude nonlinearity is expressed as a

function of pixel location �i� j��

R�i� j�

Rmax
�

L�i� j�

L�i� j� � �cL�i� j��b

where

L� Luminance


i� j� Pixel location


b� Constant �
��


c� Constant �
�


R�Rmax� Normalized response


The series of curves in Figure � shows the e�ect of long	term adaptation on the

instantaneous response curves
 Each response curve is normalized by its maximum

response so that it lies on a ��� log range �Daly� �����


The local nonlinearity scale can also be justi�ed by the relationship between

lightness curves and contrast sensitivity functions �Schreiber� �����
 From the earlier

description of Weber�s law� we have

�S �
dS

dL
��L � K

�� �L �
K
dS
dL



�

�� �L

L
�

K

L � dS
dL

� C

So given the nonlinear function of brightness �or the lightness curve� the contrast sen	

sitivity C� de�ned as �L
L
� can readily be calculated
 In other words� given luminance

�or intensity� the contrast response is known as well


There are a number of approximations for the nonlinear relationship between

brightness sensation S and luminance L
 Two of the most important ones are

discussed below


Case �

If S and L follow the logarithm law� then

S � K� � logL

�� dS

dL
�
K�

L

�� �L

L
�

K

L � K�
L

� C � K�

The relationship between constant C and luminance L �ts the Weber	Fechner Frac	

tion portion of the curve in Figure � �Schreiber� �����


Case 

If S and L follow the power law �e
g
 cube root�� then



�

S � K� � L �
�

�� dS

dL
� K� � L� �

�

�� �L

L
�

K

L �K � L� �
�

C � K� � L� �
�

The relationship between C and L �ts another segment of the contrast sensitivity

curve in Figure � where the visual acuity� log��L
L
� or logC� is proportional to the

reciprocal of L���� �or sometimes for simplicity L����
 The corresponding luminance

level of this segment is lower than the normal case where Weber�s Law holds


Discussion

These two cases show that when the luminance level is low� the power law

of the lightness curve is more suitable for approximating the nonlinear relationship

between S and L� while the logarithm law is a better �t when the luminance level is

higher
 In both cases� however� the same curve is used across all luminance levels


Neither the logarithm law alone nor the power law alone can accommodate the entire

e�ect of lightness adaptation for human eyes


The local non	linearity law adopted in the Daly model tries to capture the

nonlinearities both within and across di�erent luminance levels
 In the plot of the





lightness curves used in the Daly model �Figure ��� the sensitivity curve is more like

a power function �case  above� when luminance is low and more like a log function

�case � above� when luminance gets higher


Contrast Sensitivity Function

The CSF is de�ned as the inverse of the modulation transfer function which

in turn is de�ned as the contrast required to produce a threshold response at a

particular spatial frequency
 Therefore the band	pass shaped CSF describes how

visual sensitivity varies with spatial frequency


Before discussing the CSF further we give the de�nition of contrast used in

the Daly model
 This de�nition is called local contrast
 It uses the baseband image

as the mean of the image


C �
B�i� j�

BK�i� j�

where

i� j� Pixel location


B�i� j�� Value of the image at pixel �i� j�


BK�i� j�� Value of the baseband at pixel �i� j�


The CSF employed in the Daly model generalizes all global spatial frequency

e�ects� no matter where they actually occur along the visual perception path
 This

approximation is a function of viewing parameters� adaptation parameters� and
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eccentricity
 Its expression is given as follows�

S��� �� i�� d� e� � P �min�S��
�

ra� re� r�
� l� i��� S���� l� i

����

in which S� is

S���� l� i
�� � ��������i�������� � ��

�
� �Al��e

�Bl��
p
� � ����eBl��

Al � ������� �
���

l
�����

Bl � ����� �
���

l
�����

where

S� Visual sensitivity


P � Absolute peak sensitivity of CSF


�� Spatial frequency in cycles�deg 


�� Orientation in degrees


l� Light adaptation level in cd�m�


i�� Image size in visual degrees


d� Viewing distance in meters


�� A frequency scaling constant
 ��� for the luminance CSF


A plot of the CSF described above is shown in Figure �
 The peak of the

CSF is at about � cycles�degree
 The CSF is not perfectly bandpass shaped
 While
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FIGURE �
 Contrast Sensitivity Function

the sensitivity to higher frequencies dies out dramatically� the CSF only drops o�

slowly in the lower frequency bands
 The high frequency cuto� is due to the �xed

photoreceptor array and optical aberrations
 The low frequency drop	o� is caused

by lateral inhibition within the retina �Section II
��
 This re�ects one of the early

vision properties that the CSF embodys� a low	pass	like function for suprathreshold

signals
 In the context of compression� this means that higher frequencies can be

more coarsely quantized in frequency based encoding systems without serious visible

degradation
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An additional property of the CSF is orientation anisotropy
 The CSF shows a

preference for vertical and horizontal orientations
 This characteristic is also known

as the oblique e�ect


In our implementation a �xed viewing distance has been adopted
 The eccen	

tricity is assumed to be irrelevant for our applications and is therefore set to zero


We have found that using the original Barten MTF �Barten� ����� produces better

detection results when the peak sensitivity P is not a �xed number but a function

of adaptation luminance


Detection Mechanisms

The third stage� detection mechanisms �Figure ��� consists of a number of sub	

stages� image channeling� spatial masking� psychometric function� and probability

summation


Cortex Filtering

First we will discuss the cortex �lters that channel the input image into a set

of band	�ltered images
 From the diagram shown in Figure �� we see that after this

stage� the input image is fanned out from one channel to �� channels or bands
 Each

channel is associated with one cortex �lter which in turn consists of a radial �lter

�dom �lter� and an orientational �lter �fan �lter�
 The radial �lter performs radial

frequency selectivity and the orientational �lter performs the orientation selectivity


The baseband is an exception where no fan �lter is needed
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FIGURE �
 Detection Mechanisms

Dom Filters

Dom �di�erence of mesa� �lters are de�ned as the di�erences between two

consecutive mesa �lters in the frequency domain
 They are a set of overlapping

band	pass �lters� which extract information of di�erent frequency ranges
 The mesa

functions� basically low	pass �lters� are given below


mesa��� �

����������
���������

��� for � � ���� � tw
�

�
��� � cos�

��������	
tw
� 


tw
�� for ���� � tw

� � � � ���� �
tw
�

��� for � � ���� �
tw
�



�

The half	amplitude ���� and the transition width tw of each �lter are respec	

tively de�ned as�

���� � �k

tw �


�
����

where k is the radial �lter level
 To compute the dom �lters� the values of k in the

mesa function range from � to K � �
 K is the total number of radial �lters which

is set to six in this model


For the lowest	frequency band �i
 e
 the base band�� a truncated Gaussian

function is used instead of a mesa function to weaken the ringing e�ect which is

usually associated with sharp edges of the �lter window


base��� �

�����
����

e���
�����
 for � � ���� � tw

�

� for � � ���� �
tw
�

where

	 �
�

�
����� �

tw


�

To compute the dom �lters the possible values for variable k in this function

are K � � and K
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FIGURE �
 Mesa� Base and Dom Filters
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In Figure �� the responses of �ve mesa �lters and one base �lter with variable

k equal to K � � are shown
 The response is anywhere between zero and one
 With

mesa functions and base function well de�ned� radial �lters can be derived
 There

are two types of radial �lters� dom �lters and the base �lter
 Dom functions can

be expressed as the formula below
 They are basically band	pass �ltering windows

�Figure ��
 As a radial �lter the base �lter is a base function with variable k equal

to K� whose response is shown in the lower	right box in Figure �


domk��� �

�����
����

mesa���j��������k��� �mesa���j�������k for k � �� � � ��K � 

mesa���j��������k��� � base���j�������k for k � K � �

Fan Filters

Fan �lters model the orientation attributes of spatial frequency selectivity


Information concerning di�erent orientations is �ltered out by a series of overlapping

