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Assoc. Prof. Ferit Öztürk . . . . . . . . . . . . . . . . . . .
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ABSTRACT

MULTIROBOT COMMUNICATION AND TASK

COORDINATION

This thesis is concerned with multi-robot systems. Robots are increasingly be-

ing used in applications such as patrolling or exploration whose natures necessitate the

consideration of multiple cooperating robots. The cooperation may vary from sole com-

munication to collaboration. In this perspective, the cooperation problem is examined

from three critical and related aspects. First, the problem of achieving effective commu-

nication topologies is considered. Two alternative approaches - namely decentralized

or centralized network topologies - are proposed based on pairwise games. Depend-

ing on the robots’ objectives, the pairwise stability of the resulting networks and the

convergence of the associated games are analyzed. Next, the problem of determining

the assisting robots in tasks requiring the cooperation of robot pairs is considered. For

this, the concept of assistance networks is introduced. Assistance networks designate

potential helpmates in an implicit manner. The network topology is determined by a

coordinator in a manner similar to that of centralized network topologies. Finally, the

more general case of tasks requiring a multitude of resources is considered. A task co-

ordinator is held responsible for finding robot coalitions endowed with these resources

with minimal cost. This process is modeled as a series of coalition formation games.

Extensive simulation and experimental results demonstrate the practical applicability

of the proposed approaches in real-time multi-robot applications.
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ÖZET

ÇOKLU ROBOTLARDA İLETİŞİM VE GÖREV

KOORDİNASYONU

Bu tez çoklu robot sistemleri ile ilgilidir. Robotlar, devriye veya keşif gibi ar-

alarında işbirliğini gerektiren uygulamalarda giderek artan bir şekilde kullanılmaktadır.

Bu işbirliği, robotların birbirleriyle iletişiminden birlikte çalışmaya kadar uzanan farklı

şekillerde olabilmektedir. Bu açıdan bakıldığında, işbirliği problemi üç kritik yönden in-

celenmiştir. İlk olarak, etkin iletişim topolojileri elde etme problemi ele alınmıştır. İkili

oyunlara dayanan dağıtık ve merkezi olmak üzere iki yaklaşım önerilmiştir. Robotların

amaçlarına bağlı olarak, oluşan ağların ikili kararlılığı ve bu oyunların yakınsaması ince-

lenmiştir. Sonrasında, robot çiftlerinin işbirliğini gerektiren görevlerde yardımcı robot-

ların belirlenmesi problemi ele alınarak, yardım ağları kavramı sunulmuştur. Yardım

ağları, muhtemel yardımcı robotları örtülü olarak belirler. Ağ yapısı, merkezi ağ topolo-

jilerine benzer şekilde, bir koordinatör tarafından belirlenir. Son olarak, daha genel

bir problem olan, ancak farklı tip ve miktarlarda kaynaklara sahip robotların işbirliği

ile gerçekleştirilebilen görevler ele alınmıştır. Bir görev koordinatörü, görevleri düşük

maliyet ile yapacak ve yeterli kaynaklara sahip robot koalisyonlarını bulmaktan sorumlu

tutulmaktadır. Bu süreç, koalisyon düzenleme oyunları ile modellenmiştir. Kapsamlı

benzetim ve robotlar ile yapılan deney sonuçları, önerilen yaklaşımların gerçek zamanlı

çoklu robot sistemlerinde pratik olarak uygulanabilirliğini göstermiştir.
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1. INTRODUCTION

This thesis is concerned with multi-robot systems. A multi-robot system is a

group of robots that coexist in an environment. Multiple robots are known to have

some advantages over single robot systems [1]. First, some tasks may be inherently

too complex for a single robot to accomplish, or performance benefits can be gained

from using multiple robots. Secondly, building and using several simple robots can be

easier, cheaper, more flexible and more fault tolerant than having a single powerful

robot. However, multi-robot systems also come with some challenges - some of which

are addressed in this thesis.

1.1. Problem Statement

Consider a multi-robot system as seen in Figure 1.1. Suppose the robots are en-

gaged in a task such as patrolling or exploration. Also suppose they encounter dynamic

tasks along the way that require cooperative actions. The required cooperation may

vary from sole communication to collaborative behavior. Hence, being able to coop-

erate is a fundamental question. In this thesis, the cooperation problem is examined

from three critical and related aspects.

(i) First, the problem of attaining effective communication network topologies is

considered. The robots need to augment their individual sensing with the infor-

mation acquired via communicating with other robots over a network topology.

While all-to-all network, as is assumed in most works, is the simplest approach,

unfortunately, it faces serious scalability challenges in reliability, interference and

security with the growth of robot team size [2]. Furthermore, limited use of com-

munication may be crucial to performance as communication has its own costs

in regards to time, power and decision-making. The robot needs to switch its

focus from its task to communication and processing of the information received

and back again. This problem can be attenuated if each robot is selective in the

robots it exchanges information with [3]. Thus, the robots need to have a scheme
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Figure 1.1. A multi-robot system of 5 robots in an environment with a variety of

obstacles.

that will determine the communication network topology as to ensure the re-

quired communication without being fully connected. Furthermore, the network

topology needs to be changing as the robots are moving around - in contrast to

most work that assumes a fixed topology. The network formation defines what

the topology is and how it evolves over time.

(ii) Secondly, the problem of finding an assisting robot is considered. While tasks

and their particular requirements will vary depending on the application, in all,

the question of which robot should assist which other robot needs to be addressed

effectively in order for the tasks to be successfully completed. This is a challenging

task. First, as the tasks will occur at unpredictable places or times, the robots

cannot be assigned a priori. Secondly, the problem is exacerbated by the fact

that some robots will be busy when others are seeking assistance. Finally, there

will be task related constraints that need to taken into account.

(iii) Finally, a more general version of this problem is considered. Tasks may require a

variety of different resources. This necessitates a group of robots (coalitions) com-

ing together for the task. Again, this is a challenging task. First, the coalitions

that are formed should have all the required resources. Secondly, these coalitions

need to change as new tasks in different places with different requirements are

encountered.
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1.2. General Approach

Consider a multi-robot system. The system can be mathematically described by

a set of robots R = {1, . . . , r}. It is assumed that each robot i ∈ R has radius ρi ∈ R

and is uniquely identifiable. Each robot i ∈ R has a time-varying configuration state

bi(t) ∈ R
2 - assuming a two-dimensional workspace without loss of generality. The

time argument is omitted whenever time dependency is clear from the context.

The collective state of all the robots b ∈ R
2r is defined as b =

∑
i∈R bi⊗ ei where

ei are the unit vectors in R
r and ⊗ is the Kronecker product [4]. The index set of

robot pairs is defined as Q = {ij |i, j ∈ R, i < j }. The cardinality of Q is |Q| =
(
r
2

)
.

For each pair ij ∈ Q of robots, their pairwise distance is denoted by δij =‖ bi − bj ‖.

To be physically feasible, δij will satisfy:

∀i, j ∈ R δij ≥ ρij (1.1)

where ρij = ρi + ρj is the sum of their radii. Otherwise, this would imply that the

robots are overlapping. Furthermore, if the workspace is bounded by radius ρ0, then

each robot should stay in workspace which implies that:

∀i ∈ R ‖ bi ‖≤ ρ0i (1.2)

where ρ0i = ρ0 − ρi. Hence, the free configuration space F ⊂ R
2r is defined by

Equation 1.1 and Equation 1.2. Elements of feasible configuration space F constitute

the permissible configuration states.

In this setting, multi-robot systems are studied from three different aspects as

explained. First, it is argued that effective network topologies can be attained if com-

munication and/or task related objectives are taken into consideration. Hence, the

problem is posed as a multi-objective optimization problem and two approaches that

enable practical application are proposed. In the first approach, robots decide on their

local part of the network topology in a decentralized manner based on pairwise games.
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The second is a centralized approach where this job is given to a network coordinator.

In this case, the network coordinator’s decision making is modeled as a centralized

pairwise game. Next, the problem of determining assisting robots in dynamic and

cooperative tasks is considered. For this, the concept of assistance networks is de-

veloped. Interestingly, the determination of assistance network topology follows the

methodology developed for the centralized network formation. In particular, a net-

work coordinator decides on the assistance network topology. Finally, the case of more

complex tasks with resource constraints is addressed. Here, again a task coordinator is

responsible for finding the group of robots that will be working together to complete a

task. The search process is modeled as a coalition game formation where all the tasks

and robots’ resources are considered.

