
Perceptually Driven Interactive Geometry Remeshing

Lijun Qu∗ Gary W. Meyer†

Computer Science and Engineering Department and Digital Technology Center
University of Minnesota

(a) (b) (c) (d)

Figure 1: Bump mapped vase (a) created using a normal map and a vase model. The shading calculation transforms the normal map into a
color pattern which is gathered into a color map (b). The perceptual properties of the color map are then evaluated using a visual discrimination
metric. The brighter region in the map (c) indicates stronger visual masking. This map is then used to guide the placement of vertex samples
(d) in the geometry remeshing stage. The original vase has 7171 vertices, and the remeshed vase has 2000 vertices.

Abstract

Visual patterns on the surface of an object, such as two dimen-
sional texture, are taken into consideration as part of the geome-
try remeshing process. Given a parameterized mesh and a texture
map, the visual perceptual properties of the texture are first com-
puted using a visual discrimination metric. This precomputation is
then used to guide the distribution of samples to the surface mesh.
The system automatically distributes few samples to texture areas
with strong visual masking properties and more samples to texture
areas with weaker visual masking properties. In addition, due to
contrast considerations, brighter areas receive fewer samples than
do darker surface features. Because of the properties of the human
visual system, especially visual masking, the artifacts in the ren-
dered mesh are invisible to the human observer. For a fixed number
of polygons, this approach also improves the quality of the rendered
mesh since the distribution of the samples is guided by the princi-
ples of visual perception. The utility of the system is demonstrated
by showing that it can also account for other observable patterns
on the surface, besides two dimensional texture, such as those pro-
duced by bump mapping, lighting variations, surface reflectance,
and interreflections.
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1 Introduction

Surface signals, including texture maps, bump maps, surface re-
flectance, environment maps, can have a dramatic impact on the
appearance of a polygon mesh. Today these surface signals are used
to produce striking visual effects at little cost by employing the tex-
ture mapping and pixel shading hardware available on PC graphics
cards. There has been a considerable amount of work in the field of
computer graphics on the creation, processing, and usage of these
surface signals.

Surface signals have also been used to accelerate global illumina-
tion algorithms [Ramasubramanian et al. 1999], to compress the
texture map [Balmelli et al. 2002], and to generate a specialized
signal parametrization [Sander et al. 2002]. However, very little
work in the area of geometric modeling has taken surface signals
into consideration.

Some researchers have noticed that surface signals can be useful in
the area of geometric modeling. Ferwerda et al. [1997] developed a
visual masking model for computer graphics and observed that vi-
sual masking can have an impact on the representation of geomet-
ric models. The existence of surface signals on a geometric model
can raise the geometric error threshold for tessellating the surface.
This elevated threshold should be taken into account by algorithms
that determine a simplified representation for a geometric model,
such as mesh simplification algorithms and surface remeshing al-
gorithms. Figure 2 shows a flat shaded cylinder with and without
texture. Faceting artifacts can be seen clearly in the left image, but
no faceting artifacts can be seen in the right image. For the cylinder
with texture a more coarse geometric representation would suffice.
In this paper, we propose an algorithm that samples the geometric
mesh taking into account the surface signals on the mesh.

We are particularly interested in the visual perceptual properties of
the surface signals. Most surface remeshing algorithms distribute
samples on the surface according to the geometric properties of the
mesh, such as curvature information. In this paper, the distribution
of samples is guided both by the geometric properties of the mesh
as well as the perceptual properties of the surface signals.



Figure 2: Flat shaded cylinder without (left) and with (right) texture
(after Ferwerda et al. 1997).

This paper makes contributions in the following areas:

1. We have extended the current state of the art in perceptually
based level of detail algorithms to include visual masking. Vi-
sual masking requires multiscale and multiorientation decom-
position of the image and is difficult to determine in iterative
edge collapse mesh simplification algorithms.

2. We propose a new method that can compute the visual per-
ceptual properties of the surface signal based on the Sarnoff
visual discrimination metric: a contemporary vision based
model that takes advantage of threshold-vs-intensity, contrast
sensitivity, and visual masking.