Hanning windows �Figure ���
 Since there is less orientation sensitivity in the lower

frequency bands� it is overkill in the Daly model to use six fan �lters when frequency

decreases
 In the Daly model the fan �lter l is expressed as below


fanl��� �

�����
����

�
� �� � cos��j���c�l
j

�tw
�� for j� � �c�l�j � �tw

��� for j� � �c�l�j � �tw

where



��

�� Any orientation in degrees


�tw� Angular transition width in degrees


�c�l�� Orientation of the fan �lter in degrees


�tw and �c�l� are further de�ned as�

�c�l� � �l� �� � �tw � ��

�tw � ��c �
���

L

where

L� Total number of fan �lters� i
 e
 �


Cortex Filters

As mentioned earlier in this section� cortex �lters are simply the product of a

dom �lter and a fan �lter in the frequency domain


cortexk	l��� �� �

�����
����

domk��� � fanl��� for k � � � � �K � �� l � � � � � L

base��� for k � K

Figure �� shows the layout of all dom and fan �lters in the spatial frequency

plane
 The series of arabic numbers from � to � speci�es the dom �lters at di�erent

frequency levels
 Dom No
� covers the highest range of frequencies
 The highest
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FIGURE ��
 Fan Filters



�

FIGURE ��
 Cortex Filter Layout in Frequency Domain

frequency of any image is half a cycle per pixel
 The bigger the serial number k of

the dom �lter is� the lower the frequency range it resides in
 From Figure ��� we

see that the outside radius of successive dom �lters decreases by a factor of 
 Each

frequency band covers a range of one octave in the frequency domain
 This way the

frequency localization aspects of the visual system can be modeled


The center band orientation of the Fan� �lter is �� degrees or ��� degrees


The fan �lters are ordered in a counter	clockwise fashion
 Each fan �lters covers a

range of �� degrees
 After six sequential fan �lters� the same order repeats
 The

orientation discussed here is not directional
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Selectivities

The selectivities are demonstrated in Figure �
 Each �ltered image in Figure

� is obtained by applying either a single dom �lter or a single fan �lter to the original

star image
 The reason we chose the star image as a test image is that it has a wide

range of frequencies and all orientation information
 Each frequency band except

for the base band is further fanned out into six channels of di�erent orientation


For the base band� no orientation selectivity is observed
 Thus � �frequency bands�

times � �orientation per frequency bands� plus � �baseband� is ��
 In this manner

a �� channeled representation of the original input image is obtained


When a dom and a fan �lter are applied together� information of a certain

frequency range and a certain orientation can be �ltered out from the source picture


Figure �� shows two �ltered images obtained by using di�erent cortex �lters� i
 e


di�erent combinations of the dom and fan �lters


Spatial Masking

As discussed in Section II
�� spatial masking reduces the detectability of a

given stimulus through the simultaneous presence of an additional suprathreshold

stimulus
 Amasking function quanti�es such a generic e�ect in terms of the variation

of the detection threshold �Te� as a function of the normalized mask contrast
 This

relationship is shown in Figure � where the signal frequency and mask frequency are

the same
 When the normalized mask contrast is low� there is no variation in the

threshold
 When the normalized mask contrast increases� the threshold elevation
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FIGURE �
 Selectivities of the Individual Dom and Fan Filters
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FIGURE ��
 Selectivities of Two Cortex Filters
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rises monotonically at a �xed rate


CSF Normalization

In Figure �� both the horizontal axis and the vertical axis are normalized by

the detection threshold at the test frequency f in a uniform �eld �i
 e
 � the inverse

of the CSF at frequency f�
 The normalization by the CSF shown in the following

expressions makes sure the high mask contrast asymptotes are of the same slope


Mn���m� �
m

T ��� ��
� m � csf���

Te���m� �
T ���m�

T ��� ��
� T ���m� � csf����

where

Mn� Normalized mask contrast


Te� Threshold elevation


m� Mask contrast


�� Test frequency


Cortex Filter Normalization

So far� we have only discussed the situations in which signal frequency and

mask frequency are the same
 When the frequencies of the two signals are di�erent

the degree of masking decreases
 Accordingly the mask function in Figure � will shift
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horizontally to the right
 Only after the cortex �lter normalizations are introduced

is it possible to use a single mask function for all frequencies


By normalizing the horizontal axis with the cortex �lter� the masking functions

for all signal and mask frequency combinations can be shifted horizontally to ensure

that this single curve shown in Figure � is suitable for all signal and mask frequency

combinations
 Now the CSF	normalized mask contrast on the horizontal axis has

been further modi�ed as follows�

Mn��t� �t� � m��m� �m� � csf��m� �m� � cortexk	l��m� �m�

In this expression� Mn��t� �t� is the normalized mask contrast at frequency ��m� �m�

seen by the mechanism that detects the test signal at frequency ��t� �t�


Phase	Coherent and Phase	Incoherent Masks

The usage of the masking function also depends on some other factors� such

as mutual masking� learning e�ects� and the nature of the masking noise �Daly�

�����
 The masks can be categorized into two kinds� the phase	coherent masks

and the phase	incoherent masks
 When masks are phase	coherent� e
 g
 sine waves�

the dipper e�ect emerges
 The dipper e�ect makes Te drop below the uniform �eld

threshold �i
 e
 ��csf� when the normalized mask contrast is around � �Section II
��


The dipper e�ect is actually not incorporated into the Daly model under the assump	

tion that this e�ect diminishes very fast when di�erences in the signal frequency and
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mask frequency increase
 A simpli�ed version of the threshold elevation is used


Te���m� �

�����
����

T �Mn

T ��


� � Mn

T ��

���� for Mn � T ���

��� for Mn � T ���

where Mn is the normalized mask contrast and T ��� is the uniform �eld threshold


When masks are phase	incoherent �e
 g
 white noise� the slope of the high	

contrast asymptote increases to �� indicating the behavior of Weber�s Law
 More	

over� the dipper e�ect does not occur


Learning E�ect and Mutual Masking

The learning e�ect states that when the mask is easier to learn� the masking

e�ect is less obvious
 For example� either longer exposure to the test images or the

repeated usage of a certain mask will make detection easier
 In general when the

predictability of the mask and its familiarity to the observer increases� the spatial

masking decreases
 In the diagram shown in Figure ��� stronger masking e�ects are

re�ected as the steeper slope of Te in the higher contrast range


As the last element of spatial masking� mutual masking is used
 Since the

masking image cannot be robustly derived from the original image or from the

distorted one alone� masking images are computed from both input images
 With

two masking images� a point	by	point comparison between these two images is made


For each pixel the smaller value of the two is chosen as the �nal Te
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FIGURE ��
 Learning E�ect in Spatial Masking

T k	l
em�i� j� � min�T k	l

e� �i� j�� T
k	l
e� �i� j��

where

T k	l
em� Threshold elevation map of band k� l from mutual masking


i� j� Pixel position


T k	l
e� � Threshold elevation map for band k� l of image No
�


T k	l
e� � Threshold elevation map for band k� l of image No
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Operating Domains

In the spatial masking stage� the model �rst operates in the frequency domain

until the CSF and cortex �lter normalizations are done
 The input images are �rst

transformed into the Fourier domain� followed by CSF normalization and cortex

�lter normalization
 Then each channel k� l is converted back to the spatial domain

where the normalized mask contrast mn can be obtained as a function of location


The whole process is re�ected in the following formula of mk	l
n �i� j�


mk	l
n �i� j� � F���L�u� v� � csf �u� v� � cortexk	l�u� v��

where

u� v� Cartesian frequency components


L�u� v�� Fourier transform of the input image processed by the

amplitude nonlinearity


F � Reverse Fourier transformation


cortexk	l� Cortex �lter for frequency level k and orientation l


After �� normalized mask contrast maps are obtained� a set of �� threshold elevation

maps can be computed with the following formula for each input image


T k	l
e �i� j� � �� � �k��k�jmk	l

n �i� j�js�b���b�
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Finally� mutual masking is applied between the two sets of threshold elevation

maps from both input images
 One set of T k	l
e is calculated and piped into the next

stage� the psychometric function


Psychometric Function

Psychometric functions are usually obtained by repeating psychophysical ex	

periments on a large number of individuals
 The psychometric function given below

describes the increase of the probability of detection as the signal contrast increases