1.2.1. Communication Network Topologies

The communication network topology is defined by g(t) ∈ G where G = {g′|g′ ⊆ gr}

is the set of all possible graphs on R and gr is the complete graph. The set of edges

E(g) ⊆ Q represents the robot pairs i and j between which a direct edge is established.

The immediate neighborhoods Ni(g)
△
= {j ∈ R |ij ∈ E } correspond to the edges of

graph g. It is assumed that the robots can communicate directly with immediate

neighbors. Note that the case when g(t) = gr corresponds to complete network in

which all the robots can communicate with each other.

As explained earlier, robots need to be selective as to whom they communicate

with. In this perspective, the most common approach is to communicate only with

robots within a certain physically range [5–7]. However, distance is not necessarily the

optimal selection criteria. The objectives may encode other communication or task-

related criteria. In this work, a general setting that enables this is proposed with two

alternatives: decentralized and centralized network topologies.

(i) Decentralized Network Topology: In this approach, all the robots individually

consider network related objectives and adjust their local network topology in-

termittently in a decentralized manner. Pairwise games provide a practical and
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general scheme for contacting other robots and revising the network topology. A

network is deemed acceptable by all the robots using pairwise stability and pair-

wise Nash equilibrium. The network is updated via pairwise games played among

the robots. This is repeated as long as the robots are engaged in their tasks. Pair-

wise stability is ensured for additive objective functions with symmetric pairwise

payoffs.

(ii) Centralized Network Topology: In many applications, the robots’ communication

related objectives encode neighboring robots related considerations. If decision-

making becomes centralized, pairwise stable networks can be attained. A net-

work coordinator becomes responsible for determining the network topology. The

robots periodically send their state information to this coordinator. In turn, the

coordinator considers the individual payoff functions of all the robots, their cur-

rent states and the current network simultaneously and finds a network topology

acceptable to all the robots. Modeling the network topology formation as a cen-

tralized pairwise game, it forms or severs pairwise links based on the improvement

the resulting network offers the robot pairs relative to the current network. It

is shown that with a particular class of payoff functions, the pairwise game is

ensured of convergence to a pairwise stable network.

1.2.2. Assistance Networks

With tasks requiring robot pair cooperative actions, the effective allocation of

assisting robots is essential to their successful completion. Most previous works seek

to find an explicit assignment of assisting robots - which has proven to be a compu-

tationally challenging problem. This problem is addressed by introducing the concept

of assistant networks. Assistant networks designate potential helpmates in an implicit

manner. Each robot - when faced with a task - attempts to find an assisting robot

among its immediate neighbors in the assistance network in a decentralized manner.

The assistance network topology is determined by a coordinator with a process model

similar to that developed for centralized network topologies using centralized pairwise

games.
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1.2.3. Coalition Formation Games For Dynamic Multirobot Tasks

Finally, cooperative tasks are generalized by considering tasks that require a set

of resources. As the effective formation of robot teams endowed with these resources is

crucial, the focus is on effective coalition formation. In this case, a task coordinator -

similar to network coordinator – assumes the role of determining coalitions and assign-

ing tasks. Its process is modeled as a coalition formation game where groups of robots

are evaluated together in regards to each task’s required resources and cost of forming

a coalition. As new tasks are encountered, coalitions merge and split - resulting in new

coalitions that are capable of doing these tasks.

1.3. Contributions

The major contributions of this thesis can be summarized as follows:

(i) Network Topologies: Two novel approaches to determining network topologies are

introduced. These vary in the nature of decision-making - namely decentralized

and centralized network topologies.

• Decentralized Network Topology: The network topology evolves in a decen-

tralized manner based on network related payoff functions. In this model,

pairwise games provide a practical and general scheme for contacting other

robots and revising the network topology. In case of symmetric pairwise

payoffs, the network is ensured of being optimal by being pairwise stable.

• Centralized Network Topology: The network topology is determined in a

centralized manner via a network coordinator. The process is modeled based

on centralized pairwise games. In this case, pairwise payoffs need no longer

have to be symmetric for pairwise stability. In particular, with certain pair-

wise payoffs that encode neighboring robots’ related considerations, the net-

work topologies can be shown to be pairwise stable.

(ii) Assistance Networks: A novel concept - referred to as ‘assistance networks’ -

is developed for the problem of tasks requiring the cooperation of robot pairs.
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The assistance network designates potential helpmates in an implicit manner. Its

topology evolves following a process similar to that developed for the centralized

network topology model and is thus ensured of being pairwise stable. As such,

as assistance related objectives are optimally satisfied, robots can get assistance

or give assistance flexibly.

(iii) Coalition Formation: Coalition formation games are used as in forming robot

teams endowed with sufficient resources.

1.4. Organization of the Thesis

The rest of this thesis is organized as follows.

Chapter 2 presents decentralized network topologies. The formation and evolu-

tion of the network topology is based on payoff functions and pairwise games where the

robots form or sever pairwise links based on the improvement the resulting network

offers the robot pairs relative to the current network. In this framework, the equilib-

rium network is defined based on pairwise stability and pairwise Nash equilibrium. It

is shown that in case of mutual link-based network payoff functions, these networks

are ensured of being pairwise stable networks that are also pairwise Nash. Extensive

simulation results provide insight on performance with respect to a variety of metrics

including a comparative study with all-to-all communication.

Next, the case of centralized network topologies is considered in Chapter 3. In

this approach, a network coordinator is responsible for determining the network topol-

ogy. The robots periodically send their state information to the network coordinator.

In turn, the coordinator considers the individual payoff functions of all the robots, their

current states and the current network simultaneously and finds a network topology

acceptable to all the robots. The network topology formation is modeled as a pair-

wise game. It is shown that with objective functions that encode neighbors’ related

considerations, each centralized pairwise game converges to a pairwise stable network.

Extensive simulations provide statistical results on the resulting network topology and

decision-making times including a comparative study with proximity based communi-
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cation.

Following, the problem of determining assisting robots in dynamically encoun-

tered tasks requiring the cooperation of robot pairs is considered in Chapter 4. Here,

the concept of assistance networks is introduced. As explained previously, the assis-

tance network designates potential helpmates in an implicit manner. Its topology is

determined by the assistance network coordinator - whose job is to find a network

topology acceptable to all the robots - depending on their respective payoff functions.

Acceptability is based on pairwise stability and pairwise Nash stability. It is shown

that the coordinator can find topologies acceptable to all the robots via playing cen-

tralized pairwise games. Extensive simulation results demonstrate that the robots are

capable of completing tasks effectively in a variety of different scenarios - including a

comparative study with proximity-based assistance. Experimental results with a team

of five mobile robots verify the practical applicability of the proposed approach. This

has required the design and development of a novel control architecture as explained

in detail in Appendix E.

Finally, the problem of forming robot coalitions endowed with tasks’ resource

requirements is addressed in Chapter 5. In parallel, the definition of tasks is extended

to incorporate resource requirements. In this framework, the task coordinator is asso-

ciated with a process based on coalition formation games. Extensive simulation results

demonstrate that the task coordinator is able to find a suitable coalition formation

considerably fast.

The thesis concludes with a brief summary and a discussion regarding future work

as presented in Chapter 6.

In this thesis, considerable time has been spent on developing the robotic plat-

forms for real-time experiments. In fact, four generations of robots were developed.

This endeavor is summarized in Appendix C. Furthermore, the operation of these

robots has necessitated the design and development of a novel control architecture.

In a collaborative effort, a novel sense-communicate-act architecture has been devel-
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oped as presented in Appendix E. Finally, the problem of getting a set of robots in

a loosely specified formation - referred to as realization problem - has been studied.

In this study, initially an approach based on genetic algorithms has been developed

as presented in Appendix F. Due to computational complexity that hinders real-time

applications, an alternative approach based on an artificial potential functions has also

proposed as presented in Appendix G. Finally, the list of publications is presented in

Appendix H.



10

2. DECENTRALIZED NETWORK TOPOLOGY

In this chapter, the problem of forming and updating the network topology in

a multirobot system is studied. Advances in communication networks have enabled

coordinated dynamic tasks amongst a group of robots endowed with communication

capabilities [8–11]. The robots, while engaged in a particular task, can cooperate

via communicating and exchanging their information. However, as the number of

communicating robots increases, the reliability of communication is affected by quality

fluctuations [2,12–14]. Furthermore, as each robot has to allocate more of its resources

away from its task for communication, its task execution will possibly be subject to

performance degradation [9]. This can be alleviated by having the robots be selective in

the robots they communicate with and thus requiring a lower density communication

network [15]. From this perspective, the fundamental question is with which other

robots to establish direct links and how to evolve the network topology as robots move

around.

