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ABSTRACT
As a bridge to connect vision and language, visual relations between
objects in the form of relation triplet 〈subject ,predicate,object〉,
such as “person-touch-dog” and “cat-above-sofa”, provide a more
comprehensive visual content understanding beyond objects. In
this paper, we propose a novel vision task named Video Visual
Relation Detection (VidVRD) to perform visual relation detection
in videos instead of still images (ImgVRD). As compared to still
images, videos provide a more natural set of features for detecting
visual relations, such as the dynamic relations like “A-follow-B”
and “A-towards-B”, and temporally changing relations like “A-
chase-B” followed by “A-hold-B”. However, VidVRD is technically
more challenging than ImgVRD due to the di�culties in accurate
object tracking and diverse relation appearances in video domain.
To this end, we propose a VidVRD method, which consists of
object tracklet proposal, short-term relation prediction and greedy
relational association. Moreover, we contribute the �rst dataset for
VidVRD evaluation, which contains 1,000 videos with manually
labeled visual relations, to validate our proposed method. On this
dataset, our method achieves the best performance in comparison
with the state-of-the-art baselines.

CCS CONCEPTS
• Computing methodologies → Arti�cial intelligence; Com-
puter vision;

KEYWORDS
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1 INTRODUCTION
Bridging the gap between vision and language is essential in
multimedia analysis, which has attracted a lot of research e�orts
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Figure 1: Examples of visual relation. The top row shows
visual relations represented with relation triplets and
localized objects. The bottom row shows the video visual
relations.

ranging from visual concept annotations [3, 24], semantic descrip-
tion with captioning [7], and visual question-answering [1], etc.
Visual relation detection (VRD), a recent e�ort in o�ering more
comprehensive understanding of visual content beyond objects,
aims to capture the various interactions between objects [22]. It
may e�ectively underpin numerous visual-language tasks, such
as captioning [15, 34], visual search [2, 8], and visual question-
answering [1, 21].

Visual relation involves a pair of objects localized by bounding
boxes together with a predicate to connect them. Figure 1(a) shows
several examples of visual relations, in which two objects can be
connected with various predicates and the same predicate can con-
nect di�erent object pairs with di�erent appearances. In this paper,
we use the term relation triplet to denote a type of visual relation
represented by a unique combination of 〈subject ,predicate,object〉
triplet. Due to the combinatorial complexity, the possible space for
relation triplets is much larger than that of objects. Because of
this, existing methods that could obtain signi�cant performance in
object detection, are not applicable to VRD. Several methods have
been proposed for VRD [17, 22, 42]. However, to the best of our
knowledge, they all applied to still images only. Compared to still
images, videos provide a more natural set of features for detecting
visual relations, such as the dynamic interactions between objects.
As shown in Figure 1(b), motion features extracted from spatial-
temporal content in videos help to disambiguate similar predicates,
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Figure 2: An example of temporally changing visual relation
in videos. Two visual relation instances containing their
relation triplets and object trajectories of the subjects and
objects are illustrated with background color in yellow and
magenta, respectively.

such as “walk” and “run”. Meanwhile, some visual relations such
as the dynamic relations can only be detected in videos, such as
“dog-run past-person” and “dog-faster than-person”. Hence, video
visual relation detection (VidVRD) is a more general and feasible
task as compared to ImgVRD.

Another signi�cant di�erence between VidVRD and ImgVRD is
that the visual relations in a video are usually changeable over time
while that of images are �xed. The objects may be occluded or out of
frame temporarily, which causes the occurrence and disappearance
of visual relations. Even when two objects consistently appearing
in the same video frames, the interactions between them may be
temporally changed. Figure 2 shows an example of temporally
changing visual relation between two objects within a video, in
which dog and frisbee are simultaneously appearing between t2 and
t7 while their interaction changes from chase to bite. Hence, the
VidVRD task should be rede�ned to handle the changeability in
visual relations.

De�nition. To be consistent with the de�nition of ImgVRD, we
de�ne VidVRD task as follows: Given a set of object categories of
interest C and predicate categories of interest P, VidVRD aims to
detect instances of visual relations of interest C × P × C in a video,
where a visual relation instance is represented by a relation triplet
〈subject ,predicate,object〉 ∈ C × P × C with the trajectories of
the subject and object, Ts and To . Speci�cally, Ts and To are two
sequences of bounding boxes, that respectively enclose the subject
and object, within the maximal duration of the visual relation. In
Figure 2, two visual relation instances in the given video can be
represented with the relation triplets, “dog-chase-frisbee” and “dog-
bite-frisbee”, and the dog and frisbee are localized with the red and
green trajectories between (t2, t4) and (t5, t7), respectively.

