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ABSTRACT
Salient object detection aims to detect the most attractive
objects in images, which has been widely used as a
fundamental of various multimedia applications. In this
paper, we propose a novel salient object detection method
for RGB-D images based on evolution strategy. Firstly, we
independently generate two saliency maps on color channel
and depth channel of a given RGB-D image based on its
super-pixels representation. Then, we fuse the two saliency
maps with refinement to provide an initial saliency map
with high precision. Finally, we utilize cellular automata
to iteratively propagate saliency on the initial saliency map
and generate the final detection result with complete salient
objects. The proposed method is evaluated on two public
RGB-D datasets, and the experimental results show that our
method outperforms the state-of-the-art methods.

Index Terms— Salient object detection, saliency evolu-
tion, RGB-D image

1. INTRODUCTION

Salient object detection aims to detect the most attractive
objects for human beings in a given image [1], which has
been widely used as an important fundamental of various
multimedia applications, including image representation [2,
3], object classification [4, 5], social media mining [6], and
video analysis [7, 8].

In order to accurately detect salient objects, a large
number of strategies have been proposed, among which
evolution strategy is demonstrated to be effective in handling
the images with complex structures [9–12]. The basic idea of
evolution strategy is to formulate salient object detection as a
two-step procedure. Some parts of salient objects are firstly
detected as the initial detection result, and then the rest of
salient objects are further complemented.

The effectiveness of evolution strategy derives from its
consistency to the mechanism of human vision system.
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When human view an image, some fixation points are firstly
generated in seeking salient objects and then the salient
objects are completely observed after they are found [13].
Moreover, evolution strategy can effectively reduce the
difficulty of realizing automatic salient object detection by
computer system, for it decomposes the task of detecting
complete salient objects into two steps with different partial
objectives, which can be solved separately.

Obviously, two key issues should be considered in salient
object detection with evolution strategy. One issue is how to
improve the precision of the initial saliency map. Any false
detection may be enlarged in the subsequent processing and
cause serious error. Current methods usually start from the
analysis of boundary bias, i.e., treating the regions dissimilar
to image boundary parts as salient objects [14,15]. However,
the effect of this solution is influenced by the layout of salient
objects, and it may fail when the background has complex
color composition. The other issue is how to generate
nearly complete salient objects based on initial saliency maps.
Current methods usually formulate it as the problem of
saliency propagation. But it is still challenging to improve
recall while maintaining high precision.

In this paper, we propose a novel salient object detection
method for RGB-D images using saliency evolution strategy.
In our method, depth cue is fully explored as well as color
cue in each step of saliency evolution. Fig. 1 shows an
overview of the proposed method. We firstly over-segment
an RGB-D image into super-pixels with the extended SLIC
algorithm [16] based on both color cue and depth cue. Then,
we estimate two saliency maps based on color cue and
depth cue independently, and fuse them with refinement to
obtain the initial saliency map with high precision. Finally,
we iteratively propagate saliency over the whole image
on a graph-based model and generate the final saliency
map. With the synergism of color cue and depth cue, the
proposed method outperforms the state-of-the-art methods in
experiments.

The rest of the paper is organized as follows. In Section 2,
we briefly review the existing salient object methods. Then,
we present the details of the proposed method in Section 3,
and validate its performance on two public datasets in
Section 4. Finally, the paper is concluded in Section 5.
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Fig. 1. An overview of the proposed method.

2. RELATED WORK

Salient object detection methods for RGB images are mainly
based on global or local color contrast. Achanta et al.
[17] introduce a straightforward way by simply measure
the color distance between each pixel and the average
color of the image. Cheng et al. [18] propose spatially
weighted global color contrast to compute saliency for
regions. Recently, graph-based models are widely used
in salient object detection for their significant performance.
Specifically, Jiang et al. [9] employ random walks to
formulate the saliency propagation process, in which the
duplicated boundary super-pixels are used as the absorbing
nodes. Yang et al. [10] conduct propagation by manifold
ranking. They divide the saliency detection task into two
steps: inferring a coarse saliency map by using boundary
super-pixels as background seeds, and generating the final
result by using foreground queries segmented from the coarse
saliency map. Gong et al. [11] propose teaching-to-learn and
learning-to-teach strategy to improve the propagation quality.
They first propagate to obtain initial saliency map by using
super-pixels on the boundary and super-pixels out of the
convex-hull as background seeds, and further combine it with
the convex-hull mask. Then they extract foreground seeds
from the initial saliency map and propagate to generate the
final saliency map. Qin et al. [12] utilize a dynamic evolution
model called Cellular Automata for saliency optimization.
The initial saliency map is generated by integrating color
distinction and spatial distance against boundary super-pixels.