P �C� � � � e��
C
�

�

where

C� Contrast


P � Probability of detecting a signal of contrast c



� Threshold for normalization


�� Slope controller


When contrast C increases� P increases monotonically at a rate controlled by the

parameter �
 The change in the value of threshold 
 leads to the shifting of the

curve along the abscissa
 Let Cn be the normalized contrast�

Cn �
C






�

Thus the P can be rewritten as�

P �Cn� � � � e�C
�
n �

P �Cn� is plotted in Figure �� with linear coordinates
 The abscissa Cn is the contrast

normalized by the threshold 



FIGURE ��
 Psychometric Function

Probability Summation

Once the detection probabilities have been computed for each band of the

spatial �lter hierarchy� the probability images are combined into a single image



��

that� for every pixel� describes the overall probability of detecting an error in the

image


With the psychometric function� we can compute the probability of detection

in a single band k� l for each pixel


Pk	l�i� j� � � � e��
�Ck�l �i�j	

Tem �i�j	�T �
� 

�

The overall probability is obtained by pooling together probability contribu	

tions from all k� l bands as a function of position


Ptotal�i� j� � � �Y�� � Pk	l�i� j��

Performance Analysis

Detection Results

In this section� both the input images and the output detection images of the

Daly model are discussed and compared
 In our implementation� the brightness of

each pixel in the detection map is proportional to the probability that distortion

can be seen at this pixel
 The brighter a pixel� the more likely the distortion will be

noticed


The input images tested include computer generated patterns �the quarter

star in Figure ��� synthesized images� e
 g
 the mountain image from �Bolin and
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Meyer� ����� in Figure ��� and natural pictures �the chapel image in Figure ��


The distortions introduced into the original images and to be detected by the Daly

model include blurring �Figure �� patterned noise �Figure ��� �� and ��� and

quantizations �Figure ���


A standard computer monitor with a resolution of ���dpi was used as a display

device
 The maximum luminance of the monitor is about �� cd�m�
 The results

shown below are obtained at a viewing distance of about ��� meter


FIGURE ��
 Mountains with Di�erent Levels of Detail

The image in Figure �� illustrates two mountains with di�erent levels of detail


The gray scale depth of the image is � bits�pixel
 It is a good test image because

it has two distinguishable regions with di�erent frequency ranges
 The impact of

the distortion can be shown and compared because these two regions are side by

side
 When a sine wave noise pattern ��� cycles�degree� is added onto the original

mountain image �Figure ���� it is visible everywhere except in the part of the image
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FIGURE ��
 Mountains with Sine Waves �� Cyc�Deg�

containing the rough mountain
 The corresponding detection map is shown in Figure

��


When the image is quantized to � bits�pixel� the banding e�ect is more visible

in the smooth surface of the left mountain than in the rough surface of the right one

�Figure ���
 The quantization a�ects the appearance of the uniform background

only slightly so the distortion is basically invisible there
 The prediction of the

model is shown in Figure �


From the previous detection maps we can see that the masking e�ect is cap	

tured by the model
 Overall the detection results match what we see with our eyes


However� the model over	predicts noise in the lower luminance regions
 For exam	

ple� the masking e�ect is actually stronger in the dark rough mountain surface than

predicted by the model
 In contrast to that� the model is not sensitive enough to

detect distortion in the higher luminance background
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FIGURE ��� Daly� Detection Map of Mountains with Sine Waves
�� Cyc�Deg�

For the chapel image in Figure �� two kinds of distortion were also introduced�

blurring and sine waves
 The image in Figure  is obtained by convolving the

original chapel image with a � by � blurring window
 In Figure  the blurring

e�ect is very obvious in the area of window pane� along the edges of the walls� and

at the borders of the shadows
 The detection results from running the Daly model

are consistent with these observations �Figure ��


Sine waves at a frequency of � cycles�degree are added as phase	coherent noise

in Figure �
 In this image� the sine wave noise is less noticeable in the window pane

area� especially in the right hand arch where the lighting is brighter
 The detection

map is presented in Figure �


A quarter star image �Figure �� and vertical sine waves are also used as

signal and noise respectively
 They will be used to demonstrate the masking e�ect
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FIGURE ��
 Quantized Mountains �� Bits�Pixel�

and to test the predicting ability of the Daly model
 The star pattern is a good

test case
 The quarter star image� like the full star image in Figure �� consists of

a pattern with a continuous range of frequencies and orientations
 Since vertical

sine waves will be used as the masking noise� the upper	left quarter of the full star

image including the center area �where vertical patterns are located� is su�cient to

illustrate the masking e�ect


As discussed in Section III
�� spatial masking is most e�ective when the signal

frequency equals the noise frequency
 When the two frequencies are di�erent the

curve of the threshold elevation in Figure � shifts horizontally to the right� which

indicates a decrease in the spatial masking e�ect
 The addition of sine wave noise

to a signal pattern with continuously changing frequency can clearly illustrate the

frequency selectivity


Likewise� signal patterns having a continuously changing orientation can show
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FIGURE �
 Daly� Detection Map of Quantized Mountains

the orientation selectivity of the spatial masking very well
 When one sine wave is

superimposed on top of another one� the direction and phase of wave patterns has

an e�ect on their interference pattern
 The interference pattern becomes strongest

when the two waves are orthogonal and weakest when they are parallel


The in�uence of frequency selectivity and of orientation selectivity is shown

in Figure �
 The vertical sine pattern can be seen in most parts of the image�

especially in the high frequency part that is within the second ring from the center


The detection results from the Daly model are shown in Figure �
 In this detection

map� the area with the major masking e�ect is detected by the model
 The black

region shown in the map is where the frequency in the star pattern matches the

frequency of the vertical sine wave noise
 This is also where these two patterns are

parallel
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FIGURE �
 Original Chapel Image

Execution Time Pro�le

The most time	consuming operations in the Daly model are the Fourier trans	

formations
 The complexity of the Fourier transformations is O�n�� where n is the

number of entries in the d matrix
 If the FFT and the FFT�� are used before the

CSF normalization stage and after the spatial masking stage respectively� the com	

plexity for transformations between spatial and frequency domains can be reduced

to O�n log n�
 Figure � shows that up to ��� of the time is used in the FFT and

FFT�� stages
 The complexity of the FFT determines the overall complexity
 So

the complexity of the model is O�n log n� with the upper bound of O�n��


The pro�ling test of the Daly model has been conducted on a Sun Sparc ��


One can see that the results shown in Figure �� verify the theoretical analysis of

the complexity
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FIGURE 
 Blurred Chapel

FIGURE �
 Daly� Detection Map of Blurred Chapel
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FIGURE �
 Chapel with Sine Waves �� Cyc�Deg�

FIGURE �
 Daly� Detection Map of Chapel with Sine Waves



�

FIGURE �
 Original Quarter Star Image

FIGURE �
 Star with Vertical Sine Waves �� Cyc�Deg�
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FIGURE �� Daly� DetectionMap of Star with Vertical Sine Waves

FIGURE �� Execution Pro�le of the Daly Model Implementation
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FIGURE ��
 Complexity of the Daly Model
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CHAPTER IV