Compared to ImgVRD, VidVRD faces more technical challenges.
First, VidVRD requires to localize objects with bounding box
trajectories. This is more di�cult than providing a bounding box
for each object in ImgVRD, because the accuracy of an object
bounding box trajectory is in�uenced by both the performances of
object localization on each frame and object tracking. Our proposed
VidVRD method (Figure 3) tackles the di�culty by generating
the object tracklets within each of overlapping short segments
of a video, and then associating them into the object trajectories
based on predicted visual relations. Second, VidVRD needs to
temporally localize the visual relations within maximal duration.
For this purpose, we propose a greedy association algorithm that

merges the detected visual relation instances in adjacent segments
if they have the identical relation triplets and their object tracklets
have su�ciently high overlaps. Third, VidVRD needs to predict
more types of visual relations than ImgVRD because some visual
relations can only be detected in videos, such as “A-towards-B” and
“A-faster than-B”. For e�ective relation prediction, we propose a
relation prediction model, which extracts multiple features from
the subject/object tracklet pairs. The features include appearance,
motion, and relative characteristics. We encode these features into a
relation feature, and predict visual relations using separate subject,
predicate and object predictors.

As far as we know, there is no dataset for VidVRD, although
several datasets for ImgVRD exist, such as Visual Relationship
dataset [22] and Visual Genome [12]. Hence, we construct a
VidVRD dataset for evaluation. We design a predicate description
mechanism and construct the dataset from ILSVRC2016-VID [31].
It contains 1,000 videos with manually labeled visual relations and
object bounding box trajectories. On the dataset, we validate the
performance of our proposed VidVRD method. The experimental
results show that our method outperforms the state-of-the-art
baselines.

The main contributions of this paper include: 1) we propose
a novel VidVRD task that aims to explore various relationships
between objects in videos, which provides a more feasible VRD
task as compared to ImgVRD; 2) we propose a VidVRD method
which detects the visual relations in videos through object tracklet
proposal, relation prediction and greedy relational association; and
3) we contribute the �rst VidVRD evaluation dataset, consisting of
1,000 videos with manually labeled visual relations.

The rest of the paper is organized as follows. In Section 2, we
survey the related works, including visual relation detection, video
object detection, and action recognition. In Section 3, we introduce
the �rst dataset for the VidVRD task. Then, we present the details
of the proposed methods in Section 4, and show the constructed
evaluation benchmark and some preliminary experimental results
in Section 5. Finally, we conclude the paper in Section 6.

2 RELATEDWORK
Video object detection. Video object detection aims to detect
objects belonging to the pre-de�ned categories and localize them
with bounding box trajectories in a given video [11]. The state-
of-the-art methods address this problem by integrating the latest
techniques in both image object detection [28] and multi-object
tracking [23, 41]. Recent sophisticated deep neural networks have
achieved mature performances in image object detection [9, 18,
30, 39]. However, object detection in videos still su�ers from low
accuracy, because of the existence of blur, camera motion and
occlusion in videos, which hamper accurate object localization
with bounding box trajectories. On the other hand, multi-object
tracking with tracking-by-detection strategy tends to generate short
trajectories due to the high miss detection rate of object detectors,
and thus additional merging algorithms are developed to obtain
more temporally consistent object trajectories [4, 14, 25]. Inspired
by [27, 33], our proposed method utilizes video object detectors to
generate object tracklet proposals in short-term duration, which
dodges their common weaknesses. Note that our approach can be
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Figure 3: An overview of our VidVRD method. A given video is �rst decomposed into a set of overlapping segments, and the
object tracklet proposals are generated on each segment. Next, short-term relations are predicted for each object pair on all
the segments based on feature extraction and relationmodeling. Finally, video visual relations are generated through greedily
associating the short-term relations.

applied on top of any image object detection and multiple object
tracking methods.

Visual relation detection. Recent research works have focused
e�orts on VRD in images. It has been commonly observed that a
fundamental challenge in VRD lies on how to model and predict
the huge number of relations by learning from few training
examples. To tackle the problem, most existing methods separately
predict the subject, predicate and object in the visual relation
triplet [5, 16, 17, 22, 42, 43], reducing the complexity from O (N 2K )
to O (N + K ), where N and K are the numbers of objects and
predicates respectively. Some of these methods further improve the
performance by leveraging language prior [17, 22] and regularizing
relation embedding space [42, 43]. Extracting relation related
features is another crux of VRD. [5, 42] particularly used coordinate
or binary mask based features to enhance the performance of
detecting spatial relation. [5, 16] also studied the visual feature
level connection among the components of relation triplet to exploit
additional statistical dependency, but required O (NK ) parameters
for the modeling. Hence, in order to address these problems of
VidVRD, we will propose a video speci�c relation feature and a new
training criterion for learning separate prediction models. It should
be noted that the existing ImgVRD methods are unable to tackle the
speci�c challenges of VidVRD, such as the dynamic relations and
the changeability of video relations. To the best of our knowledge,
our work is the �rst attempt to perform VRD on video. Note that
although some previous works [29, 44] are related to video visual
relations, they pursue completely di�erent goals to VidVRD.