3. Our remeshing algorithm accounts for geometric properties
as well as the visual perceptual properties of the surface sig-
nals on the mesh. Specifically, our algorithm incorporates
the visual perceptual properties of the surface signal into the
remeshing framework proposed by Alliez et al. [2002].

The remainder of the paper is organized as follows: Section 2 re-
views some of the previous work in surface remeshing and the ap-
plication of visual perception to geometric modeling. We then in-
troduce our algorithm in section 3. Next we provide a simple but
novel approach to pre-compute the visual perceptual properties of
the surface signal in section 4. The remeshing process is discussed
in section 5. We then improve the remeshing results by considering
other major features of the surface signal in section 6. We then dis-
cuss in detail the difference between our work and other previous
work, and draw some conclusions.

2 Previous Work

In this section, we present some previous work in the areas of per-
ceptually guided level of detail, geometry remeshing, and the rela-
tionship between the surface signal and geometry.

2.1 Perceptually Based Level of Detail

Lindstrom and Turk [2000] propose image driven simplification in
which the importance of each edge is weighted according to the
root mean square image difference, not the geometric difference, it
makes when deleted. They demonstrate that image driven simpli-
fication can produce results equal to or better than most geometry
based mesh simplification algorithms. Lindstrom [2000] employs a
perceptually motivated metric in a mesh simplification algorithm.

Luebke and Hallen [2001] propose perceptually driven mesh sim-
plification that controls the simplification using psychophysical
models of visual perception. They map an edge collapse operation

to the worst contrast grating introduced by the edge in question.
They later extended their work to the simplification of lit, textured
meshes [Williams et al. 2003]. However, visual masking is not in-
cluded. Our paper has the same goal as their research. However, we
use a contemporary model of the human visual system which in-
cludes threshold-vs-intensity, contrast sensitivity and visual mask-
ing.

A more recent work by [Lee et al. 2005] introduces the idea of mesh
saliency as a measure of regional importance for computer graphic
models and integrates this information into a mesh simplification
algorithm. It is important to point out that this work only considers
mesh saliency for geometry without textures. As was mentioned
above, diffuse color textures, normal maps, and lighting patterns
can each have a dramatic impact on the appearance of computer
graphic models and can thus change the regional saliency of the
geometric models. It would be interesting to take these factors into
account during mesh simplification.

2.2 Geometry Remeshing

With the advance of model acquisition techniques, there has been
a considerable amount of work in the area of surface remeshing.
We list publications most significant to our own work. Please see
[Alliez et al. 2005] for a recent extended review. Alliez et al. [2002]
propose a novel interactive technique that first partitions the model
into patches homeomorphic to disks, and then parameterizes each
patch over a planar domain. Most of the remeshing operations can
then be performed in the 2D parametric domain instead of 3D. In
their recent work on anisotropic remeshing [Alliez et al. 2003a],
they show that sampling along the principle curvature directions
can produce compactly represented meshes. Some researchers have
taken another approach to surface remeshing by working directly
on the 3D mesh. Turk [1992] designs an elegant algorithm that
positions vertices by point repulsion. More recent work [Surazhsky
and Gotsman 2003] employ a series of local operations to improve
the mesh quality.

2.3 Surface Signals and Geometry

Most meshes come with surface signals. However, the majority
of existing work either considers the problem of surface remesh-
ing without taking surface signals into account, or attacks the prob-
lem of construction, manipulation and optimization of surface sig-
nals without incorporating the geometry. Until recently, there has
been almost no work that includes both the geometry and the sur-
face signal. [Sander et al. 2002; Tewari et al. 2004] propose
signal-specialized surface parametrization that minimizes the sig-
nal stretch instead of the usual geometry stretch and show that the
signal-specialized parametrization can improve the image quality
due to less texture stretch. Carr and Hart [2004] design an inter-
active painting system that dynamically adjusts the parametrization
of the geometry according to the frequency content of the texture
painted on the surface. Their system allocates more texture space
to high frequency texture regions, thus preserving the details of the
texture during rendering.