Meanwhile, besides color cue, depth cue is also explored
for salient object detection in RGB-D images. Lang et al.
[19] detect salient objects by integrating global-context depth
priors into 2D models. Niu et al. [20] propose disparity
contrast method, which is extended from [18], for saliency
analysis in stereo images. Peng et al. [21] detect salient object
by combining low-level feature contrast, mid-level region
grouping and high-level prior enhancement together. Ju et al.
[22] present the anisotropic center-surround difference model
to measure object-to-surrounding contrast in 3D space.

3. PROPOSED METHOD

3.1. Super-pixel generation based on color and depth

Given an input RGB-D image, we first over-segment it
into super-pixels for improving computational efficiency
with the intrinsic structure retained. Simple linear iterative
clustering (SLIC) algorithm [16] is widely used in super-
pixel generation. But the primary SLIC algorithm is only
designed for color images, which completely ignores depth
cue in super-pixel generation.

In the proposed method, we extend SLIC algorithm by
combining depth cue in super-pixel generation. Similar to the
primary SLIC algorithm, we cluster the pixels by k-means
approach, in which the distance between pixels i and j is
calculated as:

Di,j =

√
Dc
i,j

2 +

(
Ds
i,j

S

)2

m2, (1)

where Dc
i,j and Ds

i,j are the color distance and the spatial
distance between pixels i and j, respectively; S =

√
N/k

is the grid interval; m weighs the importance between color
similarity and spatial proximity, which equals 20 in our
implementation as [16].

Dc
i,j is calculated as the Euclidean distance in L*a*b*

color space:

Dc
i,j =

√
(li − lj)2 + (ai − aj)2 + (bi − bj)2, (2)

where li, ai and bi are the color values of pixel i in L, a and b
channels, respectively.

AndDs
i,j is calculated as the spatial distance in 3D layout:

Ds
i,j =

√
(xi − xj)2 + (yi − yj)2 + (di − dj)2, (3)

where xi and yi are the horizontal and vertical coordinates of
pixel i, respectively; di is the depth value of pixel i.

Fig. 2 shows an example of the comparison between the
primary SLIC and the extended one for RGB-D images. The
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Fig. 2. Comparison of the primary SLIC and the extended
SLIC for RGB-D image. (a) and (b) Color channel and depth
channel of RGB-D image. (c) Super-pixels generated by the
primary SLIC. (d) Super-pixels generated by the extended
SLIC for RGB-D image.

ear of the cat is mixed with the grass by the result generated
by the primary SLIC algorithm, but it correctly extracted from
background by taking advantage of depth cue.

3.2. Initial saliency map generation

The initial saliency map is generated with two steps. We first
generated the saliency maps based on color cue and depth cue,
respectively. Then, we fuse these saliency maps and refine it
to generate the initial saliency map.

Color-based saliency. We detect the saliency map based
on color cue by region contrast and boundary connectivity,
in which the saliency value of each super-pixel is calculated
as the summation of its color distance to all the other super-
pixels weighted by spatial relationships. Inspired by [14, 15,
18], the color-based saliency value of each super-pixel spi is
calculated as:

Sci =

N∑
j=1

ωbjω
s
i,jD̃

c
i,j , (4)

where N is the number of super-pixels; ωbj is the background
weight; ωsi,j is the spatial weight based on the distance
between spi and spj ; D̃c

i,j is the color distance between the
mean colors of spi and spj on L∗a∗b∗ space, which can be
calculated similar to Eq. (2).

As shown in [15], ωbj is defined as:

ωbj = 1− exp
(
− Bj

2

2σb2

)
, (5)

whereBj is the boundary connectivity strength of super-pixel
spj , which denotes the ratio of spj’s edge length on image
boundary to the total length of spj’s edge; σb is a parameter,
which equals 1 in our experiments.