Action recognition. As action is one primary type of predicate
in visual relation [22], VidVRD can draw on the advances in action
recognition. In action recognition, feature representation plays a
crucial role in handling large intra-class variation, background
clutter, and camera motion [20, 26, 40]. Both hand-crafted fea-
tures [10, 37] and deep neural networks [35, 38] are developed

to resolve this problem. Inspired by recent progress, we utilize
improved dense trajectory (iDT) [37] as a part of the features
in our proposed method, because iDT still achieves outstanding
performance on most action recognition datasets, especially when
the training data is insu�cient. Note that our proposed method
aims to detect more general relations between objects than action,
such as the spatial and comparative relations.

3 DATASET
We construct the �rst evaluation dataset for VidVRD based on
the training set and validation set of ILSVRC2016-VID [31], which
contains videos with the manually labeled bounding boxes for 30
categories of objects. After carefully viewing and analyzing the
contents of videos, we selected 1,000 videos which contain clear
and plentiful visual relations, while the videos with single object
and ambiguous visual relations were ignored. We randomly split
the video set into the training set and test set, which contain 800
videos and 200 videos, respectively.

Based on the 1,000 videos, we supplement the 30 object categories
with additional �ve object categories that frequently appearing in
visual relations, namely person, ball, sofa, skateboard and frisbee.
All the resulting 35 object categories 1 describe independent object,
that is, we do not include the part-of relationship between objects,
such as “bicycle-with-wheel”, in the constructed dataset.

Next, we build the set of predicate categories as follows: we
directly use transitive verbs as predicate, such as “ride”; we transfer
the adjectives to predicates in the format of comparative, such as
“faster”; and we manually de�ne common spatial predicates from
camera viewpoints to ensure consistency, such as “above”. While

1Object: airplane, antelope, ball, bear, bicycle, bird, bus, car, cat, cattle, dog, elephant,
fox, frisbee, giant panda, hamster, horse, lion, lizard, monkey, motorcycle, person,
rabbit, red panda, sheep, skateboard, snake, sofa, squirrel, tiger, train, turtle, watercraft,
whale, zebra.



intransitive verbs usually describes the attributes of objects only,
they are expressive in relation representation. For example, “walk
behind” provides more information than “behind” in visual relation.
Thus, we also include the combination of intransitive verbs and
spatial predicates, as well as the combination of an intransitive verb
and “with”, which represents two objects acting in the same manner.
We exclude prepositions in the predicate de�nition, because the
prepositions of spatial kind can be covered by the de�ned spatial
predicates, while the remaining types of prepositions are mainly
related to part-of relationship, which has already been excluded
according to the object de�nition. According to the above predicate
de�nition mechanism and video content, we selected 14 transitive
verbs, 3 comparatives, 11 spatial descriptors, and 11 intransitive
verbs2, which is able to derive 160 categories of predicates. In the
constructed dataset, 132 predicate categories appear in the videos.
The number is more than that in previous works [16, 17, 22, 42].

Eight volunteers contributed to video labeling, and another two
volunteers took charge of labeling checking. In object labeling
phase, the objects belonging to the additional �ve categories in
all the videos were manually labeled with their categories and
bounding box trajectories. In predicate labeling phase, in order to
consider the fact that visual relations are temporally changeable,
all videos were decomposed into segments of 30 frames with 15
overlapping frames in advance. Then, all the predicates appearing
in each segment were required to be labeled to obtain segment-
level visual relation instances. To save labeling labor, we only
labeled typical segments in the training set and all the segments
in the test set. For the test set, the visual relation instances in
adjacent segments with the same object pairs and predicate were
automatically linked to generate the video-level visual relation
instances.

Table 1 shows the statistics of the constructed VidVRD dataset 3.
Overall, our dataset contains a total of 3,219 relation triplets (i.e. the
number of visual relation types), and the test set has 258 relation
triplets that never appear in the training set. At the instance level,
the test set contains 4,835 visual relation instances, among which
432 instances are unseen in the training set. Note that although
the videos in the test set are fully labeled, there is still a small
portion of content without any visual relation because some parts
of these videos contain less than two objects. From the segment-
level statistics available in the lower part of Table 1, the numbers
of visual relation instances per segment in our dataset is 9.5, which
is higher than 7.6 instances per image in the Visual Relationship
dataset [22], suggesting that our dataset is more completely labeled.