3 Algorithm Overview

The input to the remeshing algorithm is a parameterized triangu-
lated mesh and several surface signals that have accumulated on



the mesh during rendering. First, our algorithm generates the com-
posite surface signal from several surface signal sources. Our algo-
rithm then analyzes the perceptual properties of the composite sur-
face signal using the Sarnoff visual discrimination metric. Third,
the surface mesh is converted to a map based representation, and
the geometry remeshing process is treated as a 2D sampling pro-
cess based on an importance map. Finally, a Delaunay triangulation
operation is performed on these samples. These samples and their
connectivity are re-projected back to 3D to form a 3D mesh.

We introduce the algorithm by showing how it can account for a
single type of observable surface signal: the color pattern produced
by two dimensional texture mapping. Near the end of the paper
we will broaden the definition of the surface signal to include the
effect of such things as bump mapping, spotlighting, shadow pat-
terns, and interreflections. We will also demonstrate how all of the
effects included in this general definition of the surface signal can
be accommodated using the same procedures developed to handle
two dimensional texture mapping.

4 Computing the Visual Masking Map

4.1 Visual Discrimination Metric (VDM)

Visual discrimination metrics have been created to assist in the de-
sign and evaluation of imaging systems. These metrics include cur-
rent knowledge of the human visual system and are designed for
physiological plausibility. The computer graphics community is
already familiar with these metrics. For example, visual discrimi-
nation metrics have been used to place samples adaptively into ar-
eas of the image plane that are visually more important [Bolin and
Meyer 1998] and to choose a global illumination algorithm from a
pool of global illumination algorithms [Volevich et al. 2000]. There
has also been work that employs the separate stages of the visual
difference metric to speed up rendering algorithms. A recent effort
is [Dumont et al. 2003].

In this work, the Sarnoff VDM [Lubin 1995] is used to compute
the visual perceptual properties of the texture. The Sarnoff VDM
consists of five major components: optics and resampling, band-
pass contrast responses, oriented responses, transducer and distance
summation. The optics and resampling stage incorporates the op-
tics of the human visual system and models how the rods and cones
in the human visual system sample real world images. The band-
pass contrast stage models the frequency selectivity of the human
visual system, including the decomposition, using image pyramid
algorithms, of the original images into seven bandpass images with
peak frequencies from 32 through 0.5 cycles/degree. The oriented
responses stage models the orientation selectivity of the human vi-
sual system. During this stage the images are filtered by a set of
filters with different orientations. The transducer stage does the
normalization and models the visual masking function of the hu-
man visual system. Finally, the distance summation computes the
visual difference between the two input images.

Visual discrimination metrics have some limitations that prevent
them from being used more widely in computer graphics. First,
these metrics are in general slow to compute, which makes it dif-
ficult to use them in interactive or realtime computer graphics ap-
plications. Second, these metrics were originally designed to take
two images at input, but only one image is available in many com-
puter graphics applications. The first limitation has been recently
addressed by [Windsheimer and Meyer 2004]. We will address the
second limitation in the next section.

4.2 Visual Masking Map Computation

The ability of a base visual stimulus to increase the visibility thresh-
old of a test visual stimulus is called visual masking. The base vi-
sual stimulus is sometimes referred to as the masker, and the test
visual stimulus is called the signal.

In this paper we want to compute the visual masking properties of
a texture and use the results of this computation to guide a surface
remeshing algorithm. Since the masking ability of the texture cor-
relates strongly with the spatial frequency, contrast, and orientation
of the test stimulus, any visual masking computation is not theo-
retically correct without considering the test stimulus itself. How-
ever, a well designed algorithm based on models of the human vi-
sual system can still provide valuable information about the visual
masking potential of a texture. There is some previous work in this
area. Walter et al. [2002] compute the visual masking properties
of a texture using aspects of the JPEG image compression stan-
dard. Ramasubramanian et al [1999] propose a novel method to
compute the visual masking properties of a texture by handling the
luminance dependent processing and spatially dependent process-
ing separately and then combining them in an appropriate manner.
We have taken a similar approach as in [Ramasubramanian et al.
1999].