SARNOFF MODEL

The Sarno� model has been designed for physiological plausibility as well as

speed and simplicity
 While the Daly model is an example of a frequency domain

visual model� the Sarno� model represents another category� spatial domain visual

models
 Its key elements include resampling� steerable pyramid channeling� a trans	

ducer for just noticeable di�erence �JND� calculations and �nal re�nement �CSF

normalization and dipper e�ect simulation�
 Given two input images and a set of

parameters for viewing conditions� the output of this model is a JND map
 The just

noticeable di�erence is the threshold stimulus needed to discriminate between the

combination of the stimulus and the background� and the background by itself
 The

JND is also referred to as a di�erence limen �DL� by some vision scientists
 DL can

be used as the unit of the JND �Schwartz� �����


The Sarno� model was designed to predict visibility within a wide viewing

angle� where peripheral vision� as well as foveal vision� plays an important role


Predicting display visibility in a cockpit environment is one of its applications
 The

eccentricity of the human optical system should be taken as one of the important

parameters for describing non	foveal vision
 In an image quality measurement en	

vironment� however� the images we are interested in are always in full attention
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In other words� they are always in focus
 Thus peripheral vision can reasonably

be ignored under this circumstance
 Similarly� we can also assume that for image

quality assessment� the �xation depth of the optical system is the same as the image

depth


The design of the Sarno� model employs the same set of psychophysical facts as

those that form the basis of the Daly model
 A general psychophysical background

was given in Chapter III
 In the following paragraphs� functionality and speci�c

psychophysical justi�cations for the Sarno� model are discussed in detail


Model Description

In this section� the in�uence and function of each stage of the Sarno� model are

addressed
 These stages are stimuli� optics� resampling� steerable pyramid� phase

independent energy response� CSF normalization� transducer� disc	shaped kernel

blurring� and JND distances summation
 The general structure of the Sarno� model

is shown in Figure ��


Stimuli

Two digital images� the original image �or the reference image� and the recon	

structed image� are the input stimuli for the Sarno� model
 In addition� viewing

distance and resolution �or internal sampling size� of the input images must be spec	

i�ed as well
 As mentioned above� eccentricity and �xation depth can be ignored

in the case of image quality measurement
 The resolution of most computer ter	
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FIGURE ��
 Sarno� Model

minals is about ���dpi
 The viewing distance is within a meter
 The maximum

luminance of a terminal is usually no more than ��cd�m� according to photometer

measurements
 These are the default parameter values and they can be overridden


Optics Stage� Blurring

When considering the optical system of the human eye� the retina as well as

the optical lens should be taken into account
 The retina is where the virtual image

forms through the optical lens of the eye
 It�s biological characteristics have a direct

in�uence on retina image formation


As pointed out earlier� a single point spread function �PSF� can be used to
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predict the foveal performance of the two	dimensional optics of the eye� under the

assumption that this PSF is circularly symmetric
 In such a case� the PSF can be

easily derived from the line spread function �LSF� �Westheimer� �����
 When the

image of interest is in good focus �foveal vision� and when the pupil diameter is near

�mm� the even	symmetric LSF of Westheimer �Westheimer� ����� is�

Li � ����e����i
�

� ����e���jij

where i refers to position on the retina speci�ed in terms of minutes of visual angle


However� the PSF of the human eye is actually not circularly symmetric
 Not

all orientations can be in good focus due to the astigmatism of the eye
 Theoreti	

cally� when the PSF is circularly asymmetric� two in	focus �	D systems of di�erent

orientations are needed
 Any intermediate angles can be predicted from the contri	

butions of the  in	focus �d systems �Wandell� �����
 A typical LSF and PSF are

shown in Figure 


In the Sarno� model� a single circularly symmetric function is used as the PSF


Although it might not be theoretically robust� this simpli�cation is acceptable when

the impact of the astigmatism of the eye is not very noticeable
 The PSF utilized

in the Sarno� model is as follows�

Q��� � ����e����j�j
����

� �����e�����j�j
���
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where

�� Distance in minutes of arc from a point of light


Q���� Intensity of light at a distance �� relative to the maximum


For every pixel we can obtain the � values of its neighbors when we know the

viewing distance and image resolution
 Discrete convolution can then be applied

using the kernel Q��� shown in Figure �
 The e�ect of the PSF convolution is

blurring of the input images
 The output of the optics stage is assumed to be what

activates the retinal cones and rods


FIGURE �
 The PSF Used in Sarno� Model
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Resampling

This stage simulates the spatial resampling that is done by the cone and rod

mosaic in the retina
 When the processed luminance signals leave this stage they

have a �xed resolution due to the the �xed density of the cone and rod mosaic


Foveal viewing has a resolution of �� pixel�degree
 The neuron pathway takes

this value as the ultimate resolution thereafter
 This precomputation is necessary

because the signal channeling scheme has been developed under the assumption

that all input signals always have the same resolution
 The resampling is essential

in a spatial domain approach since the extraction of the di�erent frequency bands

is totally dependent on the resampling kernels and resampling rates


In our simulation� resampling is done by Gaussian convolution followed by a

point sampling
 If the resolution of the original image is smaller than �� pixel�degree�

the convolution and point sampling will �expand� the image by inserting more in	

terpreted values within the input matrix of luminance values
 If the resolution of the

original image is higher than �� pixel�degree� the convolution and point sampling

will �shrink� the image
 However� for both cases the output resolution will remain

constant at �� pixel�degree
 If the expanding �or shrinking� ratio is an integer then

convolution is easy
 If it is not� discrete convolution will have di�culty achieving a

continuous result


If the original images are too big� then the local image quality cannot be

assessed in a single glance
 This naturally leads to a block	dividing process in which
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a big image will be divided into N smaller blocks
 For each sub	image �or block��

the convolution and point sampling sequence can be applied without exceeding the

�xed upper resolution
 The rule is to make sure that the output of this stage is

constant at �� pixel�degree
 The �nal detection image can be obtained by simply

mosaicing the JND maps of all sub	images from the N runs


The input images are now ready for the pyramid break down
 This step

assumes that input signals are all within the same frequency range �namely� the

foveal resolution�


Steerable Pyramid

In the Sarno� model� the Laplacian pyramid �Burt and Adelson� ����A� is

used to store the wavelet representation of the resampled input image� while a

quadrature mirrored pair of convolution kernels is used to record information along

each of the four orientations
 After this stage� the raw luminance signal is converted

to units of local contrast


A Laplacian pyramid is used to record decomposed information for all seven

band	pass levels
 Limited by the spatial domain convolution approach� the peak

frequency of each level has to be a power of 
 The seven bandpass levels have

peak frequencies from � to ��� cycle�degree� where each level is separated from its

neighbors by one octave
 The contrast pyramid operation is expressed as follows�

 ck��x� �
I��x� � �Gk��x��Gk	���x��

I��x� �Gk	���x�



�

where

�x� Two	dimensional position vector


I��x�� Input image processed by the PSF and resampling


 ck��x�� Contrast at pyramid level k


Gk��x�� Gaussian convolution kernel


With each band	pass level� there is a Gaussian convolution kernel of di�erent

shape �i
 e
 distribution range�
 The higher the k� the lower the frequency of the

band� and the �atter the Gaussian convolution kernel


Gk��x� �
�

�
p
�k��

e
��x��y��

���
k

where

�k � k����

For reasons of simplicity� a steerable pyramid was actually used in both the

Sarno� model and our implementation
 In addition� the steerable pyramid has a

better performance
 The steerable pyramid is a multi	scale� multi	orientation� image

decomposition
 It consists of both frequency decomposition and orientation decom	

position �Karasaridis and Simoncelli� �����
 This image decomposition scheme is

also called image channeling
 It is a very common technique in early vision analysis

and image	processing applications
 Image channeling takes into account frequency
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selectivity and orientation selectivity e�ects that occur in the cortex