To emphasize the color contrast between closer super-
pixels, ωsi,j is defined as:

ωsi,j = exp
(
−

(D̃s
i,j)

2

2σs2

)
, (6)

where D̃s
i,j is the spatial distance between spi and spj ,

which is calculated as the Euclidean distance between center

locations of spi and spj without considering depth; σs is a
parameter, which equals 0.25 in our experiments.

Depth-based saliency. We detect the saliency map based
on depth cue by anisotropic center-surround difference [22].
The basic idea is that the salient object usually stands out from
its surrounding region and relatively closer to the observer.
The depth-based saliency value of each super-pixel spi is
calculated as:

Sdi =
∑
θ

D̃d(p̂i, Pi(θ)) (7)

where p̂i is the pixel in the center of spi; Pi(θ) is the set of
pixels on the scanning radius emitting from p̂i with angle θ,
in which the lengths of radius depend on the location of p̂i
and it is not more than half length of the image diagonal;
D̃d(p̂i, Pi(θ)) is the Manhattan distance between p̂i and
Pi(θ), which is defined as:

D̃d(p̂i, Pi(θ)) = ϕ(di, min
pj∈Pi(θ)

dj), (8)

where di is the depth value of pixel p̂i, and ϕ(, ) is defined as:

ϕ(di, dj) =

{
di − dj , di > dj
0, otherwise

(9)

Same as [22], we use eight scan radiuses for each super-
pixel, i.e., θ = {0, π/4, . . . , 7π/4} in our experiments.

Saliency fusion and refinement. Based on Eq.(4) and
(7), we obtain the initial saliency value for each super-pixel
by fusing the color-based saliency and depth-based saliency,
and refine the fusion result by depth-biased weighting:

Sinii = ωri (S
c
i ⊗ Sdi ), (10)

where ⊗ denotes the fusion strategy of color-based saliency
and depth-based saliency, which is element-wise product
in our experiments; ωri is the refinement weight, which is
defined as:

ωri =

{
1, di ≥ t
di
t , di < t

(11)

where di is the depth value of pixel p̂i in the center of super-
pixel spi; t is a threshold to decrease the saliency values of
the pixels with small depth values, which equals the median
value of the depth values of all pixels in each image.

3.3. Saliency propagation

As shown in Fig. 1, the initial saliency map has high
precision but fails in providing complete salient objects. It
requires further processing to enhance the saliency values of
the undetected parts of salient objects in initial saliency maps.

Inspired by [12], we utilize cellular automata [23]
to iteratively propagate saliency maps and increase the
completeness of salient objects. Each super-pixel is



represented as a cell in the automata, and its saliency value
is treated as the state of the cell. In each iteration, the
propagation of a super-pixel is simultaneously determined by
its current saliency value as well as the saliency values of
its neighbors weighted by their feature similarities. Here,
we utilize both color cue and depth in feature similarity
measurement of two adjacent super-pixels spi and spj :

Fi,j = exp
(
−
D̃c
i,j + D̂d

i,j

2σ2
f

)
, (12)

where D̃c
i,j is the color distance between super-pixels spi and

spj with the same definition as Eq. (4); D̂d
i,j is the Manhattan

distance between the average depth of super-pixel spi and
spj , which is different from D̃d

i,j in Eq. (8). While two super-
pixels are not adjacent, their feature similarity equals zero.
Similar to [12], all the super-pixels around image boundary
are regarded as adjacent in our implementation.

Based on feature similarity, the saliency value of each
super-pixel is iteratively propagated according to its saliency
value and the saliency values of its neighbors:

S∗i = αiSi + (1− αi)
N∑
j=1

ωFi,jSj , (13)

where Si and S∗i are the saliency values of super-pixel spi
before and after one propagation; N is the number of super-
pixels; αi is a parameter to balance the influence of a super-
pixel’s current saliency value and the saliency values of its
neighbors, which is defined as:

αi = m

(
max

j=1,...,N
Fi,j

)−1
+ n, (14)

where m and n are parameters to retain propagation stability,
which equals 0.6 and 0.2 in our experiments; ωFi,j is used to
weight the influences of the neighboring super-pixels:

ωFi,j =
Fi,j∑N
k=1 Fi,k

. (15)

Saliency propagation is initialized with the saliency map
Sini generated by Eq. (10), and the number of propagation
iteration is set to 20.