To this end, a decentralized model based on network related payoff functions and

pairwise games is proposed. A network is deemed acceptable by all the robots using

pairwise stability and pairwise Nash equilibrium. As an application, networks that are

generated with mutual link-based payoff functions are considered. It is shown that -

under some assumptions regarding changes in the configuration states - each game is

ensured of converging to a pairwise stable network. This approach is then integrated

with a common robotic task where the network is critical to successful task completion.

The resulting performance is evaluated with respect to a variety of measures including

task completion, network density and the average payoff along with comparative results

with all-to-all communication.

The outline of the Chapter is as follows: First, related literature is reviewed in

Section 2.1. Next, decentralized network topology is formulated in Section 2.2. The up-

date of network topology based on payoff functions and pairwise games is accomplished

as explained in Section 2.3. In this framework, the equilibrium (optimal) network is
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defined based on pairwise stability and pairwise Nash equilibrium as explained in Sec-

tion 2.4. With mutual link-based network payoff functions, the existence of pairwise

stable networks is ensured as explained in Section 2.5. Furthermore, these networks

are also pairwise Nash stable. Furthermore, each pairwise game converges to a pairwise

stable network. The coupling of this approach with a common robotic task (naviga-

tion) is presented in Section 2.5.2 where extensive simulation results provide insight

on performance with respect to a variety of metrics such as task completion, network

density, network change and the average network payoff. The resulting performance is

compared with that that of all-to-all communication. The Chapter concludes with a

brief summary.

2.1. Related Literature

This problem is related with two areas in the literature: multirobot communica-

tion and game theory.

Most multirobot applications assume all-to-all communication [9, 10]. From mo-

bile communication perspective, this can be done either in a broadcast or non-broadcast

manner [16]. Broadcast multipoint communication requires a physical medium that

connects to all robots where all communication is heard by all [17]. As such, the

robots may miss the broadcast information or if multiple robots try to broadcast all

at the same time, the resulting network saturation may lead to degradation of quality

of the received information [13,18,19]. These problems are alleviated in non-broadcast

point-to-multipoint or point-to-point communication [20]. However, distributed broad-

cast scheduling is problematic since it has NP complexity [21]. Thus, with the growth

of robot team size, all-to-all communication faces serious scalability challenges [9, 10].

Even if all-to-all communication is achieved, selective communication may be

advantageous for performance [15]. This is because communicating robots have an

underlying hybrid nature: a continuous aspect pertaining to the robots’ physical states

and a discrete nature related to communication states [22–27]. Each robot needs to

switch its focus between its task and communication intermittently. As the number of
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connections increases, it has to devote more of common resources to communication

due to increased computation and power requirements [9]. The most common approach

to alleviate this problem is to communicate only with robots within a given proxim-

ity determined either via on-board sensing or periodic all-to-all communication [5–7].

Another approach is to maintain a sparsely connected communication graph and have

virtual all-to-all communication via a routing protocol [28]. Unfortunately, the reli-

ability of the information will be affected by the routing delays. Interestingly, none

of the approaches consider communication related objectives [9, 29] and how the net-

work can be formed based on them. For example, resource constrained robots can have

other considerations or objectives in regards to what constitutes an acceptable network

topology. This issue has been addressed within communication networks assuming sta-

tionary agents where the conflict between gain and cost of each connection naturally

leads to a noncooperative game theoretic formulation of the problem [12,30–32]. How-

ever, in multirobot settings, the stationarity of the players is no longer valid and as

the robots are moving around, the topology of the communication network has to be

updated accordingly [33, 34]. Furthermore, it is preferable to have the network evolve

in a decentralized manner so that each robot is in complete control of its local part of

the network.

2.2. Decentralized Network Topology

The network topology is defined based on the collective link state of the robots

a ∈ A is defined as a =
∑

i∈R ai ⊗ ei. Here, each aij(t) ∈ B with B = {0, 1} is defined

as:

ai(t) =
[
ai1(t) . . . ai(i−1)(t) ai(i+1)(t) . . . air(t)

]T

It refers to the link state associated with robot i ∈ R. Then aij(t) = 1 if and only

if robot i chooses a direct link with robot j 6= i. Otherwise aij(t) = 0. Note that

the states aij are not necessarily symmetric. Pairwise links are established only with

mutual consent – that is a link ij is created if and only if aij = aji = 1. In the sequel,
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the time argument is omitted and ai is used whenever time dependency is clear from

the context.

Each link state a ∈ A induces an undirected network g(a) ∈ G. Let A =

Br−1 × . . .× Br−1

︸ ︷︷ ︸
r times

denote set of all possible network topologies. The set G = {g′|g′ ⊆ gr}

is the set of all possible graphs on R and gr is the complete graph. Each graph

g = (R, E) is such that the set of edges E(g) ⊆ Q represents the robot pairs ij between

which there is a direct link. From each robot i’s perspective, the corresponding set

of links is defined as Ei(g) = {ij | j ∈ Ni(g)}. The case when g = gr corresponds to

all-to-all network - namely every robot has a direct link with every other robot. For

each robot i, its neighboring robots Ni(g) are robots with which direct links exist –

namely Ni(g)
△
= {j ∈ R |ij ∈ Ei(g)}.

2.3. Topology Update

The communication network is viewed as composed of agents who are trying to

maximize their own benefit from participation in the network. Thus, the updating of

the network topology is based on two entities: (i) A set of payoff functions that encode

respective benefits quantitatively; (ii) Pairwise games where decisions regarding the

network topology are made by utilizing these payoff functions.

2.3.1. Payoff Functions

For each robot i ∈ R, the payoff is encoded quantitatively by a function vi :

G × F → R. The payoff function depends on both the link state (and hence the

network g) and the configuration state b. This dependency can vary from complete

dependency on the network and the state to partial dependency. In our decentralized

framework, the dependency is partial, that is, each robot i’s payoff function depends

on its immediate neighbors Ni defined by the network g. The actual form of this

function can be based on either purely communication related considerations [30, 35]

or a combination of communication and task related objectives.
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2.3.2. Pairwise Games

Once the robots are all associated with their respective payoff functions, the next

issue pertains to the network update based on payoff functions. The update process is

modelled as pairwise games. A pairwise game among r robots is an iterated process

consisting of a sequence of possibly simultaneous game moves. Its definition is similar

to the dynamic process of [36], but differs in that multiple robots are able to remove

existing links or add new links concurrently with the restriction that each robot is

allowed to participate in only one operation.

Assume that the pairwise game starts with robot configuration state b and the

initial topology g. In each game move, each robot i can play at most with one other

robot or choose not to play at all. Each robot selects its playing mate individually.

The simplest selection scheme is to use a probabilistic scheme with uniform probability.

If si(t) ∈ R denotes robot i’s selected partner for a game move at time t, then the

probability of robot i selecting robot j:

p(si(t) = j) =
1

r
(2.1)

In case a robot selects itself (si(t) = i), this indicates that it is in a “don’t care” state.

Hence, no synchronization is required for selecting a candidate playing mate.

After a selection is made, the next step is to check whether a game move can be

started or not. If there is already a link with the selected robot, this is very simple to

do. Otherwise, the robot will attempt to connect temporarily to the selected robot. In

either case, the other robot either responds back positively or there is no response. The

other robot will respond positively if the selection is mutual or it is in a “don’t care”

state with only one request for a game move. The no-response case may be attributed

to three different reasons. First, selection is not mutual. Secondly, in case a robot gets

selected by multiple robots, it will not participate in a game move and thus will not

respond. Thirdly it could not connect to the selected robot. A game move starts only

if there is a positive response. Hence, each robot i will be engaged in a game move
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with another robot with probability:

p′ =
3

r2
(1−

2

r
)r−2 =

3(r − 2)r−2

rr
(2.2)

Thus, at each game move, from the perspective of each robot, the status of only one

link can be changed.

Once the robot pairs ij mutually agree to play a game move, the game move

proceeds in a manner that is dependent on whether there is an existing link between

them, namely whether ij ∈ E(g) or not. If the link ij is already in the network g, the

decision is to break it up or not. Let g − ij denote the graph obtained by breaking

up the link ij from g. Otherwise, there is no connection and the decision is whether

to add it or not. Let g + ij denote the graph obtained by adding the link ij to the

existing network g. These decisions are based on the payoff functions. Thus, for each

pair ij engaged in a move, the link states aij and aji are updated as follows:

aij =





0 if vi(g − ij, b) > vi(g, b)

1 if vi(g + ij, b) > vi(g, b)
(2.3)

aji =





0 if vj(g − ij, b) > vj(g, b)

1 if vj(g + ij, b) > vj(g, b)
(2.4)

All other entries of the link states ai and aj remain unchanged. These actions may

leave the link as it is (which may be either no link or a direct link), remove an existing

link or setup a new link. A direct link is established iff both aij = 1 and aji = 1. The

components of each link state ai transform throughout the sequence of game moves by

all the robots.