The wavelet transformation in the steerable pyramid is a tight frame �i
 e
 self	

inverting�
 It has the advantage of being both translation	invariant and rotation	

invariant �Karasaridis and Simoncelli� �����
 In addition� the �lter bank used to

construct the pyramid is polar	separable in the frequency domain


The decimation of the �lters is handled in a recursive manner
 With this

algorithm� a �ltered image is scaled down by a factor of  before it enters the

next decomposition level
 The requirement for steerability of the orientation �lters

constrains the orientation tuning
 A set of �lters forms a steerable basis if �� the

�lters are rotated copies of each other� and � a copy of the �lter at any orientation

may be computed as a linear combination of the basis �lters �Appendix A�
 The

simplest example for steerable basis �lters is a set of N�� Nth	order directional

Gaussian derivatives �Karasaridis and Simoncelli� �����


Figure �� demonstrates the four decomposed orientational contrast representa	

tions of the original image
 Each pyramid relates to one of the four basis orientations


For each orientation� a number of levels of the odd	phase bandpass subimages are

shown with decreasing resolutions


Phase	Independent Energy Response

There is a frequency level and an orientation associated with each channel of

the image
 Two sets of coe�cients can be obtained by convolving the quadrature

mirrored pair �lters �odd	phase �lter and even	phase �lter� with a certain frequency
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FIGURE ��
 Contrast Pyramids� Orientation � 	 Orientation �
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band �Lubin� �����
 These two sets of coe�cients contain both frequency and

orientation information for a channel
 The even	phase �lter is the Hilbert transform

of the odd	phase �lter� which means they have the same frequency response but

di�er in phase response by �� degrees


Energy response is the sum of the squared odd	phase coe�cient and the

squared even	phase coe�cient
 It is phase independent� because it sums up the

contribution from both odd	phase and even	phase energy response
 Odd	phase en	

ergy stems primarily from the edges in the image while even	phase energy mainly

comes from lines or bars


Theoretically� two sets of coe�cients �even phase coe�cients and odd phase

coe�cients� are needed to calculate the overall energy response
 After convolving a

bandpass image with the Hilbert pair kernels� outputs from these two �lterings are

squared and summed


ek	��X� � �ok	��X��� � �hk	��X���

where � indexes over the � orientations� and

X� Two	dimensional position vector


�� Orientation


k� Pyramid level


o� Oriented operator


h� Hilbert transform of the oriented operator
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However� in practice only one set of coe�cients is used
 The overall energy

response is approximated by slightly blurring the square of the coe�cients from the

odd	phase �or odd	symmetric� �ltering �personal correspondence with Simoncelli�

E
 P
� �����
 A narrow Gaussian kernel is used in the convolution for the blurring

e�ect


CSF Normalization� Precomputation for the Transducer

The normalization stage� as a preprocess to the transducer stage� is the coun	

terpart to the contrast sensitivity function normalization in the Daly model
 The

energy measure ek	��X� is normalized by the square of the modulation transfer func	

tion �Mt�� which is the reciprocal of the CSF
 According to the formula originally

proposed by Barten �Barten� ������ Mt is not only a function of the local mean

of the current frequency band� but also a function of the environment luminance�

image width� and other things
 The formula is as follows�

�

Mt�v�
� ave�bv

q
� � cebv�

where

a �
����� � ���

L
�����

� � ��
w��	 v

� 

�

b � ����� �
���

L
�����
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c � ����

Mt is close to the grating contrast detection threshold for the current pyramid level

with peak frequency vk and local luminance Lk
 The envelope of theMt�s of all pyra	

mid levels �from level � to level �� should be adjusted to �t the contrast sensitivity

functions �CSF�
 The CSF normalization function can be expressed as�

Ek	��X� �
ek	��X�

�Mt�vk� Lk�X����

where

vk� Peak frequency for the pyramid level k


Lk� Local luminance value used in the contrast calculation


X� Image matrix


ek	��X�� Energy response of frequency level k and orientation �


Ek	��X�� Normalized energy response of frequency level k and orientation �


The scale of Ek	��X� is DL� �DL� di�erence of limen�
 The normalization

contributes to contrast detection� while the next stage contributes to contrast dis	

crimination


Transducer

A transducer is used to re�ne the JND map by taking the spatial masking

dipper e�ect into consideration �Section II
��
 The dipper shape re�ects the behavior
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of the contrast discrimination function
 This stage features the transformation of a

sigmoid non	linearity with two variables n and w


T �A� �
An

An�w � �

where

A�
q
Ek	��X� The square root of the normalized energy response from channel

k� �


n� A real number around 


w� A real number around ��


Given the equation above we can do the following analysis�

Let A �
p
e


Case �

When A� ��

T �A� 	 An

�
	 An

Case 

When A � ��

T �A� �


� � �
� �



��

Case �

When A
 ��

T �A� 	 An

An�w
	 Aw

From the cases above� we see that when the square root of the normalized

contrast energy A is small� maximum transducer output from pyramid level k accel	

erates as An! when A is large� the function is compressive as Aw
 For intermediate

values of A at the contrast detection threshold for frequency vk� the transducer

output is about �


Disc	Shaped Kernel Blurring

According to Lubin �Lubin� ������ the following characteristic of the oriented

�lters should also be modeled
 For a single �lter at a single spatial position �i
 e


for each of the � bands�� given a sine wave to which the �lter is optimally tuned�

the output as a function of the number of cycles in the patch will asymptote at a

little more than one cycle
 Foveal human sensitivity increases when the number of

cycles reaches �ve
 A disc	shaped �lter kernel of a diameter of �ve can be applied

to each band to account for this e�ect
 The �lter used in our implementation is not

a perfectly disc	shaped window� but instead a � by � matrix square with each entry

taking the value ����
 Through our implementation� we have found out that this

pooling stage makes a surprisingly big di�erence in the output of the JND map
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Distance of M	Dimensional Vector Summation

After getting the JND di�erence map for each channel� the last stage is devoted

to putting together the contributions from all channels
 This leads to the concept

of a space of multiple dimensions
 We have � channels to perform the summation�

number of pyramid levels ��� times the number of di�erent orientations ��� gives �


For each spatial position� the �nal JND distance can be regarded as the distance

between two �	dimension vectors
 Each of the � JND maps obtained from previous

stages describes the di�erence along one dimension
 The JND distance between two

points in such a �	dimension space can be calculated with the following formula�

D�X ��X�� � �
��X
i��

�Pi�X��� Pi�X���
Q�

�
Q

where

X��X�� Two input images


Q� Parameter currently set at ��
 If Q � � this expression corresponds to

Euclidean distance


Calibration

Calibration is used to avoid selecting the model parameters on a case by case

basis
 This procedure is based on the assumption that the shape the transducer

function is independent of the pyramid level or orientation channel� except for a

scale factor that is determined by the CSF
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The procedure is divided into two steps
 The �rst step makes sure the CSF

�ts the psychophysical data
 The second step adjusts the variables in the transducer

function so that its outputs match those from human vision


As part of the �rst step� informal tests were performed with human subjects

to get the CSF data for our test environment
 From running the Sarno� model� we

feel that there is not a large di�erence between the results obtained with the CSF

data mentioned above and the CSF data �rst measured by Schade �Schade� �����


However� we have found that the calibration of the second stage of the transducer

has a large impact on the accuracy of the �nal detection results
 The output of the

transducer stage T �A� is the the �nal JND for each pixel in each channel
 The JND

is expressed as�

JND �
A

Te
� T �A�

where

A� Normalized contrast
 A is approximately the square root of the energy

response �see Section IV
� and IV
��


Te� The threshold elevation normalized by CSF


T �A�� The transducer output


The formula for the transducer output T �A� is given in Section IV
�
 A new

expression of Te that only contains variables n and w is obtained




�

T �A� �
An

An�w � �
�

A

Te

�� Te �
A

T �A�
�
An�w � �

An��

Spatial masking is well described in terms of threshold elevation� which serves

as a guide in the calibration process
 Two variables n and w are open to calibration