4 VIDEO VISUAL RELATION DETECTION
A major challenge of VidVRD is to handle the changeability of
visual relations over time. To this end, we propose a VidVRD
method that detects visual relation instances in short-term, followed
by an association algorithm to form the overall visual relation
instances in a video (as illustrated in Figure 3). The assumption
behind the proposed method is that the basic visual relations can

2Transitive verb: bite, chase, drive, fall (o�), feed, �ght, follow, hold, kick, play, pull,
ride, touch, watch; Comparative: faster, larger, taller; Spatial: above, away, behind,
beneath, inside, in front of, next to, on the left of, on the right of, past, towards;
Intransitive verb: creep, �y, jump, lie, move, run, sit, stand, stop, swim, walk.
3Available at https://lms.comp.nus.edu.sg/research/VidVRD.html

Table 1: Statistics of our VidVRD dataset. The number of
video-level visual relation instances is not available for the
training set because it is only sparsely labeled.

training set test set
video 800 200
subject/object category 35 35
predicate category 132 132
relation triplet 2,961 1,011
visual relation instance (video-level) - 4,835
segment 15,146 3,202
labeled segment 3,033 2,801
visual relation instance (segment-level) 25,917 29,714

always be recognized in a short duration, while more complicated
relations can be inferred from the sequence of basic visual relations.
Detecting visual relations in short-term can also help to detect the
emergence and disappearance of the visual relations in a video, and
alleviate the computational burden of directly analyzing a long-
term duration. The following sub-sections introduce the details of
our method.

4.1 Object Tracklet Proposal
Given a video, we decompose it into segments of length L with
L/2 overlapping frames (e.g. L = 30), and generate object tracklet
proposals in each segment. Comparing to generating the proposals
for the object trajectories in a whole video and then doing
the segmentation, our object tracklet proposal in short-term
can reduce the drifting problem commonly observed in object
tracking algorithms, where the drifting is caused by variations
in illumination and occlusion, etc. Also, individual object tracklet
proposal in each segment can generate a more diverse set of
candidates. The diversity is important for the subsequent relation
modeling, because it provides various appearance and motion
aspects of objects for robust modeling.

Our object tracklet proposal is implemented based on a video
object detection method similar to [11] on each segment. First, we
employ an object detector for 35 categories used in our dataset to
detect objects in the segment frames. The object detector is trained
using a Faster-RCNN [30] with ResNet101 [9] on an image set
consisting of the train/validation images for the 35 categories from
MS-COCO [19] and ILSVRC2016-DET [31] datasets. Second, we
track the frame-level detection results across the segment using
the e�cient implementation of [6] in Dlib. To reduce the number
of overlapping proposals, we perform non-maximum suppression
(NMS) with vIoU > 0.5 on the generated tracklets, where vIoU
denotes the voluminal intersection over union of two tracklets. As
a result, we generate 19.7 object tracklet proposals per segment on
average.

4.2 Relation Prediction
Suppose (Ts ,To ) are a pair of object tracklet proposals in a segment,
each of which is in the form of a sequence of bounding boxes.
Predicting the relation triplet 〈subject ,predicate,object〉 involves
recognizing the object categories of Ts and To , and the interactions
between them. In practice, it is impossible to learn a separate

https://lms.comp.nus.edu.sg/research/VidVRD.html
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Figure 4: Illustration of relation prediction. For a pair of
objects, a set of features are extracted to describe each object
and their relativity, and are encoded to a relation feature.
Based on the relation feature, separate predictors for subject,
predicate and object are trained under softmax loss.

predictor for each single relation triplet due to the huge number of
combination and insu�ciency of training data. Our model (Figure 4)
learns separate subjet, predicate and object predictors to reduce
the modeling complexity and exploit the common components in
various relations. The model also leverages a rich relation feature
that combines the appearance and motion characteristics of the
subject and object, as well as the relative characteristics between
them.

Relation Feature Extraction. We extract the object features
for Ts and To to describe their appearance and motion character-
istics. In particular, we �rst extract the improved dense trajectory
(iDT) features [37] with HoG, HoF and MBH in segments, which
capture both the motion and low-level visual characteristics. To
encode the features, we train a codebook for each of the four
descriptor types in iDT using 100,000 randomly sampled features.
The size of each codebook is set to 1,000. Then the object feature
for T is computed as a bag of iDT features enclosed in T , where
half of an iDT locates within the area of T is considered as being
enclosed. Additionally, we append the object feature with a classeme
feature [36], which is a N -d vector of classi�cation probabilities
(i.e., N classes) predicted by deep neural networks, to encode the
semantic attributes in the visual appearance.

To extract the relative characteristics between Ts and To , we
propose a relativity feature which describes the relative position,
size and motion between the two objects. Denoting Ct

s = (xts ,y
t
s )

and Sts = (wt
s ,h

t
s ) as the centeral point and size of Ts at time t

respectively (resp. To ), we compute the relative position ∆C , relative
size ∆S and relative motion ∆M descriptors as

∆C = (C1
s −C

1
o , . . . ,C

L
s −C

L
o ),

∆S = (S1s − S
1
o , . . . , S

L
s − S

L
o ),

∆M = (∆C2 − ∆C1, . . . ,∆CL − ∆CL−1).