The algorithm in Figure 2.1 presents the pairwise game for each robot. All robots

apply this algorithm concurrently. The game moves will proceed in an unsynchronized

manner. Each pairwise game continues for an interval of ∆tg. During the progress

of each game, the robot pairs that are engaged in game moves, but are not currently

connected will need to establish temporary pairwise connections in order to exchange
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information. However, since each robot can engage at most in one move and some links

are already established, there will be only few additional links. However, among these,

all those that are not beneficial to both of the robots will be immediately cut-off. Thus,

robots do not need to maintain a fully connected network unless it is not absolutely

beneficial to all the robots simultaneously. Since all the robots act individually, each

pairwise game is decentralized.

1: ts ← t ⊲ Note the game start time

2: while t < ts +∆tg do

3: j = si(t) ⊲ Select playing mate j

4: if game move btw ij started then

5: if ij ∈ Ei(g) then ⊲ Does link ij exist ?

6: if vi(g − ij, b) > vi(g, b) then

7: aij = 0

8: g ← g − ij ⊲ Break up the link ij

9: Send aij to robot j

10: end if

11: else

12: if vi(g + ij, b) > vi(g, b) then

13: aij = 1

14: Get aji from robot j

15: if aji = 1 then

16: g ← g + ij ⊲ Establish the link ij

17: end if

18: end if

19: end if

20: end if

21: end while

Figure 2.1. Pairwise game for each robot i.
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2.3.3. Task & Pairwise Games

The robot team starts with an initial configuration and network topology. The

robots are assumed to have their clocks synchronized at the beginning of the task to

t = 0. Each robot proceeds with its task using information available to it. This will

be comprised of its configuration state as well as those of its immediate neighbors as

defined by the current network topology. Periodically (with period ∆tt), the robots

update the network and thus possibly change network topology. This is achieved via

all of them participating in a pairwise game for an interval of ∆tg as specified by the

algorithm as shown in Figure 2.1. The pairwise game also provides a general scheme

for the robots to contact other robots one by one and decide on the status of respective

links. Of course, game period should be considerably smaller than the update period -

namely ∆tg < ∆tt. Once the game ends, the network topology remains the same until

the next update period. This cycle is repeated as long as the robots are operating.

2.4. Equilibrium Networks

The payoff functions are not sufficient to determine what is an acceptable network

for each robot. This is because while each robot has its own individual objective,

individual payoffs are coupled with each other. In general, it will not be possible to find

a single solution that simultaneously optimizes each objective. Additional preference

information regarding what constitutes an acceptable solution is required.

2.4.1. Pairwise Stability

The simplest definition is pairwise stability [37–39]. It is based on two consid-

erations - namely no individual robot has incentive to break up a link and no pair of

robots have an incentive to establish a new link. Formally,

Definition 2.1. (Pairwise stability) : A network g is pairwise stable with respect to

vi, i ∈ R, if and only if,



18

(i) ∀i ∈ R and ij ∈ E(g), vi(g, b) ≥ vi(g − ij, b) and vj(g, b) ≥ vj(g − ij, b)

(ii) ∀ij /∈ E(g), if vi(g + ij, b) > vi(g, b), then vj(g + ij, b) < vj(g, b)

Pairwise stable networks are robust to one-link deviations by definition. Link

creations are promoted by the coordinated initiative of pairs of robots while single

robots in isolation decide to remove links.

2.4.2. Pairwise Stable Networks

The existence of pairwise stable networks is not ensured as there may be a cycle

of networks [38, 40]. The definition of cycle of networks is based on the concept of

improving path. A path is a sequence of networks from one network to another and it

should not be confused with a path along links within a given network. In particular,

paths where each change offers an improvement to the associated robots are of interest.

An improving path is a sequence of networks where the removal or the addition of the

link benefits the robot(s) whose consent is necessary for the change [38].

Definition 2.2. (Improving Path) : An improving path from g to g′ is a sequence of

networks {g1, . . . , gN} with g1 = g and gN = g′ such that for any k ∈ {1, . . . , N − 1}

such that either:

(i) If gk+1 = g−ij for some ij, then vi(gk−ij, b) ≥ vi(gk, b) or vj(gk−ij, b) ≥ vj(gk, b)

(ii) If gk+1 = g + ij for some ij, then vi(gk + ij, b) ≥ vi(gk, b) and vj(gk + ij, b) ≥

vj(gk, b)

This myopic behaviour can lead to what is known as cycle of networks [38,40]. For

example, if two robots add a new link making them better off, this may lead another

set of players to delete a link which may leave the first set of players worse off. Of

course, if the robots could cooperatively update the network instead of myopic decision

making, this may be avoidable. However, in large networks where it is preferable to

have each robot be as decentralized as possible, myopic behaviour is natural. The

cycle of networks is the counterpart of limit cycles in continuous dynamic systems and
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is defined as:

Definition 2.3. (Cycle of Networks) : A set of networks C form a cycle if for any

g, g′ ∈ C, there exists an improving path from g to g′.

Hence, in a cycle a number of networks are repeatedly visited. The following

lemma states that the improving paths emanating from any starting network must

lead to either a pairwise stable network or a cycle.

Lemma 2.4. [40] For any set of payoff functions vi, there exist at least one pairwise

stable network or closed cycle of networks.

2.4.3. Pairwise Nash Equilibrium

Another concept is pairwise Nash equilibrium which is refinement of pairwise

stability based on Nash equilibrium [41]. A pairwise Nash equilibrium network is

immune to the formation of a new link by any two robots and the breaking up any

number of links by any individual robot.

Definition 2.5. (Pairwise Nash Equilibrium) : A network g is pairwise Nash equilib-

rium with respect to vi if and only if,

(i) ∀i ∈ R and ∀ℓ ⊆ Ei(g), vi(g, b) ≥ vi(g − ℓ, b)

(ii) ∀i, j ∈ R, if ij /∈ g, then vi(g+ij, b)−vi(g, b) > 0 implies vj(g+ij, b)−vj(g, b) < 0.

This is a stronger requirement than the single link robustness check of pairwise

stability. While all pairwise Nash equilibrium networks are also pairwise stable, the

reverse does not hold in general. A result presented in [42] establishes their equivalence

when a simple condition on marginal gains holds.

Definition 2.6. (Marginal Gain) ∀i ∈ R, ∀g ∈ G, ∀ℓ ⊆ Ei(g), the marginal gain

δvi(g, b, ℓ) associated with ℓ is defined as:

δvi(g, b, ℓ) = vi(g, b)− vi(g − ℓ, b) (2.5)
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If the set ℓ consists of only one link - namely |ℓ| = 1, then it is referred to as link

marginal gain. This result is based on α−submodularity [42].

Definition 2.7. (α−submodularity) : Let α ≥ 0. The network payoff functions vi are

α−submodular in own current links on G ′ ⊆ G iff δvi(g, b, ℓ) ≥ α
∑

ij∈ℓ δvi(g, b, ij) for

all g ∈ G ′, i ∈ R and ℓ ⊆ Ei(g).

Hence, with α−submodularity, marginal gain associated with a group of links

already in the network is at least as high as the sum of individual link marginal gains

scaled by α. Theorem 2.8 provides the necessary and sufficient conditions on the payoff

functions vi, i ∈ R, for the set of pairwise stable networks and the set of pairwise-Nash

equilibrium networks to coincide.

Theorem 2.8. [42] The set of pairwise stable and pairwise-Nash equilibrium networks

with respect to v coincide if and only if v is α-submodular on the set of pairwise stable

networks, for some α ≥ 0.

2.4.4. Pairwise Stability, Pairwise Nash & Pareto-Optimal Solutions

Multi-objective optimization is in general different from optimizing with respect

to a single global objective function if even the global function is constructed via sum-

ming up all the individual objectives. It is known that Nash solutions in noncooperative

game settings and Pareto-optimal solutions (namely the solution to a single objective

function) are not necessarily the same when the individual objective functions are de-

pendent on other robots’ decisions as well [37, 43]. Hence, optimizing with respect to

a single objective function - even if done in a decentralized manner via decomposing

the global objective function into multiple objectives – will in general have different

solutions as compared to multiobjective optimization. Thus, the resulting network may

not be efficient since that requires a single objective [44]. Pairwise stable networks are

robust to one-link deviations. With Nash equilibrium, from each robot’s perspective,

it is doing as best it can - given its objective, other robots’ configuration states and

the current network. As each robot decides for its local part of the network based on
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only individual considerations associated with its assigned task [45], a noncooperative

game-theoretic approach has lower computational and communication requirements.