The expressions for T �A� and the newly derived Te are plotted out with di�erent

values of n and w shown in Figures �� to ��
 The scales of those graphs are exactly

the same


Generally� variable w has more in�uence on the curve segment when the nor	

malized mask contrast A is bigger than ���� while variable w has more in�uence

on the curve segment when A is smaller than �
 By looking at Figures �� to ���

one can see that di�erent w�s and n�s lead to di�erent slopes in the two segments

respectively
 The proper combination of the values for n and w can not only produce

a partial dipper e�ect but also can re�ect the masking e�ect when A is higher than

���


From psychophysical tests mentioned in Chapter III we know that for the high

mask contrast the slope of Te is within a range from ��� to � �see Section III
��
 Thus

a range of ����� ���� seems reasonable for w
 From Figures �� to ��� it can be seen

that the bigger n� the bigger the dipper e�ect becomes
 At the same time� however�
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FIGURE ��
 Variable n�w Calibration� n � ��� w � ���
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FIGURE ��
 Variable n�w Calibration� n � ��� w � ��
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FIGURE ��
 Variable n�w Calibration� n � ��� w � ���



��

FIGURE ��
 Variable n�w Calibration� n � ��� w � ��
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bigger distortion is introduced when n grows larger
 Values between �� and �� are

reasonable for variable n


In the second stage of calibration� informal experiments with human subjects

have been conducted
 The data collected is used to verify the choices of the n and

w values
 Sine wave patterns with and without noise are generated as test images


All peak frequencies of the seven band	pass levels of the steerable pyramid are used

as frequencies for these sine waves patterns
 Di�erent combinations of n and w are

used
 The results of these psychometric experiments have approximately matched

the detection results obtained from running the Sarno� model
 We have realized

that when n is between  and �� and w is about ��� the detection results are

generally the best
 This matches the theoretical prediction of the value range for n

and w


Performance

Detection Results

For comparison� the same input images that were used to test the Daly model

were also used to evaluate the Sarno� model �Section III
�
 In addition� more test

images were used for further demonstration and discussion �Figures ��� �� � ��� and

���
 The tests were done in the same lighting environment with a standard computer

monitor that has resolution of ���dpi
 The maximum luminance of the monitor was

about ��cd�m�
 The viewing distance was about ��� meter
 The reason for choosing



��

��� meter and not ��� meter as in the Daly model testing was that at that distance

and with the above display resolution the resampling rate of the retina is roughly

�� cycles�degree which leads to an integer expansion rate in the resampling stage


As mentioned in Section IV
�� convolution interpolation in resampling is easier with

an integer expansion rate


FIGURE ��
 Mountains with Sine Waves �� Cyc�Deg�

The reconstructed image in Figure �� has a sine wave mask of � cycles�degree�

which is one of the seven peak frequencies in the steerable pyramid representation


Due to spatial masking a large distortion di�erence exists between the two mountain

areas in Figure ��
 This distorted image is fed into the Sarno� model along with

the original mountain image in Figure ��
 As shown in Figure ��� the masking

e�ect is more accurately predicted than in the Daly model
 The noise pattern in the

background is also properly detected
 The maximum JND of this detection map is

����
 The mean JND is ���




��

FIGURE ��� Sarno�� Detection Map of Mountains with Sine
Waves �� Cyc�Deg�

The quantized mountain image at � bits�pixel �Figure ��� and the original

mountain image at � bits�pixel �Figure ��� are used as another test pair
 The

severe quantization aliasing shown in the smooth mountain surface and the strong

masking e�ect in the rough surface of the mountain are both correctly predicted by

the Sarno� model
 The detection map is shown in Figure �� with a maximum JND

of ��� and an average JND of ����


The detection map of the blurred chapel �Figure � is shown in Figure ��


As in the Daly model� the most distorted part of the image� i
 e
 the panes and the

edges� is correctly detected
 But the detection results indicate a somewhat stronger

distortion across the wall than can be observed by human eyes
 The maximum and

average JND of this detection map are ��� and ���� respectively


The detection map in Figure � for the input image pair of the original chapel



��

FIGURE ��
 Sarno�� Detection Map of Quantized Mountains

�Figure �� and the chapel with sine waves �Figure �� shows a better prediction

of the masking e�ect than in the Daly model
 However� the model over	predicts

the distortion in the dark area �e
 g
 the walls in the shadow�
 The maximum and

average JND�s for this picture are ���� and ����


The star pattern is again used to test the orientational and frequency selectiv	

ities of spatial masking
 The detection map for the image pair in Figure � and �

is shown in Figure ��
 According to the model�s prediction� less distortion is seen in

the rings with relatively high but uniform luminance� and also in the area where the

orientations and frequencies of both signal and noise match
 However� the model is

not perfect
 The black region on the left� two �fth�s of the distance from the bottom

of the prediction map� shows that the distortion in this region is under	predicted


The maximum JND of this detection map is ���� and the average JND is ����


Finally� the model was tested on images of quantized peppers
 Di�erent quan	
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FIGURE ��
 Sarno�� Detection Map of Blurred Chapel

tization levels were used to test the sensitivity of the model and to determine how

accurately it could predict a di�erence
 The original pepper image is shown in Fig	

ure ��
 The quantized pepper images have a grey scale depth of � bits�pixel �Figure

��� and � bits�pixel �Figure ���
 Stronger contour aliases are observed when quan	

tization is strong �Figure ���
 The detection maps for these two quantized images

are shown in Figure �� and ��
 The maximum and mean JND of the detection map

in Figure �� are ���� and ��� respectively� and for Figure �� they are ���� and ����

respectively
 Generally� for these images the predictions from the model correctly

re�ect what is seen by the human visual system


Speed and Memory

The execution time of the Sarno� model has been measured on an HP ��������

computer without compiler optimization
 For example� when the resampling stage



�

FIGURE �
 Sarno�� Detection Map of Chapel with Sine Waves

of the model does not resize the input images� the running time of the Sarno�

model is about ��� seconds for input images of size ��x��
 For input images of

size ��x��� the running time is about �� seconds


The Sarno� model functions purely in the spatial domain with simple op	

erations
 The modeling of each perception stage is interpreted either as one	pass

�ltering �e
 g
 the PSF blurring� pooling stage�� two	pass �ltering �e
 g
 cortex chan	

neling�� or as straightforward point	by	point calculations �e
 g
 � the CSF normaliza	

tion�
 Theoretically� the complexity of the model is linear to the number of pixels in

the resampled input images
 The upper bound of the complexity is O�n�� where n

is the number of the pixels
 This linear relationship between the execution time and

the size of the detected images has been veri�ed by our performance measurements

mentioned above


Recall that in the Daly model the upper bound of the complexity is O�n��
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FIGURE ��� Sarno�� Detection Map of the Star with Vertical Sine
Waves

due to the time	consuming Fourier transformations
 If FFT and FFT�� are used�

the overall complexity can be reduced to O�n log n�
 Therefore when the size of the

input images increased� the Sarno� model�s superiority in terms of speed becomes

more and more obvious


However� the Sarno� model gains its speed at the cost of memory
 It has

to record data of all frequency levels and of all orientations
 The generating and

maintaining of the wavelet pyramids� local mean pyramids and contrast pyramids

takes a lot of memory
 Whereas in the Daly model� only one representation of the

image in the frequency domain is needed




��

FIGURE ��
 Original Pepper Image

FIGURE ��
 Quantized Pepper �� Bits�Pixel�
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FIGURE ��
 Quantized Pepper �� Bits�Pixel�

FIGURE ��� Sarno�� Detection Map of quantized Pepper ��
Bits�Pixel�



��

FIGURE ��� Sarno�� Detection Map of the quantized Pepper ��
Bits�Pixel�
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CHAPTER V