(1)

In order to characterize the abundant spatial relations, such as
“behind”, “larger” and “past”, as well as their various combinations,
such as “past behind”, we use dictionary learning to train a codebook
for each type of descriptor. Speci�cally, for each codebook, we
set the size to 1,000 and randomly sample 100,000 descriptors for
training. The elements in the obtained codebooks can be interpreted
as the atomic relative features, so that complicated relative features

can be represented by their linear combination. For a pair of Ts
and To , the proposed relativity feature is the concatenation of the
three sparse representations with respect to the corresponding
codebooks.

The overall relation feature vector for a pair of object tracklet
proposals is the concatenation of the object features of Ts and To
and their relativity feature.

RelationModeling.Given a relation feature, our relation model
predicts the likely relation triplets by integrating the scores of
subject, predicate and object predictors. One approach to our
relation modeling is to train the predictors under separate training
criteria as in [42]. However, the predictors trained in this way
will produce di�erent types of scores under independent scales,
which makes the integrated score less discriminative to the co-
occurence of subjects, predicates and objects. For example, the
scores of impossible relation triplets, such as “cat-drive-car”, may
not be guaranteed to be lower than those of other possible relation
triplets.

In order to produce good ranked scores for relation triplets,
we jointly train the predictors under a uni�ed training loss. In
particular, we integrate the scores by multiplication, and formulate
the training objective to classify among the observed relation
triplets R in the training data:

L =
∑

〈si ,pj ,ok 〉

− log softmax
R

(
Ps ( f , si ) · P

p ( f ,pj ) · P
o ( f ,ok )

)
,

(2)
where f is the relation feature of a speci�c relation triplet 〈si ,pj ,ok 〉,
and Ps , Pp , Po are respectively the predictors for subject, predicate
and object. Since we are only interested in the top relation predic-
tion scores, we use softmax loss which has recently been proved to
be e�ective in this case, both theoretically and empirically [13, 42].
In this paper, we keep the top 20 prediction results for each pair
(Ts ,To ), and the top 200 ones for each segment.

To obtain the training samples, we sample pairs of object tracklet
proposals that overlap with a ground truth pair, where each tracklet
of a pair overlaps with the ground truth by more than 0.5 in vIoU,
and extract the relation feature for each pair.

4.3 Greedy Relational Association
After obtaining the relation prediction results for all the pairs
of object tracklet proposals, we adopt a relational association
algorithm to merge the relations detected in short-term. Suppos-
ing there is a sequence of short-term visual relation instances
{(ct , 〈s,p,o〉, (T t

s ,T
t

o ))}t (t = m, . . . ,n) detected from the m-th
segment to the n-th segment, which have identical relation triplet
〈s,p,o〉 and with su�cient overlapping between successive ones,
our goal is to merge them into a single visual relation instance
(ĉ, 〈s,p,o〉, (T̂s , T̂o )) with con�dence score:

ĉ =
1

n −m + 1

n∑
t=m

ct , (3)

where ct is the short-term score predicted by our relation model.
We propose a greedy algorithm for relational association, which

repeatedly merges two most con�dent visual relation instances
that overlap in two successive segments. The greedy strategy can
help to generate longer visual relation instances, so that the subject



Algorithm 1 Greedy Relational Association Algorithm
Input: the set of all detected short-term relation instances S =

{(c, 〈s, p, o〉, (Ts , To )) }
Output: the set of merged instances L = {(ĉ, 〈s, p, o〉, ( T̂s , T̂o )) }
Initialize: L = ∅, γ = 0.5
for t = 1, . . . , T do
A = instances in L that end at the (t − 1)-th segment
B = instances in S that detected at the t -th segment
Descending sort A accordint to ĉ
Descending sort B accordint to c
for (c, 〈s, p, o〉, (Ts , To )) in B do

for (ĉ′, 〈s′, p′, o′〉, ( T̂ ′s , T̂ ′o )) in A do
if 〈s, p, o〉 = 〈s′, p′, o′〉 AND vIoU(Ts , T̂

′
s ) > γ AND

vIoU(To, T̂
′
o ) > γ then

Recompute ĉ′ using Eq. (3)
Append (Ts , To ) to ( T̂ ′s , T̂

′
o )

Remove (ĉ′, 〈s′, p′, o′〉, ( T̂ ′s , T̂
′
o )) from A

Break
end if

end for
if NOT merged then

Add (c, 〈s, p, o〉, (Ts , To )) to L
end if

end for
end for

and object of each visual relation are temporally localized more
accurately. We also average the bounding boxes in the overlapping
region of two associated tracklets to get a robust estimation of the
(T̂s , T̂o ). The pseudocodes for the relational association are given
in Algorithm 1. After merging all possible visual relation instances,
we rank them according to their con�dence scores ĉ and output the
most con�dent ones as the visual relation detection results for the
video.

5 EXPERIMENTS
5.1 Tasks and Evaluation Metrics
Tasks. As de�ned in Section 1, the input of VidVRD is a given
video, and its output is a set of visual relations with localized objects.
Similar to ImgVRD [22], a detected visual relation instance is treated
as correct in VidVRD, if it contains the same relation triplet as in the
ground truth and both the bounding box trajectories of its subject
and object have su�ciently high vIoU as compared to those in the
ground truth. In our experiments, the overlapping threshold of vIoU
is set to 0.5.