2.4.5. Convergence to Pairwise Stable Network

As pairwise games provide a practical scheme for contacting other robots and

revising the network topology, it is important to study their convergence properties.

Each pairwise game generates a sequence of networks K(b) = {gk}
K
k=0. The payoff

function values will be changing as the robots are moving around. Hence, in general, it

is not possible to ensure convergence with changing configuration states. However, if

game periods are in general of short duration and if the robots’ configuration states are

not changing much during the course of the game, the robots can play pairwise games

with configuration states fixed to values corresponding to the onset of each game. Even

with this assumption, convergence will not be ensured in general. In this section, a set

of sufficiency conditions for convergence is presented.

For this, first two discrete-time stochastic processes are defined. Let Oi(b) denote

the maximal connected neighbor sets for robot i at the beginning of a pairwise game.

Oi(b) denotes all the links which pairwise benefit the robot. Namely, there is no other

robot j ∈ R \ Oi(b) such that vi(g0 + ij, b) > vi(g0, b) and vj(g0 + ij, b) > vj(g0, b).

Let ξi(b) = |Oi(b)| denote the cardinality of this set. Given a network graph gk,

partition the neighborhood set Ni(gk) of each robot i into two subsets as Ni(g) =

N+
i (g)∪N−

i (gk). Neighbors in the connected set N+
i (gk) are robots for which the links

will remain connected since vi(gk, b) > vi(gk−ij, b) and vj(gk, b) > vj(gk−ij, b). The set

of robots with which links need to be established is denoted by O′
i(b) = Oi(b)\N

+
i (gk).

Define zi(b, gk)

zi(b, gk) = ξi(b)−
∣∣Oi(b) ∩ N

+
i (gk)

∣∣ (2.6)

Each zi(b, gk) counts the number of desirable, but not currently attained links for

robot i under network gk. Now consider {zi(b, gk)
∞
k=1}. It is a discrete-time stochastic

process with state space {0, . . . , ξi(b)}. By definition, at g∗k, zi(b, g
∗) = 0. Neighbors
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in the nonconnected set N−
i (gk) are those whose links are better if cut off since either

vi(gk, b) < vi(gk − ij, b) or vj(gk, b) < vj(gk − ij, b). The set of robots with which links

need to be broken is denoted by O−
i (b) = (R \ Oi(b)) \ N

−
i (gk). Define

xi(b, gk) = (r − 1− ξi(b))−
∣∣(R \ Oi(b)) ∩ N

−
i (gk)

∣∣ (2.7)

Each xi(b, gk) counts the number of links that need to be broken by robot i in as-

sociation with network gk. Again, by definition, at g∗k, xi(b, g
∗) = 0. Now, consider

{xi(b, gk)}
∞
k=0. It is again a discrete-time stochastic process, however now with state

space {0, . . . , r − 1− ξi(b)}. The following proposition provides sufficiency conditions

for convergence.

Proposition 2.9. If ∀i ∈ R, zi(b, gk) and xi(b, gk) are both decreasing functions with

respect to k, then limk→∞ gk = g∗ with probability one.

Proof. As zi(b, gk) is a decreasing function, it either decreases by one or stays the same.

The value zi(b, gk) decreases whenever it starts a game move with a robot that is in

the maximal connected set, but with which it does not have direct link. If there are

0 < n ≤ ξi(b) links that still need to be established, then the probability that at least

one will be established is expressed as:

P (zi(b, gk+1) = n− 1 | zi(b, gk) = n) = np′

where p′ is calculated from Equation 2.2. The probability that the number of to-be-

realized links does not change is 1− np′:

P (zi(b, gk+1) = n | zi(b, gk) = n) = 1− np′
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Thus, zi(b, gk) is a first-order Markov process [46]:

p(zi(b, gk+1) = n) = P (zi(b, gk+1) = n | zi(b, gk) = n)p(zi(b, gk) = n)

+P (zi(b, gk+1) = n | zi(b, gk) = n+ 1)p(zi(b, gk) = n+ 1)

= (1− np′)p(zi(b, gk) = n) + ((n+ 1)p′) p(zi(b, gk) = n+ 1)

If qi,k(b) denotes the distribution vector for robot i with gk, then qTi,k+1 = qTi,kTξi where

the transition matrix Tξi is defined as:

Tξi =




1 0 . . . 0 0 0

p′ 1− p′ . . . 0 0 0

0
. . . . . .

...
... . . .

0 0 . . . (ξi − 1)p′ 1− (ξi − 1)p′ 0

0 0 . . . 0 ξip
′ 1− ξip

′




with ξi(b) written without its argument for simplifying the notation. Since Tξi is a lower

triangular matrix, the stationary distribution π - namely πT = πTTξi is the unique (up

to normalization) left eigenvector associated with eigenvalue 1 of Tξi . Starting from any

initial distribution qi,0, the iteration qTi,k+1 = qTi,0T
k
ξi
converges to the unique stationary

distribution π =
[
1 0 . . . 0

]T
with probability one. This in turn implies that

limk→∞ zi(b, gk) = 0 with probability one. A reasoning similar to that applied for

zi(b, gk) holds for xi(b, gk). The process xi(b, gk) is a first-order Markov process that

converges to the unique stationary distribution with probability one which in turn

implies that limk→∞ xi(b, gk) = 0 with probability one. Hence the result.

The convergence of the game is achieved when ∀i ∈ R, zi = 0 and xi = 0.

However, as the decision-making is completely decentralized, the robots do not know

when it occurs so that they can terminate a pairwise game. Hence, the robots are given

a priori pairwise game interval ∆tg. The pairwise game interval ∆tg specifies how long

each game will be played. It is required that ∆tg < ∆tt. However, if it is too short,

then there is a risk that pairwise game terminates before a pairwise stable network is
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attained. Hence, its value must be carefully set. A good estimate for ∆tg can be based

on the expected number of moves for first hitting state 0 for zi and xi. Let τzi,n denote

the first time to hit state 0 starting in state n for zi, namely

τzi,n = min
k

zi(b, gk) = 0 where zi(b, g0) = n

Let E(τzi,n) be its expected value. It is equal to:

E(τzi,n) = 1 +

ξi(b)∑

l=0

p(zi(b, g1) = l | zi(b, g0) = n)E(τzi,l)

= 1 + p(zi(b, g1) = n | zi(b, g0) = n)E(τzi,n)

+p(zi(b, g1) = n− 1 | zi(b, g0) = n)E(τzi,n−1)

= 1 + (1− np′)E(τzi,n) + np′E(τzi,n−1)

This leads to the recursive formula:

E(τzi,n) = 1
np′

+ E(τzi,n−1)

Noting that E(τzi,0) = 0,

E(τzi,n) =
1

p′

n∑

i=1

1

i
≈

ln(n) + 0.577

p′

Now, consider τxi,m denoting the first time to hit state 0 starting in state m for xi.

Using a similar reasoning,

E(τxi,m) ≈
ln(m) + 0.577

p′

An approximate upper bound for Eu for the expected number of moves for convergence

can be computed by summing the expected number of moves for first hitting state 0
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for zi and xi and maximizing:

Eu = argmax
n,m

E(τzi,n) + E(τxi,m)

≈ argmax
n,m

ln(n) + ln(m) + 1.154

p′

The maximal value occurs at m = (r − 1)/2 and n = (r − 1)/2. This corresponds to

the case when during the course of the pairwise game, game moves are such that first

all connections that need to be established are actually set up followed by breaking up

all connections that need to be broken. In applications, establishing and breaking links

will be intertwined. A lower bound for the expected number of game moves El can be

calculated as:

El =
1.154

p′

With an average round-trip time of ∆tRTT seconds per communication related message,

the expected game interval is between El∆tRTT and Eu∆tRTT seconds. This is the

average number of moves. In order to handle outlier cases, the game interval will need

to be extended based on Eu.