COMPARISON OF THE DALY AND THE SARNOFF MODEL

The Daly model and the Sarno� model have their respective advantages and

drawbacks
 The di�erences between the two models come from �� the di�erent ap	

proaches they represent �i
 e
 the spatial domain approach and the frequency domain

approach respectively�! � emphasis on di�erent aspects of human visual perception!

and �� di�erent implementation techniques


Advantages of the Daly Model over the Sarno� Model

The Daly model� like several other psychophysical analyses� performs in the

frequency domain
 Frequency domain analysis has given rise to the concept of

frequency tuning or channeling which is quite prevalent in psychophysical models


Frequency channeling assumes that there are pathways in the HVS speci�cally tuned

to detect certain spatial frequency stimuli
 Moreover frequency domain analysis �e
 g


the CSF� can more easily be performed using some well	understood mathematical

computations �e
 g
 FFT and FFT���


Recall that the CSF describes the variations in visual contrast sensitivity as

a function of spatial frequencies
 It is more natural to make use of this function

in the frequency domain
 The advantage of frequency domain models� such as the
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Daly model� is to have a precise and continuous CSF normalization
 In the Sarno�

model� CSF normalization is approximated by performing it in only seven discrete

frequency bands �levels�
 For each band� its single peak frequency is used to get the

CSF values


The Daly model has a �ner simulation of the orientation selectivities
 Six

orientation �lters are used for each frequency band
 Although this might be slightly

over	complete� six fan �lters can produce more accurate results
 A choice of six fan

�lters is better especially when the input images are small and when resources are

not a major concern
 In the Sarno� model� only four orientation channels are used


This is acceptable but it introduces some degradation in the �nal results


When two images are compared and assessed� the mask cannot be derived

solely from any one of them
 Mutual masking is adopted in the Daly model to

produce more plausible threshold elevation maps for all bands


For the Daly model� there is no power	of	 limitation to the size of the image


However the FFT �Fast Fourier Transform� performs best when the base of the

image size is a prime number �e
 g
 � �� �� 


�
 On the other hand� in the Sarno�

model the size of the input image �actually the image size after resampling� needs

to be a power of 


Advantages of the Sarno� Model over the Daly Model

While the Daly model has advantages in frequency domain operations� a more

straight	forward simulation of each stage of visual perception is incorporated in the
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Sarno� model
 This includes optics� sampling� channeling� and cortex spatial mask	

ing
 Since there is no physiological evidence that the HVS performs any Fourier

domain processing� the spatial domain model is a more suitable mathematical de	

scription of the underlying neural process
 The Sarno� model tries to reproduce the

same functions that happen along the brain path


Since there is no single frequency representation in the Sarno� model� it is

possible to represent the CSF normalization as a function of location
 The MTF

term used in the Sarno� model is a function of the local mean of each pyramid level

�Section IV
��
 Theoretically� an MTF with phase information �i
 e
 as a function

of pixel positions� should simulate local luminance adaptation better
 Practically

speaking this re�ned MTF does not show a remarkable improvement over the MTF

obtained with a single adaptation luminance according to our tests


The Sarno� model uses a better approach to determine the local luminance

mean which is needed to compute the contrast
 In this model� the local luminance

mean of each pixel is the average of the luminance of neighboring pixels
 In the

Daly model� the luminance of the pixel itself is used as the local luminance mean

under the assumption of an arbitrarily close viewing distance
 This assumption is

physiologically untrue� whereas the local mean concept in the Sarno� model is a

better approximation


As discussed in Section IV
� the performance of the Sarno� model is faster

especially when the size of the input images is big
 The Sarno� model only operates

in the spatial domain
 It avoids the expensive FFT and FFT�� transformations
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which take up to ��� of the run time in the Daly model
 The execution time of

the Sarno� model is O�n�� where n is the number of pixels
 For comparison� the

complexity of the Daly model is O�n log n�
 The choice of � orientation �lters instead

of � speeds up the process as well


In the Sarno� model the CSF normalization is done after the contrast pyramid

is obtained
 Therefore� distortion introduced by the non	linear MTF cannot interfere

with the channeling
 On the other hand in the Daly model the CSF modulation is

done before the cortex �ltering
 The signals in the frequency domain are therefore

slightly distorted before spatial selectivities are applied
 According to Legge and

Foley �Legge� ������ an important feature of the masking model is the ordering of its

elements
 The linear �lter is better to be placed before the nonlinearity transducer


Common Features

While the root mean squared error �RMSE� measure tends to treat the entire

human visual system as a �black box�� both the Daly model and the Sarno� model

use physiological and psychophysical data to open the black box
 As a result� input

images and parameters are needed not only for the system as a whole but also for

a number of component mechanisms within


Both the Daly model and the Sarno� model use JND�s as the metric to quantify

the quality of the input images
 To generate a JND map as a function of pixel

location� the luminance contrast at each pixel must �rst be calculated
 At the next

stage it is necessary to apply the CSF normalization to convert the contrast into
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the JND metric
 Spatial masking based on spatial tuning is the �nal modi�cation

of the JND values


Both models have a summationmechanism
 The output of the �lters which are

tuned to di�erent frequencies� orientations� and spatial positions are passed through

the summation mechanism to convert the output of those channels into a single map

as a function of pixel location


Each stage of both the Daly model and the Sarno� model� which are typical

examples of mechanistic models� can be extensively modi�ed without interfering

with its neighboring stages
 Since there are various alternative theories and models

to explain each element of the human visual system as a whole� we can always select

the most appropriate model for a given application
 If there is any advancement

in psychophysical study of the human visual system� corresponding re�nements of

the mechanistic models can be easily done without major changes to their basic

architecture


Other Di�erences

In the Daly model the optics point spread function �PSF� is not modeled as

an element of the human visual system to avoid a shift	variant nonlinearity and the

accompanying problem of noninvertibility
 As a tradeo�� the blurring e�ect from

convolving the PSF with the input images could have lead to a better approximation

of the adapted luminance in the retina
 It is a coarse approximation� although the

process is invertible which is what signal processing usually prefers
 In the Sarno�



�

model there is a stage devoted to the optical PSF
 However in this model it is

assumed that the PSF is circular symmetric� which it is not


The Daly model includes a separate stage to handle the non	linear relationship

between brightness and intensity� amplitude nonlinearity
 A lightness curve is used

as a lookup table to convert the raw luminances into sensitivities
 The Sarno� model

does not explicitly include brightness nonlinearity


Although eccentricity is used as an input parameter in the Daly model� the

model is mainly dedicated to foveal vision
 The original application of the model

is the assessment of image �delity which primarily uses foveal vision
 The Sarno�

model can be applied to more general situations like aircraft cockpit vision simu	

lations
 When an application is limited to image quality measurement� these two

models can be regarded as the same as far as foveal vision is concerned


The averaging e�ect in the pooling stage of the HVS is simulated in the Sarno�

model when the output of the transducer is convolved with a disc	shaped kernel

�Section IV
��
 The same disc	shaped convolving kernel is used for each transducer

output resolution
 Therefore� the contributions from the lower frequency signals are

more extensively blurred
 The Daly model does not consider this special property

of the HVS


The two visual models have di�erent ways of visualizing the detection results


In the Sarno� model� the �nal JND map is shown directly as the �nal output
 In

the Daly model� a psychometric function is used to convert the JND values into

detection probabilities
 As a result� the �nal output visualization is a map of the



��

detection probabilities as a function of location


As mentioned in the last paragraph� a psychometric function describing the

relationship between the JND values and detection probabilities is used in the Daly

model
 The mechanical summation in the Daly model is the summation of the

probabilities whereas in the Sarno� model it is the computation of the distance

between two multi	dimensional JND vectors


Since the Sarno� model operates solely in the spatial domain� its ability to

select signals of an arbitrary frequency is limited
 As shown in Section V
�� the