4. EXPERIMENTS

4.1. Datasets and evaluation metric

The proposed method is validated on two public RGB-D
image datasets for salient object detection, RGBD1000 [21]
and NJU2000 [22]. NJU2000 dataset consists of 2,000 pairs
of stereo images collected from 3D movies and taken by
stereo cameras, in which the depth maps of left views are
generated by depth estimation. And RGBD1000 dataset
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Fig. 3. Component evaluation of the proposed method. (a)
NJU2000 dataset. (b) RGBD1000 dataset.

consists of 1,000 RGB-D images captured by Microsoft
Kinect. Both these two datasets provide manually labeled
ground truths of salient objects for evaluation.

In performance evaluation, precision-recall (PR) curve,
weighted Fβ-measure Fωβ (β2 = 0.3 to emphasize precision)
[24] and mean absolute error (MAE) are used to provide
comprehensive evaluation. The average running time with
Matlab implementation is about 2.1 seconds per image.

4.2. Experimental results

4.2.1. Component evaluation

We first evaluate the effectiveness of each component in
the proposed method, including saliency fusion and saliency
propagation. As shown in Fig. 3, the initial saliency map
generated by fusion obviously outperforms the saliency maps
based on color cue and depth cue in precision, but it suffers a
serious problem in recall. Based on the initial saliency map,
the following saliency propagation can effectively improve
recall performance and generate complete salient objects.

4.2.2. Comparison with the state-of-the-art methods

To illustrate the performance of the proposed method, we
further compare it with the state-of-the-art salient object
detection methods. Most of the saliency maps used in
comparison are generated by the source codes provided by the
authors except for DP and SS. Fig. 4 shows some examples
of the saliency maps generated by different methods.

We compare the proposed method with six salient object
detection for RGB images, including FT [17], RC [18], MC
[9], GMR [10], RBD [15] and BSCA [12]. All these methods
do not consider depth cue in salient object detection. As
shown in Fig. 5 and Table 1, the proposed method provides
better PR curves, the highest Fωβ values and the lowest MAE
values on both the two datasets.

We also compare the proposed method with four salient
object detection methods for RGB-D images, including DP
[19], SS [20], SD [21] and ACSD [22]. As shown in Fig. 6
and Table 1, the proposed method also outperforms these
existing methods on all the evaluation metrics, for we fully
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Fig. 4. Examples of comparison with the state-of-the-art methods. (a) and (b) Color channels and depth channels of RGB-
D images. (c) Manually labeled ground truths. (d)-(m) Saliency maps generated by FT [17], RC [18], MC [9], GMR [10],
RBD [15], BSCA [12], DP [19], SS [20], SD [21] and ACSD [22], respectively. (n) Our results.
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Fig. 5. Comparison with the state-of-the-art salient detection
methods for RGB images. (a) NJU2000 dataset. (b)
RGBD1000 dataset.

integrate both global depth cue and local depth cue in the
proposed framework.

4.3. Discussion

In the experiments, we also find some limitations of the
proposed method. As shown in the top row of Fig. 7, if
the initial saliency map is completely wrong caused by the
invalidation of color cue or depth cue, the proposed method
cannot correctly detect the salient objects. Moreover, as
shown in the bottom row of Fig. 7, if the salient object consists
of completely different parts and the initial saliency map only
contains one of them, it is difficult for the proposed method
to detect the complete salient object.

5. CONCLUSION

In this paper, we propose a salient object detection for RGB-
D images based on evolution strategy. It fully explores the
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Fig. 6. Comparison with the state-of-the-art salient object
detection methods for RGB-D images. (a) NJU2000 dataset.
(b) RGBD1000 dataset.

potential of color cue and depth cue in the whole procedure
of salient object detection, including super-pixel generation,
initial saliency map generation and saliency propagation.
And the two-step saliency evolution strategy ensures the
high precision and completeness of the detected salient
objects. The experimental results show that the proposed
method outperforms the state-of-the-art methods for both
RGB images and RGB-D images.
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