2.5. Application

This section presents an application of the proposed approach in network for-

mation. As different payoff functions will admit different pairwise stable networks or

possible a cycle of networks, the existence of pairwise stable networks can be estab-

lished depending on the particular form of payoff functions. The form of the payoff

is restricted by the decentralized nature of decision-making - as the robots should be

capable of making decisions using pairwise contacts. In particular, mutual link-based

payoff functions are considered [47]. Each payoff function is defined as the sum of

pairwise payoffs with immediate neighbors as: vij : G ×F → R with immediate neigh-
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bors [37, 48]:

vi(g, b) =
∑

j∈Ni(g)

vij(g, b) (2.8)

Consequently, the individual payoff functions vi(g, b) measure the overall satisfaction

with the respective Ni(g). Furthermore, each pairwise payoff function vij is assumed

to have a form as follows:

vij(g, b) = vji(g, b) = δv(ij, b) = δv(ji, b) (2.9)

Benefits accrue only from direct links and each link yields a fixed benefit or loss.

Admittedly, this is a simple payoff and the existence of pairwise stable networks is

an immediate consequence of its form. Furthermore, pairwise stable networks are also

pairwise Nash equilibrium networks as shown in Proposition 2.10.

Proposition 2.10. Let vi, i ∈ R, be a set of mutual link-based payoff functions. All

pairwise stable networks are also pairwise Nash equilibria.

Proof. Consider the marginal gain δvi(g, b, ℓ) associated with ℓ. By construction, it is

equal to

δvi(g, b, ℓ) =
∑

j∈Ni(g)

vij(g, b)−
∑

j∈Ni(g−ℓ,b)

vij(g − ℓ, b) (2.10)

Expand the right hand side of Equation 2.10

=
∑

ij∈ℓ


 ∑

k∈Ni(g)

vik(g, b)−
∑

k∈Ni(g−ij)

vik(g − ij, b)




Using mutual link-based property, this is equally expressed as:

=
∑

ij∈ℓ


 ∑

k∈Ni(g)

vik(ik, b)−
∑

k∈Ni(g−ij)

vik(ik, b)



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After some manipulation

δvi(g, b, ℓ) =
∑

ij∈ℓ

δvi(g, b, ij)

Since this holds ∀i ∈ R,∀g ∈ G, ∀ℓ ⊆ Ei(g), α-submodularity with α = 1 is satisfied.

By Theorem 2.8 [42], this implies that pairwise stability and pairwise Nash stability

coincide, hence the result.

The network game framework, while relevant, may seem unnecessary in such a

simple case. However, in practice this is not the case due to decentralized nature of

decision-making. As the robots cannot be in communication all at the same time, they

have to follow a certain scheme for contacting the other robots - regardless of the form

of payoff functions. The pairwise game setting provides such a practical scheme that

can be simultaneously utilized by the robots. The robots - via the pairwise games -

contact other robots one by one and determine their local network topology depending

on the exchanged information. In this case, each pairwise game is ensured of converging

to a pairwise stable network with probability one as shown in Proposition 2.11.

Proposition 2.11. If ∀i ∈ R, vi is mutual link-based payoff function with a fixed value

of b and g∗ is a pairwise stable network, then limk→∞ gk = g∗ with probability one.

Proof. If vi is a mutual link-based payoff function , then ∀j ∈ O′
i(b), δvij(gk, b) > 0.

Hence, a link –once established - remains so. Thus zi(b, gk) is a decreasing function

with respect to k. Similarly, ∀j ∈ O−
i (b), δvij(gk, b) < 0. Hence, a link, once removed,

remains so. Thus xi(b, gk) is a decreasing function with respect to k. As xi(b, gk) are

both decreasing functions with respect to k, the results follows from Proposition 2.9.
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2.5.1. Pairwise Stable Networks

The topology of pairwise stable network formed is investigated via a series of

simulations with 20 robots located in a workspace of about 12.5 square kilometers.

We consider robot configurations varying in packedness (low, medium, high) and for

various communication costs (low, medium, high) and investigate the resulting pairwise

stable networks. Payoff functions are assumed to be mutual link-based payoff functions

where each vij encodes the trade-off that exists among competing factors - namely the

degree of satisfaction and the cost incurred for having this link [31,49] as:

vij(g, b) = B log2

(
1 +

W

B
SNRij

)
− ςij

PT

l(δij)
(2.11)

As formed links can sustain an information flow that is proportional to link quality [50],

it is reasonable to require that pairwise interactions should occur only if the link quality

is acceptable. Link quality is commonly assessed by signal to noise ratio or related

measures [13, 18, 19, 50, 51]. The first term is the capacity of the channel given by

the Shannon’s well-known formula based on signal to noise ratio SNRij where B is

the channel bandwidth and W is the total bandwidth [35]. The higher its value is,

more reliable is the link. As SNRij is a decreasing function of pairwise distance –

namely SNRij ∝
1
δij
, the gain of communication decreases with increasing distance

δij. The second term measures the cost of establishing this link with a fixed amount

of transmitter power PT per channel of communication and l(δij) =
0.097
δαij

denotes the

path loss factor due to diffusion and absorption in the environment. Here, α is the

path loss exponent and ςij is the cost parameter [52]. The lower is its value, better it is

for the robots. The cost of communication increases as the distance δij increases. Let

it be noted a form similar to that of Equation 2.11 is also obtained when the payoffs

are based on signal-to-interference-plus-noise ratio (SINR) [30,53]. As MAC protocols

ensure that interference from different nodes is minimized, co-channel interference can

be neglected [54]. The communication payoff parameters as given in Table 2.1 are

adapted from [52] and correspond to physically realistic settings. Noise power is used

in accordance with outdoor environment [55]. Path loss exponent α is also selected for
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Table 2.1. Communication payoff parameters.

Parameter Value

Transmitter power PT 1 W

Total bandwidth W 106 Hz

Signal bandwidth B 104 Hz

Noise power N0 5× 10−15 W

Path loss exponent α 2.5

Cost parameter ςij 0.1

the outdoor environment.

The resulting networks are as shown in Figure 2.2. It is observed that as packed-

ness increases, so does the connectivity of the resulting network. This implies that the

closer the robots are, they will be more likely to be connected and thus be cooperat-

ing. Furthermore, as communication cost increases, the resulting network connectivity

decreases.

2.5.2. Coupling with Robotic Task

In this section, the proposed approach is coupled with multirobot navigation

which is a common robotic task [56–58]. The robots all have cylindrical bodies with

radius ρi = 0.25 meters and are deployed in a confined area of radius ρ0 = 2 km where

the task of each robot i ∈ R is to navigate simultaneously to its a priori specified goal

position hi ∈ R
2 without any collisions along the way. The details of robot dynamics

are presented in Appendix A. A task is completed successfully iff all the robots reach

their target positions in the workspace – namely ∀i ∈ R, b∗i = hi. The task terminates

and is considered to be unsuccessful in case of any collisions or if the robots stop

moving without getting to their goal positions. Hence, the robots need other robots’

configuration state information as there is a high risk of collisions or blocking each

other. As specified, this problem is not a formation control problem as there are no
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Low packed - Low cost Low packed - Medium cost Low packed - High cost

Medium packed - Low cost Medium packed - Medium cost Medium packed - High cost

High packed - Low cost High packed - Medium cost High packed - High cost

Figure 2.2. Pairwise stable networks for robot configurations varying in packedness

(low, medium, high) and communication costs (low, medium, high) in a workspace of

12.5 square kilometers.

restrictions on the relative poses of the robots during the course of their task.

First, the coupling between update periods is studies with ∆tt varying from 2.5

minutes to 10 minutes in order determine a suitable pairwise game interval ∆tg for each

task interval respectively. The robots are assumed to move with arbitrary velocities

with maximum speed of 0.3 meters/second. In order to determine an appropriate value,

50 simulations are performed for each task interval where all the pairwise games are

played until pairwise stable networks are reached. As discussed previously, it is required

that ∆tg < ∆tt. In particular six different game intervals ∆tg are considered. The first

two are based on the expected number of game moves as computed in Section 2.4.5. For
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20 robots, the expected number of game moves has a theoretical expected lower bound

El = 1025 and an expected upper bound Eu = 5022 moves that can be computed as

explained in Section 2.4.5. With an average round-trip time of ∆tRTT = 4.4 milliseconds

per communication related message passing [59], the expected value of ∆tg is between

4.5 and 22 seconds. For each ∆tg , the percentage of pairwise games that have attained

pairwise stable networks within this period are determined. The results are presented

in Table 2.2. It is observed that with ∆tt = 2.5 minutes and ∆tg = 22 seconds, 97%

of the resulting networks are pairwise stable. With this ∆tg, as task interval ∆tt is

increased, the resulting networks are less likely to be pairwise stable which implies that

the communication payoffs are not as optimized as they can be. Thus, the resulting

networks are not as satisfactory as they can be. This is expected since with greater task

intervals ∆tt, the configuration states will change to a greater extent which will possibly

require the network to change more. Hence, higher ∆tt intervals require longer time

allocated for network related decision making. The game interval ∆tg is then increased

successively in order to have a pairwise stable network percentage of 99.8% for each

∆tt. Finally, with ∆tg = 46 seconds, all the networks become pairwise stable. This

value is about twice the upper bound for the expected value of ∆tg.