We propose to compute the visual masking properties of a texture
using the Sarnoff VDM. This allows us to take advantage of the ac-
cumulated experience and robustness that is built into this metric.
Since the Sarnoff VDM takes two images as input, we need to have
a second comparison image to feed in as input along with the orig-
inal texture. Some researchers have tried novel ways to derive the
second image or both images. Bolin and Meyer [1998] determine
two candidate images while ray tracing by using current estimates
of the mean value and variance at each pixel. Volevich et al. [2000]
employ two intermediate global illumination solutions as input to
the visual discrimination metric.

According to Fourier theory, a texture can be decomposed into
multiple frequencies. Since any nonzero signal frequency poten-
tially causes visual masking, we can remove all nonzero frequen-
cies from the original texture and compare the resulting image (ba-
sically, just the DC component) to the original texture. Since the
Sarnoff VDM employs contemporary models of the human visual
system, given the original texture and the DC component of the
texture, the Sarnoff VDM will pick out visual differences for any
nonzero frequencies in the original texture.

This approach would work if the original texture had similar in-
tensity values across the texture. However, in general this is not
true for real world textures which have very nonuniform intensi-
ties. Regions with different intensities will be averaged together
and they can not be handled well by this approach. To solve this
problem, some low frequencies in the original texture are allowed
in the second comparison image to preserve the local average of
the texture. Allowing some low frequencies in the second compari-
son image doesn’t cause significant error in the final visual masking
map because frequencies close to zero have relatively weaker visual
masking compared to higher frequencies. Figure 3 shows the visual
masking caused by frequencies without considering the threshold-
vs-intensity function of the human visual system. Notice that the
right image correctly shows the visual masking caused by the step
function in the original texture, while the middle image incorrectly
shows visual masking occurring across almost the entire texture.

This can be implemented efficiently by low pass filtering the origi-
nal texture. In our implementation, we have used a Gaussian filter
to remove most of the high frequencies. It is important to choose the
right filter kernel size to filter the texture. If the filter only removes
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Figure 3: Image (a) is the original texture. Image (b) is the visual
masking map computed by using only the DC component of the
original texture as the second comparison image. Image (c) is the
visual masking map using low pass filtering of the original texture
as the second comparison image.

Figure 4: Image on the left is the original chapel image, image on
the right is the visual masking map. Brighter region of the visual
masking map indicates stronger visual masking.

a small portion of the high frequencies in the original image, the
visual masking caused by those frequencies left out in the second
image will not show up in the final visual masking map. Therefore,
the visual masking caused by those frequencies cannot be utilized
in the remeshing algorithm. On the other hand, if the filter removes
too many of the frequencies, the problem shown in the middle im-
age of Figure 3 will occur. The above mentioned problem has more
chance to happen if the image contains irregular intensity regions
and these regions have sharp boundaries (see Figure 3(a)). Hence,
the optimal kernel size is a function of image content. In our im-
plementation we have experimentally selected a filter kernel of size
15 (one degree of vision for our viewing distance and display dot
pitch), and it works well for all the examples shown in this paper.

The threshold-vs-intensity function gives the error detection thresh-
old corresponding to a given luminance background. To compute
the error threshold described by the threshold-vs-intensity function,
we have used the piecewise approximation described by [Ferwerda
et al. 1996]. To get the final visual masking map, we use a linear
combination of these two maps. Note that we combine the results
differently from [Ramasubramanian et al. 1999] since they com-
pute an elevation map in the second step (which in our case is the
just noticeable difference map, a kind of error threshold). Figure
4 shows a chapel image and the final visual masking map gener-
ated by our algorithm. Notice that the window of the chapel shows
stronger potential for visual masking while the background shows
less possibility of visual masking. In addition, the right window
shows visual masking is more likely than the left window because
it has a higher base luminance level.