Considering that object localization in videos is still an open
problem, we also evaluate our method under a di�erent task, named
visual relation tagging. Its input is also a given video, but its output is
a set of visual relation triplets annotated to the whole video without
the requirement of object localization. Obviously, visual relation
tagging reduces the in�uence of object location in performance
evaluation, and it can e�ectively support various visual relation
based applications, such as video retrieval and visual question
answering.

Note that we do not conduct experiments on the tasks of predicate
detection and phrase detection introduced in [22]. For predicate
detection, it requires the localized objects with their categories as

Table 2: Evaluation of our method with di�erent com-
ponents on visual relation detection and visual relation
tagging. R@K and P@K are abbreviations of Recall@K and
Precision@K , respectively.

Method
relation detection relation tagging

R@50 R@100 mAP P@1 P@5 P@10
VidVRD-C 4.36 5.36 7.17 30.00 22.60 16.33
VidVRD-CT 4.78 5.79 6.73 31.00 23.50 18.55
VidVRD-CR 5.07 5.98 8.35 41.00 27.50 19.00
VidVRD-M 0.97 1.68 1.99 17.00 11.30 9.05
VidVRD 5.54 6.37 8.58 43.00 28.90 20.80
VidVRD-Tдt 12.51 16.55 15.53 43.50 29.70 23.20

the input in order to predict a set of possible predicates, which is
easier than visual relation tagging in practice and less feasible in
real applications. For phrase detection, it aims to predict a set of
relation triplets and localize each entire visual relation instance with
one bounding box trajectory. Similar to visual relation detection, its
performance is also in�uenced by the accuracy of object localization
in videos; moreover, it is less challenging than visual relation
detection as it only requires to provide the union bounding box
trajectory.

Evaluation metrics. Mean average precision (mAP) is used as
an evaluation metric for visual relation detection, which is widely
used for detection tasks. However, this metric is discarded in the
previous VRD evaluation because of incomplete relation labeling
of dataset, which does not exist in the construction of our dataset.
Following [5, 16, 17, 22, 42], we also use Recall@K (K equals 50
and 100) as the evaluation metrics for visual relation detection; it
denotes the fraction of correct visual relation instances detected in
the top K detection results.

In visual relation tagging, we use Precision@K as the evaluation
metric to emphasize the ability of tagging accurate visual relations.
Since the average number of relation triplets per video is 10.34 in
our dataset, we set K to 1, 5 and 10 in the experiments.

5.2 Component Analysis
Relation prediction is the key module in our proposed method,
which consists of two main components: relation feature extraction
and relation modeling. We validate their in�uences to the perfor-
mance of our method.

Relation feature. Our proposed method extracts two types
of features for VidVRD: object feature and relativity feature. The
former includes object classeme and iDTs extracted from each object
tracklet, and the latter includes the relative position, size and motion
between a pair of object tracklets. As object classeme is crucial to
subject and object prediction, we keep it in the component analysis
of feature extraction, and generate three baselines: only using object
classeme (VidVRD-C), using object classeme and iDT (VidVRD-CT)
and using object classeme and relativity feature (VidVRD-CR).

The top three rows in Table 2 show the performance of these
three baselines. We can see that both iDT and relativity feature can
complement object classeme; and our method VidVRD obtains the
best performance when fusing all the features. It shows that all the
components of our relation features are e�ective in VidVRD.
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(a) (70) zebra-follow-zebra (64) zebra-follow-zebra
(67) zebra-walk right-zebra

(57) zebra-follow-zebra
(60) zebra-walk right-zebra

(82) zebra-follow-zebra (1) zebra-walk left-zebra
(4) zebra-walk right-zebra
(13) zebra-follow-zebra
(21) zebra-walk left-zebra

(28) zebra-walk right-zebra
(56) zebra-follow-zebra

(b) (61) person-walk left-dog
(72) person-stand left-dog
(79) dog-stand right-person

(75) person-feed-dog
(98) person-walk left-dog

(74) person-feed-dog
(95) person-walk left-dog

(88) person-stand left-dog (2) person-taller-dog
(6) person-larger-dog
(7) person-stand left-dog
(8) dog-stand right-person

(9) person-walk left-dog
(11) person-play-dog
(13) dog-play-person
(33) dog-watch-person

(c)
(51) cattle-stand behind-cattle
(70) cattle-stand left-cattle

(21) cattle-stand right-cattle
(79) cattle-stand front-cattle

(34) cattle-stand front-cattle
(76) cattle-walk left-cattle
(84) cattle-walk left-cattle

(44) cattle-stand front-cattle
(66) cattle-stand front-cattle

(1) cattle-stand right-cattle
(2) cattle-stand left-cattle
(3) cattle-stand front-cattle
(4) cattle-walk left-cattle

(5) cattle-walk behind-cattle
(6) cattle-stand behind-cattle
(12) cattle-walk right-cattle
(21) cattle-walk front-cattle

Figure 5: Qualitative examples of visual relation detection using di�erent methods. The correct visual relation instances in
the top 100 results are shown, and their ranks are marked in front of them with parentheses. Note that the object localization
results are not shown due to space limitation, but they are all required to have su�ciently high vIoUs to the ground truth
object trajectories, which are shown on the video frames with di�erent colors.