Table 2.2. The percentage of pairwise games that reach pairwise stable networks in

20-robot team.

∆tt (minutes) 2.5 5 10

∆tg (seconds)

4.5 26.7 12.3 4.5

22 97.4 91.1 78.6

33 99.8 99.2 97.3

37 100 99.8 98.9

42 100 100 99.8

46 100 100 100

Next, random goal configurations varying in packedness (low, medium and high)

and communication costs ςij (low=0.025, medium=0.05 and high=0.1) are considered.
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Table 2.3. Simulation results for robot configurations varying in packedness and

communication costs for pairwise game in 20-robot team.

Packedness L M H

Comm. Cost ςij L M H L M H L M H

Task Completion % 100 100 100 100 100 100 100 100 100

Avg. Network Density D̄ 3.4 1.85 1.2 7.9 4.5 2.5 18 11.8 7.2

Avg. Task Comp. Time tf (min.) 194 194 193 161 159 158 144 143 142

Avg. Network Change C̄ 0.6 0.4 0.3 1.2 0.8 0.6 1.9 1.6 1.2

Avg. # of Network Updates Ng 70.4 70.3 70 58.3 57.8 57.3 52.1 51.7 51.4

Avg. Total Payoff V̄ (×107) 0.21 0.12 0.07 0.51 0.29 0.15 1.35 0.84 0.49

Table 2.4. Simulation results for robot configurations varying in packedness and

communication costs for all-to-all communication in 20-robot team.

Packedness L M H

Task Completion % 100 100 100

Avg. Network Density D̄ 100 100 100

Avg. Task Comp. Time tf (min.) 198.4 162.2 149.8

Avg. Network Change C̄ 0 0 0

Avg. # of Network Updates Ng - - -

Avg. Total Payoff V̄ (×107) -2906 -1782 -1235

For each pair of goal packedness and communication cost levels, the simulations are

repeated 50 times with random initial positions. ∆tt and ∆tg are set to 2.5 minutes

and 33 seconds, respectively.

The results are presented in Table 2.3 for pairwise game based network and in

Table 2.4 for all-to-all network by using various measures. For this purpose, a variety

of performance metrics is used in the simulations.
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• Task completion percentage: It is the percentage of tasks that have been suc-

cessfully completed. Task completion is determined via checking b(tf ) = h. As

explained earlier, any collision among the robots during task execution or their

stopping without getting to their goal positions results in the task being un-

successful. Average task completion time is computed based on tasks that are

successfully completed.

• Average network density D̄: The network density D is a measure of network

connectivity. Let t′l = l(∆tt +∆tg) denote the time at which l th pairwise game

is finished.

D = 100
1

Ngr(r − 1)

Ng∑

l=1

∑

i∈R

|Ni(g(a(t
′
l)|

If D = 100, the network has all-to-all connection and the number of links is

r(r−1)
2

. With D < 100, the number of links goes down to D percent of r(r−1)
2

.

Hence, comparable task completion rates can be achieved simultaneously with

low connectivity. Average network density D̄ is computed over all the simulations

with successful task termination.

• Average network change C̄: The network change percentage C is the time average

of the change percentage of the network defined.

C =
2

Ngr(r − 1)

Ng∑

l=1

∣∣E(g(a(t′l)))− E(g(a(t′l−1)))
∣∣+

∣∣E(g(a(t′l−1))− E(g(a(t
′
l)))

∣∣

Again, average network change C̄ is computed over all the simulations with suc-

cessful task termination.

• Average total payoff: Average total payoff V for a simulation is defined as the

average of sum of individual payoffs over all the networks formed during a task:

V =
1

Ng

Ng∑

l=1

∑

i∈R

vi(b(t
′
l), g(a(t

′
l)))

Average total payoff V̄ is computed over all the simulations with successful task
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Figure 2.3. A sampled network evolution for ∆tt = 2.5 minutes in 20-robot team. In

each graph, the open circles indicate bi and star marks indicate the goal positions.

The first figure presents a random initial positions while the remaining four show

robots’ configuration and the communication network at four stages of the task. The

task completion time tf is 243 minutes. The number of pairwise games Ng is 79.

termination.

For all cases, the tasks are completed successfully, but the proposed approach

achieves this with the average network density less than 12%, which lessens considerably

the communication and computation complexities. Although the proposed approach

requires extra computation to determine the pairwise stable network, the task comple-

tion time is less than that of all-to-all communication. Increase in the communication

cost ςij leads to the network with less connectivity as expected.

Finally, the robots engage in a task where the goal positions hi are clustered into

two groups of 10 robots in a rectangular grid topology with ρd = 150 meters between

two neighboring positions as shown in Figure 2.3 . The initial configurations are also

clustered in two groups of 10 robots where the robots in each group are randomly

positioned within an area of 0.3 square kilometers and are located diagonally away

from their goal positions as shown in the same figure. The goal positions of robots in

the left group are within the right goal area while those of the right group are within

the left goal area as shown in the same figure. At the start of a navigation task,

the robots are fully disconnected. First, these simulations are repeated 50 times with

arbitrary initial configurations without a network among the robots. As expected,
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when the robots are not communicating, collisions and blockings occur. Successful

task completion percentage is less than 2%. The same task is then considered with

the proposed approach. A sample task with initial and goal configurations at t = 0

as shown in Figure 2.3 with ∆tt = 2.5 minutes. The task is successfully completed

after tf = 243 minutes with the network updated Ng = 79 times. The evolution of

the communication network at four sampled instances from a sample task is as shown

in remaining part of Figure 2.3. It is observed that throughout the task, while the

communication network is relatively sparse, the robots are able to complete their given

task. The simulations are then repeated again 50 times with for each task interval

∆tt with game period ∆tg selected as to have 99.8% pairwise stability. For ∆tt = 2.5

minutes, ∆tg = 33 seconds while for ∆tt = 10 minutes, ∆tg = 42 seconds. Thus, game

intervals are considerably smaller than the update intervals as required. The results

are presented in Table 2.5. The distance moved between updates increases from an

average of 36 meters for 2.5 minutes to about 144 meters for 10 minutes. The robots

are assumed to be starting at random initial configurations as explained previously

with the initial network fully disconnected.

Finally, the case of fully connected network is connected. It is known that in this

case, the task completion is 100%. It is observed that with update period ∆tt = 2.5

minutes, the robots are able to accomplish their tasks with 100% completion per-

centage. As update periods increase, task completion percentages are still very high.

However, compared to all-to-all communication, it is observed that they are slightly

lower as expected. This is because the robots are moving around by greater amounts

while communication network is not updated, information sets may become insuffi-

cient and the probability of collisions increase. On the other hand, it is observed that

pairwise games based network updating also enables major improvements within two

aspects of task accomplishment. First, average network density varies around 10% and

12% which indicates that the communication network is relatively sparse regardless

of the update period. This is a major improvement in comparison to all-to-all com-

munication with 100% network density as it means nearly 90% less of the resources

will be allocated to communication. Secondly, surprisingly, average task completion

time is comparatively shorter as compared to all-to-all communication. This can be
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attributed to the fact that the robots have to take a much smaller number of robots

into account while updating their motion control laws and consequently are wandering

around less. As expected, as update period increases, so does the network change be-

tween consecutive updates. With an update period ∆tt = 10 minutes, average network

change percentage is greater than those of ∆tt = 2.5 min and ∆tt = 5 minutes. The

last row of Table 2.5 gives comparative results with respect to average total payoff. It is

observed that while pairwise game networks have positive communication payoffs, this

is not the case for all-to-all communication. This means that while all the links in the

pairwise games based communication network are ensured of good quality, this does

not necessarily hold for those in all-to-all communication. Hence, the information from

some links will possibly be unreliable. Of course, any usage of unreliable information

will adversely affect successful task completion rates. This does not come up in our

simulations as it is assumed that all the received information is reliable.

Table 2.5. Simulation results for pairwise game (PG) and all-to-all (A)

communication networks in 20-robot team.