Since the Sarnoff visual discrimination metric has been designed
for physiological plausibility and has been verified by a number of
applications, our approach is simple but has a strong underlying
foundation.

4.3 Computing the Reflected Surface Signal

We propose to compute the reflected surface signal in the paramet-
ric domain. This parametric domain approach has proven to be
useful in many applications [Gu et al. 2002; Nguyen et al. 2005;
Yuan et al. 2005; Wang et al. 2005]. The advantage to working in
the parametric domain is that a 3D problem is converted into a 2D
problem and thus a simpler problem is solved. In addition the tools
for image processing are available for the problem at hand. For
example, in our case we can use the Sarnoff VDM which is a 2D
algorithm. Without mapping into the parametric domain it would
be difficult, if not impossible, to adapt this tool.

As mentioned previously, what matters is the reflected surface sig-
nal that reaches the observer’s eye. We need to compute the re-
flected surface signal. While the reflected surface signal is a three
dimensional entity and is view-dependent, our modified visual dis-
crimination metric only handles two dimensional surface signals.
We therefore need to unwrap the 3D surface signal into a 2D map.
Conceptually this can be done by pointing an array of cameras at the
model, collecting all the reflected signal, and unwrapping the signal
into a plane. Since we assume we have a parameterized model, we
can unwrap the surface signal by rendering the model into a 2D map
using texture coordinates instead of the original vertices as vertex
positions. Moreover, we can unwrap several surface signals into
one composite surface signal, analyze the visual perceptual proper-
ties of the composite surface signal, and use the result to guide the
remeshing process.

We take the following procedures into account for the reflected sur-
face. First, we render the model into a 2D map by using texture
coordinates as vertex positions. The model can be textured using
traditional 2D textures, projected textures, spotlight textures and
environment maps. During the rendering, specular highlights are
not computed. Once we have the composite 2D surface signal, the
2D map can be treated just like a traditional texture map where vi-
sual masking properties can be computed using the visual discrim-
ination metric and its visual masking properties can be exploited
during the remeshing process.

We point out that this approach introduces distortions into the com-
puted surface signal which, in turn, introduces distortions into the
computed visual importance map. The general solution for this
problem is that all the applications, including [Nguyen et al. 2005;
Yuan et al. 2005; Wang et al. 2005], compute another map called
the area distortion map to compensate for this distortion.

5 Surface Remeshing

5.1 Map Based Representation

Once we compute the visual discrimination map for the texture
we can take advantage of this information to perform geometry
remeshing. In this paper we have adapted the remeshing approach
developed by [Alliez et al. 2002]. This method computes a set of
2D maps to represent the geometry properties of the model. The ad-
vantage of this technique is that most of the remeshing and filtering
operations can be easily done in the 2D parametric domain.

To represent the geometric properties of the model we have com-
puted the following 2D maps: an area distortion map, a curvature
map, and a regular sampling of the 2d parametric domain as was
done in [Alliez et al. 2002]. When combined with the previously
computed visual discrimination map, we can perform perceptually
based geometry remeshing.



5.2 Importance Sampling based on Centroidal
Voronoi Tessellation

A density map is computed using the maps determined previously.
Ideally, high curvature areas and low visual masking texture ar-
eas require denser sampling while low curvature and strong visual
masking areas require less sampling. We have used two parameters
to guide the generation of the density map. The curvature gamma
adjusts the relative importance of the curvature map. The visual
perceptual gamma adjusts the relative importance of the visual per-
ceptual map.

Once the density map is computed, we need to discretize the den-
sity map to a set of samples. Alliez et al. [2002] use error diffusion
to generate the samples, then switched to centroidal Voronoi tessel-
lation [Alliez et al. 2003b]. In this work, we take the second ap-
proach because it generates highly regular samples and thus makes
post-processing unnecessary.