Relation modeling. Our proposed method explores the inter-
dependency of subject, predicate and object prediction by joint
modeling. It combines the predictions of the three components to
optimize the rank of relation triplets instead of their ranks inde-
pendently. To validate its e�ectiveness, we generate a baseline by
modeling subject, predicate and object independently (VidVRD-M).

The fourth row in Table 2 shows the performance of VidVRD-M.
We can see that the performance of VidVRD-M has signi�cantly
degraded in both the visual relation detection and visual relation
tagging as compared to all other variants of VidVRD. This validates
the necessity of exploring the interdependency of subject, predicate
and object prediction.

Object localization. As mentioned in Section 1, a technical
challenge in VidVRD is that VidVRD requires to localize objects
with bounding box trajectories. Yet it is still an open problem
in video analysis. To validate the in�uence of object localization
on our performance, we generate a baseline by using the ground
truth object trajectories (VidVRD-Tдt ). These object trajectories
are divided into object tracklets in video decomposition, and only
the ones across the segments are retained for feature extraction.
Note that only object trajectory is provided in this baseline, and
the object category of each trajectory is not given.

The bottom row in Table 2 shows the performance of the baseline.
We see that the ground truth object trajectories can obviously
improve the performance in visual relation detection; however, it
only leads to slight improvement in performance of visual relation
tagging because its output does not require object localization. It
shows that object localization is still a major constraint in VidVRD.

5.3 Comparison with State-of-the-Arts
Comparison methods. We compare the performance of our
proposed method with four state-of-the-art methods: Visual Phrase
(VP) [32], Lu’s only V (Lu’s-V) [22], Lu’s [22], VTransE [42]. Since
these methods all aimed at ImgVRD, they only focus on feature
extraction for still images but ignore dynamic features in videos.
Moreover, most methods only retain the top one con�dent relation
prediction for each object pair in order to obtain high recall on
the sparsely labeled evaluation dataset, such as Visual Relationship
dataset [22] and Visual Genome [12].

Table 3: Evaluation of di�erent methods on visual relation
detection and visual relation tagging.

Method
relation detection relation tagging

R@50 R@100 mAP P@1 P@5 P@10
VP [32] 0.89 1.41 1.01 36.50 25.55 19.20
Lu’s-V [22] 0.99 1.80 2.37 20.00 12.60 9.55
Lu’s [22] 1.10 2.23 2.40 20.50 16.30 14.05
VTransE [42] 0.72 1.45 1.23 15.00 10.00 7.65
VidVRD 5.54 6.37 8.58 43.00 28.90 20.80

Table 4: Evaluation of di�erent methods on zero-shot visual
relation detection and visual relation tagging. Note that VP
does not applicable to zero-shot learning because it can only
detect seen relation triplets.

Method
relation detection relation tagging

R@50 R@100 mAP P@1 P@5 P@10
Lu’s-V [22] 0.93 0.93 0.40 2.74 0.82 0.82
Lu’s [22] 0.69 1.16 0.47 1.37 1.37 1.23
VTransE [42] 0.69 0.69 0.03 1.37 1.37 0.96
VidVRD 1.62 2.08 0.40 4.11 1.92 1.92

We extend these methods to satisfy the requirements of VidVRD
on our constructed dataset for fair comparison. First, we replace
the original features in these methods with the relation features
extracted on the object tracklets in our method. Speci�cally, the
relativity features are not used in VP, because it focuses on
localizing each visual relation instance with an entire bounding box
rather than providing two separate bounding boxes for subject and
object, and hence the relativity between subject and object is not
applicable to VP. Second, we retain multiple relation predictions
with top con�dence for each object pair in order to avoid low recall
on our fully labeled dataset. In our experiments, we set the number
of retained relation predictions for each object pair to 20, which
is the same as the setting in our method. Third, we associate the
segment-level relation predictions of these methods with our greedy
relational association strategy to generate the �nal visual relation
instances.
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(2) person-ride-bicycle
(7) person-sit above-bicycle

(1) person-ride-bicycle
(3) person-sit above-bicycle
(59) bicycle-move right-person
(61) bicycle-move front-person
(63) person-stand behind-bicycle
(84) person-stand left-bicycle
(91) bicycle-move toward-person
(99) person-stand behind-person
(100) person-front-person

(13) airplane-move front-watercraft
(57) airplane-move left-watercraft
(87) watercraft-move behind-airplane

(1) airplane-move front-watercraft
(4) airplane-move left-watercraft
(8) watercraft-move behind-airplane
(9) airplane-move past-watercraft
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Figure 6: Our failure examples in�uenced by inaccurate
object localization. The correct visual relation instances in
the top 100 results of our method with/without the ground
truth object trajectories are shown with their ranks.