Sarno� model performs best when the dominant frequencies �e
 g
 phase	coherent

sine wave noise� in the input images primarily fall into one of the seven bands


For example� when the frequency of the sine wave noise is �� cycles�degree� the

detection result is correct and clear
 If the frequency of the sine wave falls between

two neighboring frequency bands �e
 g
 � cycles�degree�� the detection result is not

as good


To illustrate this� sine wave noise of di�erent frequencies has been introduced

into the original mountain image �Figure ���
 Three distorted input images are

shown in Figures ��� ��� and ��
 The sine wave frequencies in these three input

images are respectively �� �� and �� cycles�degree


The detection results are shown in Figures ��� ��� and ��
 In the same order�

the maximum JND�s are ����� ����� and ����
 The mean JND�s are ���� ��� and

���
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FIGURE ��
 Mountains with Sine Waves ��� Cyc�Deg�

Common Problems

Although the mechanism used to handle the local luminance mean in the

Sarno� model is more appropriate than the one in the Daly model �Section V
�� it

is still not robust
 For example� if there is a big patch of uniformly black pixels in the

input image� the local luminance mean for many pixels in this area will still be zero

even though some averaging has been done
 If the local luminance mean of a pixel

is zero� its contrast computation will be incorrect
 In our current implementation�

a non	zero local luminance mean is found by increasing the number of neighboring

pixels for averaging
 An adjustment can automatically be made by substituting the

zero luminance mean with the new non	zero value


Both models face di�culties in �nding a correct general CSF representation


In the Daly model� the peak sensitivity P is hand	picked for di�erent environments
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FIGURE ��� Sarno�� Detection Map of Mountains with Sine
Waves ��� Cyc�Deg�

This parameter adjustment has to be done before each run of the Daly model
 In the

Sarno� model� calibration is done for CSF normalization
 However� in di�erent lumi	

nance environments� CSF�s are di�erent and so are the CSF normalizations
 There	

fore� the question boils down to the following� At which environment�adaptation

luminance level should the CSF test and calibration should be done to get optimal

results for all situations"

The number of orientation �lters used in these two models is either more than

su�cient or just barely su�cient �Section V
� and V
�
 A hybrid of the two could

be adopted� � di�erent orientation �lters could be used for lower frequency bands

where orientation selectivities are relatively weak� and � di�erent orientation �lters

or more could be used for higher frequency bands where orientation selectivities are

stronger
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FIGURE ��� Sarno�� Detection Map of Mountains with Sine
Waves �� Cyc�Deg�
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Conclusions

The Daly and Sarno� models are working mechanistic visual models
 These

models accomplish their results by attempting to simulate the functionalities of

each element along the visual perception pathway from the optics of the eye to the

brain
 Generally the predictions from these models match those of the human visual

system
 The most important contribution of these models is that spatial masking

e�ects are detected correctly
 The Sarno� model is particularly successful in this

regard


The key element in the mechanistic visual models is channeling
 This is where

the original input images are decomposed into di�erent bands
 Each band has a

di�erent frequency range and a di�erent orientation
 In this way� spatial tuning and

orientational tuning are performed as a normalization stage for spatial masking�

which simpli�es the spatial masking mechanism to a single lookup function
 In

the Daly model� this function is described as the threshold elevation equation
 In

the Sarno� model it is given as the transducer formula
 Another key element in

these models is the CSF� which describes contrast detection as a function of spatial



��

frequencies
 The CSF normalization is always coupled with the spatial masking

mechanisms
 Only after they have been normalized by the CSF can the contributions

from all frequency bands be regarded as equal
 In the Daly and Sarno� models�

the order of these two key elements �i
 e
 channeling and CSF normalization� are

arranged di�erently


The most distinguishable di�erence between these two models lies in the way

that they choose to represent the information contained in the visual �eld
 The Daly

model uses the frequency domain approach� while the Sarno� model is an example

of the spatial domain approach
 Understanding the mechanisms of both models

and their strengths and weaknesses helps us understand vision and visual models

in general
 Better visual models can be designed by combining the strengths of the

two


Potential Problems and Future Work

Some potential problems were found in these two models through our imple	

mentations and tests
 The common problem is the choice of local means and the

choice of the number of orientations in orientational tuning
 Furthermore� both

models face di�culties in �nding a correct general CSF representation
 These issues

has been discussed in Section V
�


Another problem with the Sarno� model arises in transducer calibration
 The

calibration process is time	consuming and environment�device dependent
 Two vari	

ables �n and w� are tuned in the calibration process
 The best values for these two
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variables are on average the best �t but may not be the best �t for all conditions
 It

is di�cult to precisely match the prediction results with the psychophysical results


 To �nd an e�cient method for calibration remains a topic for future work


Both the Daly and the Sarno� models restrict themselves to analyzing the

luminance di�erence between two static images
 In reality� people are also interested

in color
 Incorporating color factors into current luminance models would expand

the application of visual modeling signi�cantly
 It would also be very useful to add

the time dimension into the visual models
 Video signals� not only static frames�

can be assessed
 This could �nd important application in video coding testing and

related areas


The work reported in this thesis has lead to a better understanding of the

underlying mechanisms of visual perception and of the design of visual models


When it comes to perception or the processes in the human brain� there is no end

to possible explorations
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APPENDIX

QUADRATURE MIRROR FILTERS

Gaussian derivatives are important functions for image analysis
 A steerable

quadrature pair of them would be useful for many vision tasks �Freeman and Adel	

son� �����
 In this chapter we �rst give the steerable �lter formula for the second

Gaussian derivative of any directions
 As an example� four steerable quadrature

pairs are derived and illustrated
 These four steerable quadrature pairs are used in

constructing the steerable pyramid in the Sarno� model


Steerable Filter Formula

According to Freeman and Adelson �Freeman and Adelson� ������ three basis

functions G�a� G�b� G�c are su�cient for interpolating a second Gaussian derivative

G� in any direction ��

G���� � Ka��� �G�a �Kb��� �G�b �Kc��� �G�c

where

G�a � ������x� � �� � exp���x� � y���



���

G�b � �����xy � exp���x� � y���

G�c � ������y� � �� � exp���x� � y���

Ka��� � cos����

Kb��� � �cos���sin���

Kc��� � sin����

The Hilbert transform of G� can be approximated by using a third	order odd

parity polynomial� which is steered by four basis functions� H�a� H�b� H�c� and H�d


The Hilbert transform approximation H� is given as follow�

H���� � Ka��� �H�a �Kb��� �H�b �Kc��� �H�c �Kd��� �H�d

where

H�a � �����������x � x�� � exp���x� � y���

H�b � �������������� � x�� � exp���x� � y���

H�c � �������������� � y�� � exp���x� � y���

H�d � �����������y � y�� � exp���x� � y���

Ka��� � cos����
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Kb��� � ��cos���� � sin���

Kc��� � �cos��� � sin����

Kd��� � �sin����

Four Steerable Quadrature Filter Pairs

With the formula given above� G� and H� can be shifted arbitrarily in both

phase and orientation
 As an example� four steerable quadrature pairs are calculated

and plotted in Figure �� ��� ��� and ��


First Pair 	 Orientation of ���

G���
�� � G�a

H���
�� � H�a

Second Pair 	 Orientation of ����

G����
�� � ���G�a �G�b � ���G�c

H����
�� �

p


�
H�a � �

p


�
H�b �

�
p


�
H�c �

p


�
H�d

Third Pair 	 Orientation of ����

G����
�� � G�c



���

H����
�� � �H�d

Forth Pair 	 Orientation of �����

G�����
�� � ���G�a �G�b � ���G�c

H�����
�� �

p


�
H�a � �

p


�
H�b � �

p


�
H�c �

p


�
H�d
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FIGURE �
 Quadrature Pair at ��
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FIGURE ��
 Quadrature Pair at ���
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FIGURE ��
 Quadrature Pair at ���
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FIGURE ��
 Quadrature Pair at ����
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