Given a region A and a density function ρ defined over this region,
the mass of centroid c of A is defined by

c =
∫

A xρ(x)dx∫
A ρ(x)dx

(1)

One way to compute the weighted centroidal Voronoi tessellation is
to use Lloyd’s relaxation [Lloyd 1982]. Lloyd’s relaxation can be
considered as a fixed point iteration. Given a density map and an
initial set of n sites, it consists of the following three steps:

1. Build a Voronoi diagram of the n sites.

2. Compute the centroid of each site and move the n sites to their
respective centroid.

3. Repeat step 1 and 2 until a satisfactory solution is reached.

Efficiently computing the centroid of each site is not a trivial prob-
lem. Determining the centroid requires evaluation of Equation 1
for each site. Inspired by the work of [Hoff et al. 1999], we resort
to the use of computer graphics hardware to compute the centroid
of each site. A fragment program is used to perform the integra-
tions in Equation 1 using the vector reduce operation together with
summation [Krueger and Westermann 2003]. One major limitation
of computing the Voronoi diagram using graphics hardware is the
frame buffer resolution issue. This is especially true for our case
since there can be millions of samples for large models. Instead of
computing the centroids of all sites at the same time, we compute
one centroid at a time. This allows us to get around the resolution
issue.

5.3 Results

The left image in figure 5 demonstrates the result of rendering a
textured model of the head of Venus (see Figure 7(e)) into a 2D
map. The visual discrimination map that corresponds to this 2D
map is shown as the right image.

Perceptually based surface remeshing of the texture mapped head
of Venus depicted in Figure 7 begins with the generation of sam-
ples from the visual discrimination map shown in Figure 5. The
result of applying Lloyd’s relaxation on the map for 20 iterations is
illustrated in Figure 6. Finally, the samples are reprojected to 3D to
generate the 3D mesh.

Figure 7 shows the remeshing of the Venus model both with and
without using the visual perceptual properties of the surface signal.

Figure 5: Image on the left is the original texture, image on the right
is the visual discrimination map indicating visual masking proper-
ties of the texture.

Figure 6: Samples generated by centroidal Voronoi tessellation
based the above computed visual masking map.

The two pairs (a) and (b), (c) and (d) are generated with different
gamma values for the curvature and perceptual components. The
original mesh contains 5000 vertices. Image (a) shows a uniformly
remeshed model (curvature gamma is 0) with 2000 vertices. Image
(b) is produced with curvature gamma 0 and perceptual gamma 1.0.
Image (c) is produced with curvature gamma 1.2, image (d) is pro-
duced with the same curvature gamma as (c) and perceptual gamma
2.0.

Notice that the geometric details on the top part of the original mesh
are further removed as shown in image (b) and (d) compared to (a)
and (c) respectively since it is covered by texture. This further re-
duction of polygon count in textured areas will not be noticeable
due to the visual masking properties of the texture. The triangles
saved in the textured areas are used in other parts of the model. As
can be seen in the figure, the eyes, nose, and mouth of the model
have denser samples than the model without the perceptual compo-
nent, thus more details are preserved in these areas.

On a Xeon 1.8Ghz, 1G memory machine, it takes less than 1s to
compute the surface signal and convert the geometry into a map
based representation. The evaluation of the Sarnoff VDM takes
about 4s for an image pair of size 512x512. The centrical Voronoi
tessellation using 10 Lloyd’s iterations for Figure 7 takes about 20s.
This is the most expensive part of the algorithm. Fortunately, very
few iterations are required to generate good samples. Furthermore,
generating samples using image halftoning techniques can be used
in the design phase to create the initial samples.

6 Other Types of Surface Signals

Two dimensional texture mapping has been used in this paper to
demonstrate how the perceptual properties of the texture, such as
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Figure 7: (a) is a uniformly remeshed model. (b) is a uniformly
remeshed model with perceptual component. Notice that the details
on the top part of the original mesh are further removed since it is
covered by texture. The same for pairs (c) and (d) but with different
gamma values. (e) and (f) are rendered images of models shown in
(c) and (d), respectively. Notice that more details can be seen in the
eyes, nose, and mouth area in image (f).