Overall performance. From the quantitative results in Table 3
and the qualitative results in Figure 5 to 7, we have:

1) Our method is superior to the state-of-the-art baselines on both
visual relation detection and visual relation tagging. Speci�cally for
visual relation detection, our method improves the performance by
6.18% and 4.14% on mAP and Recall@100 respectively as compared
to the top baseline (Lu’s); and on visual relation tagging, our method
improves by 6.5% in Precision@1 compared to the top baseline
(VP). Figure 5 shows several comparison examples to illustrate our
advantages on visual relation detection, and Figure 7 presents some
examples of our results on visual relation tagging.

2) Our relation features can help the proposed method and all
the baselines to e�ectively detect the speci�c visual relations in
videos. For example, our method together with four baselines detect
the visual relation “zebra-follow-zebra” in the top row of Figure 5.
It requires the use of dynamic video features to distinguish the
predicate from “follow” to “stand (on the) left (of)”. Another example
of the e�ectiveness of our relation features is illustrated in the
middle row of Figure 5, which shows the successful detection of
the changes of the person’s state from “stand” (rank (7)) to “walk”
(rank (9)) and the dog’s action from “watch” (rank (33)) to “play”
(rank (13)).

3) Object tracklet proposal used in our method can provide
approximate object positions, which helps to detect the coarse
spatial relations. The bottom row of Figure 5 shows the e�ectiveness
of our method, in which 8 spatial relations combined with the
subjects’ actions are correctly detected. However, inaccurate object
localization prevents the detection of visual relation instances that
require �ne-grained position description, such as “towards” and
“past”. Figure 6 shows two example that our method fails to detect
the visual relation “bicycle-move towards-person” and “airplane-
move past-watercraft”. If we were to use the ground truth object
trajectories as the input (i.e., VidVRD-Tдt in Table 2), these visual
relations would be correctly detected. Moreover, we can see from
Figure 6 that accurate object localization can help to detect more
visual relation instances and improve the ranks as well.

Zero-shot Learning. Since it is impractical to collect and label
all possible relation triplets, a promising VidVRD method should
be able to predict unseen visual relations. With this in mind, we
compare our proposed method with the baseline in zero-shot
learning setting. As noted earlier, our test set contains 258 relation

(1) person-ride-bicycle 
(2) bicycle-move beneath-person 
(3) person-sit above-bicycle 
(4) person-taller-bicycle 
(5) person-larger-bicycle 

(1) dog-larger-monkey 
(2) dog-stand left-monkey 
(3) monkey-stand behind-dog 
(4) dog-taller-monkey 
(5) monkey-stand right-dog 

(1) bird-stand right-bird 
(2) bird-stand left-bird 
(3) bird-stand behind-bird 
(4) bird-ride-bird 
(5) bird-sit above-bird 

t

t

t

VidVRD

Figure 7: Examples of our results (top-5) on visual relation
tagging. The correct and incorrect results are marked with
ticks and crosses, respectively.

triplets out of 1,011 that never appear in our training set, such as
“dog-sit behind-person”. It means that 25.5% of relation triplets are
unseen to the visual relation detectors.

We report the zero-shot results in Table 4. VP is not included
in the comparison because it can only detect seen relation triplets
and is not applicable to zero-shot learning. We can see that our
method signi�cantly surpasses the baselines that only use visual
features: Lu’s-V and VTransE, and is slightly worse than Lu’s in
mAP of relation detection as it exploits language priors. Moreover,
as compared to Table 3, the performances of all the methods degrade
drastically, though the random guess performs even worse (e.g.
Recall@100 is less than 0.062%). For example, our method has 4.29%
drop in Recall@100 for visual relation detection and 38.89% drop
in Precision@1 for visual relation tagging. It shows that zero-shot
learning is challenging when the unseen relation ratio is high.

6 CONCLUSIONS
We proposed a new vision task named VidVRD, which aims to
detect all visual relation instances in form of the relation triplets and
object trajectories in videos. To handle the technical challenges in
VidVRD, we presented a method consists of object tracklet proposal,
relation prediction and greedy relational association. Moreover,
we constructed a VidVRD dataset containing 1,000 videos with
manually labeled visual relations. The experimental results on the
dataset demonstrated that our method outperforms the state-of-the-
art baselines on both visual relation detection and visual relation
tagging. In future, we will focus on tackling the challenge of weakly
supervised learning framework for VidVRD. We will also explore
the role of language or linguistic resources and human knowledge
for relation learning, especially in zero-shot setting.
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