Figure 8: Spotlighted region raises the visual threshold and de-
creases the number of polygons required.

masking, can be used to guide the remeshing of the geometry to
which the texture has been applied. However, two dimensional tex-
ture mapping is only one example of several processes that com-
bine to produce the final color pattern that is seen on the surface of
the object. We call the variation of lightness and color that is seen
by a viewer looking at the object, and that is generated by mecha-
nisms independent of the underlying geometry, the surface signal.
To achieve the most dramatic reduction in polygons the complete
surface signal should be used in the remeshing process.

In this section of the paper we enumerate the processes by which the
surface signal can be altered. In each case we demonstrate how our
approach makes use of a single framework to exploit the resulting
surface signal and decrease the number of polygons in the underly-
ing geometric mesh. We note that some of the methods by which
the surface signal is altered are viewpoint independent and could be
taken into account once for a static background like those found in
most animations and video games. In other viewpoint dependent
cases one would need to page in different mesh representations or
remesh on the fly as the observer’s position was changed.

6.1 Viewpoint Independent Surface Signals

Bump mapping is another means by which the surface signal can
be altered without manipulating the underlying geometry. When
only simple diffuse shading is used to perform the bump mapping
the result will be viewpoint independent. Figure 1 demonstrates
that the illusion of an embossed pattern on the surface due to bump
mapping can have a masking effect similar to that produced by two
dimensional texture mapping. The area beneath the embossing re-
quires fewer polygons than the homogeneous surfaces adjacent to
the embossed area.

Variations in the intensity of a light source across a surface can be
another component of the surface signal. The most straightforward
way for this to happen is when the light source is focused into a
spotlight. This can produce a bright spot on the surface and raise
the visual threshold within that pool of light. An example of this
is given in Figure 8. Here we see that fewer polygons are required
within the bright region produced by the spotlight. Alternatively,
obstructions in front of a light source can produce intensity varia-
tions that have a similar impact. Masking effects are even possible,
as shown in Figure 10, when the pattern of shadows has the neces-
sary frequency content. Here the required number of polygons is
reduced in the shadowed areas.

6.2 Viewpoint Dependent Surface Signals

Evaluation of a surface reflection model is an obvious way to alter
the surface signal. Implicit in the viewpoint independent surface
signals described above is a diffuse shading calculation. Here we



Figure 9: Reflections produce a masking pattern and reduce the
number of polygons required in the mesh. The shiny teaspoon on
the left has only 1027 vertices, and the diffuse teaspoon on the right
has 2761 vertices.

consider the effect of adding a strong specular term to the reflection
model that is employed. The result can be a bright highlight on the
surface of the object. In a manner similar to the spotlight discussed
above, the number of polygons required beneath the specular high-
light is reduced because the visual threshold has been elevated in
this region. Other more complex BRDFs may produce surface sig-
nal variations that can also be exploited to reduce the number of
polygons in a mesh.

When the specular reflection becomes even stronger and interreflec-
tions are calculated, the surface signal will include the reflected im-
age of other objects in the environment. These mirror reflections
will produce a pattern on the surface that can be exploited to re-
duce the number of polygons in the object mesh. An example of
this is shown in Figure 9. Here the shiny teaspoon that reflects
the surrounding environment requires fewer polygons than the dif-
fuse teaspoon. This illustration was produced using an environment
mapping technique to simulate the interreflections. It is interesting
to note that an environment map that might not produce a masking
effect as a two dimensional surface texture can create a surface sig-
nal that will mask the underlying polygons when it is distorted by
reflection onto a surface.

6.3 Complex Scenes

As a final example we present a complex scene composed of multi-
ple objects where several different types of surface signals occur in
combination. In contrast to the modest gains that can be achieved
in the above examples where only a single surface signal is ex-
ploited, many opportunities present themselves to recover polygons
in a complicated environment where texture mapping is used ex-
tensively, surface reflection properties vary widely, and there are
several different light sources. A background scene for a computer
video game is an example of an environment where there are nu-
merous surface signals, where the objects do not move, and where
the viewpoint remains relatively constant. In this case the polygons
that are collected from the background objects can be used to create
a more detailed moving foreground object that is the center of the
viewer’s attention.

In Figure 10 we demonstrate how the algorithm presented in this
paper can be used to simplify the meshes in a complicated scene
that has multiple surface signals. All of the objects in this picture
were decimated using our perceptually based remeshing algorithm.
Examples of the mesh reduction achieved for the cup and the teapot
are shown in this figure.

(a)

(b)

Figure 10: (a) Image in which all surfaces are modeled using
quadric and cubic surfaces. (b) Example of the remeshing achieved
for the cup and the teapot (rotated to show the texture boundary).

7 Discussion

There are major differences between our approach and mesh sim-
plification algorithms that preserve appearance properties such as
colors, positions and normals of the geometric models [Cohen et al.
1998; Garland and Heckbert 1998]. Appearance preserving simpli-
fication algorithms compute new vertex positions and texture coor-
dinates so as to minimize geometric error and texture stretch. Our
approach focuses on the reduction of the polygon count by tak-
ing advantage of the perceptual properties of the surface signals.
Both approaches take surface signals into account, but with dif-
ferent goals. We do not claim our approach performs better than
the above mentioned approaches [Cohen et al. 1998; Garland and
Heckbert 1998]. However, we do believe that the above mentioned
approaches can be further improved if the perceptual properties of
the texture are taken into account.

The biggest difference of our work from previous work in perceptu-
ally driven mesh simplification [Luebke and Hallen 2001; Williams
et al. 2003] is that we have taken visual masking into account. Vi-
sual masking is a very strong phenomenon and can be used to fur-
ther decrease the sampling rate of the geometry in certain regions
(refer to Figure 2). It also requires a much more expensive computa-
tion than the other aspects of the visual system such as the contrast
sensitivity function and the threshold-vs-intensity function. State
of the art visual masking algorithms [Lubin 1995; Ferwerda et al.
1997] require multiscale, multiorientation decomposition of the im-
ages. Considering the amount of computation required to evaluate a
full perceptual metric including visual masking, it is almost impos-
sible with currently available hardware to evaluate this metric for
each edge collapse operation. This explains why we have taken the
remeshing approach instead of the mesh simplification approach.
The expensive visual discrimination metric is evaluated only once
which makes our algorithm tractable.



8 Conclusions

Our system automatically distributes samples uniformly over the
polygon mesh by taking the visual perceptual properties of the sur-
face signal into account during the remeshing process. Due to the
properties of the human visual system, especially visual masking,
the artifacts in the final rendered mesh are invisible to the human
observer. This approach also improves the quality of the images
in a budget based system since the distribution of polygons across
all of the objects in a scene is guided by the principles of visual
perception.

We have also demonstrated that there are many opportunities, be-
sides simple two dimensional texture mapping, to exploit the mask-
ing properties of the surface signal and redistribute the polygons
available to render a scene. Among the additional mechanisms that
contribute to the surface signal are bump mapping, spot lighting,
shadow patterns, surface reflectance, and interreflections. In a video
game or an animated film where many of the objects and much
of the lighting in the scene remains static, a large number of the
polygons allocated for these background objects can be recovered
and used to render principal characters or objects in the foreground.
This can reduce rendering times and improve the overall quality of
the final animated sequence.
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(e) (f)

Figure 7: Images (e) and (f) are rendered comparison of curvature driven
remeshing and perceptually driven remeshing given a vertex budget. Our
perceptually driven remeshing algorithm allocates less vertices to the top
part of the model covered by the leaf texture. Notice that more details can
be seen in the eyes, nose, and mouth area in image (f).

(a)

Figure 10: Image (a) shows a complex scene where mul-
tiple surface signals exist, including diffuse color textures,
normal maps, surface reflection, and shadow pattern. Our
perceptually driven remeshing algorithm can take all these
surface signals into account.