Network PG A

∆tt (minutes) 2.5 5 10 -

∆tg (seconds) 33 37 42 -

Avg. Network Density D̄ 12.4 11.9 10.8 100

Task Completion % 100 98 88 100

Avg. Task Completion Time tf (minutes) 215.2 200.1 186.3 265.5

Avg. Network Change C̄ 2.8 5.1 11.7 0

Avg. Number of Network Updates Ng 70 35.1 16.8 -

Avg. Total Payoff V̄ (×107) 0.69 0.6 0.28 -5971

The decentralization of decision-making comes with the issue of convergence.

Since the robots are only aware of their immediate neighbors, with the increase in the

number robots the decision-making takes longer time to converge. Now, the case of

100 robots is considered. Their initial and goal positions are defined similar to that
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of 20 robots. Medium level of communication cost ςij is selected. Since the number

of robots is increased, the environment will change much. Hence, the update period

∆tt is set to 1 minute. The game period ∆tg is set to 33 seconds as in the case of 20

robots, which speeds up the decision-making but may lead to the non-stable networks.

At the start of a navigation task, the robots are fully disconnected. The simulations

are repeated 50 times with arbitrary initial configurations. The results are presented in

Table 2.6. It is observed that with considerably low network density, high percentage

of task completion is obtained. However, the resulting networks after the decision-

making have some undesired and desired links in order to converge to a pairwise stable

network. While average number of links which are desired to be established is about

10 links per game, average number of links which are desired to break up is about 8

link per game. To improve the convergence, the game period can be increased at the

first game. Since the changes between the consecutive games will be relatively small,

the game period can decreased in the next games.

Table 2.6. Simulation results for pairwise game (PG) communication networks in

100-robot team.

Avg. Network Density D 6.7

Task Completion % 96

Avg. Task Completion Time tf (minutes) 382

Avg. Network Change C 0.2

Avg. Number of Network Updates Ng 246

Avg. Total Payoff V (×107) 10.9

2.6. Conclusion

This chapter studies the problem of communication network formation in a mul-

tirobot system and proposes a decentralized model of how the network may form and

evolve over time based on network related payoff functions and pairwise games. The

robots update the network topology periodically where the game interval is consider-
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Figure 2.4. A sampled network evolution for ∆tt = 1 minute in 100-robot team. The

task completion time tf is 355 minutes. The number of pairwise games Ng is 59 for

0.25tf , 118 for 0.5 tf , 177 for 0.75 tf and 236 for the whole task.

ably smaller than the update period. The equilibrium networks are defined based on

pairwise stability and pairwise Nash equilibrium. The pairwise game setting provides

a general and practical scheme that can be employed by the robots simultaneously in

order to contact other robots and update their local network topology depending on

the exchanged information. As an application, the case of mutual link-based payoff

functions is considered. It is shown that if each game is played with configuration states

fixed to values corresponding to the game onset, the resulting networks are pairwise

stable and thus acceptable to all the robots. The proposed approach is coupled with

a common robotic task (navigation) where the network is critical to successful task

completion. The results indicate that the task can be accomplished with relatively

much lower network density in shorter time as compared to all-to-all communication.

As such, pairwise games provide a practical and general scheme for contacting other

robots and revising the network topology.
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3. CENTRALIZED NETWORK TOPOLOGY

This chapter continues to study the problem of forming and updating the network

topology. However, differing from the previous chapter, a centralized model is proposed.

This model is based on network related payoff functions. However, in contrast to

decentralized decision-making, now a network coordinator is held responsible for finding

a network topology that is acceptable to all the robots. Its process is now modeled as a

centralized pairwise game. While decision-making becomes centralized, the optimality

of resulting network topologies can be ensured with less restrictive payoff functions. In

particular, with payoff functions that satisfy local spillovers, convexity and strategic

substitutes properties, each centralized pairwise game is ensured of convergence to a

pairwise stable network.

The outline of the Chapter is as follows1 : In Section 3.1, the role of the network

coordinator with respect to the network is explained. The concept of acceptability is

based on payoff functions, pairwise stability and pairwise Nash stability in Section 3.2.

It is shown that the coordinator can find topologies acceptable to all the robots via

playing centralized pairwise games as explained in Section 3.3. The simulation results in

Section 3.4 provide comparative studies and insights on the resulting network topology

and the average number of game moves. The Chapter concludes with a brief summary.

3.1. Network Coordinator

A network coordinator is responsible for determining the network topology2 .

It updates the network every Tg seconds. Periodically, the robots send their cur-

rent configuration states to the network coordinator as seen in Figure 3.1b. If the

robots synchronize their clocks at the beginning of the task as is assumed in most

multirobot settings [60–62], then these are done concurrently; otherwise they are done

asynchronously. Here, the robots are assumed to have their clocks synchronized at the

1For related literature, the reader is referred to Section 2.1.
2This may be one of the robots with the additional task of being a network coordinator.



40

R-1

R-4

R-2

R-3

R-5

Coordinator

(a)

R-1

R-4

R-2

R-3

R-5

(b)

R-1

R-4

R-2

R-3

R-5

Coordinator

(c)

R-1

R-4

R-2

R-3

R-5

Coordinator

(d)

Figure 3.1. Robot-5 is acting as the network coordinator. Solid edges represent the

network topology. One-way dashed edges show the temporary communications. (a)

Initial network topology; (b) Periodically, all the robots send their information to the

coordinator; (c) In turn, the coordinator sends the network information to the robots;

(d) Final network topology.

beginning of the task to t = 0. In turn, the network coordinator determines a new

topology and transmits this to all the robots as also seen in Figure 3.1c. The network

g(t) remains the same until it is changed by the network coordinator.

The network coordinator designates the network topology by a time-varying state

a ∈ A as:

a =
[
a12, a13 . . . ai(i+1) ai(i+2) . . . a(r−1)r

]T
(3.1)

where aij ∈ B with B = {0, 1} and A = B × . . .× B︸ ︷︷ ︸(
r
2

)
times

. In case aij = 1, robot i and
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robot j are directly connected. Otherwise there is no direct edge between robots i and

j. The topology of network g is defined by a as:

E(g) = {ij | aij = 1} (3.2)

The 1-hop neighborhoods Ni(g)
△
= {j ∈ R |ij ∈ E } correspond to the edges of graph g.

The cardinality of Ni(g) is denoted by ηi(g). The topology can vary from being fully

connected (ηi(g) = r − 1, ∀i ∈ R) to completely disconnected (ηi(g) = 0).

3.2. Centralized Network Topology

The coordinator needs to find a topology that is acceptable to all the robots. Ac-

ceptability is defined based on payoff functions encoding the robots’ assistance related

preferences individually. A simple criterion is to use proximity so that only robots

within a certain range are able to assist each other [5–7]. However, distance may

not always be best criterion in determining the admissible robots. They may have

other individual preferences regarding what their neighborhood Ni(g) should be. From

this perspective, each robot’s preferences are related with the gain and cost associ-

ated to having a particular neighborhood Ni(g). Correspondingly, the payoff functions

vi : G × F → R are comprised of two terms encoding gain and cost respectively as:

vi(g, b) = πi(g, b)− κi(g) (3.3)

Each term depends only on itself and its neighbors Ni(g).

The gain πi(g, b) is related with when the robot expects to do better in regards

to the network. Individually, it prefers to communicate with as many robots as pos-

sible as this means more information regarding other robots. At the same time, it

prefers neighbors that are themselves communicating with any few other robots as

possible as response time from each will deteriorate as its connections increase. These



42

considerations are encoded by a gain function as:

πi(g, b) = Ψ1,i(ηi(g)) +
∑

j∈Ni(g)

Ψ2,ij(ηj(g), b) (3.4)

Payoffs that depend on the identity of neighbors and distribution of links of all the

other robots as given in Equation 3.4 are said to have local spillovers property [63].

The functions Ψ1,i and Ψ2,ij can be arbitrarily chosen as long as Ψ1,i increases in

the number of its collaborative links and Ψ2,ij decreases in the number of its neighbors’

links. Here, the following particular forms are assumed:

Ψ1,i(ηi(g), b) = ηi(g)
ρ0∑

j∈Ni(g)
δij/ηi(g)

Ψ2,ij(ηj(g), b) =
1

ηj(g)

ρ0
δij

Recall that δij =‖ bi − bj ‖.

As such, both Ψ1,i and Ψ2,ij terms decrease in the average distance between its

neighbors. Under this kind of payoff structure, a robot will connect with as many

robots as possible which are as near to itself as possible and have themselves few links.

This dependence can be quantitatively characterized by convexity and strategic

substitutes properties [63, 64]. Convexity means that marginal return of robot i from

an edge is increasing in the number of edges it has formed. Formally, πi(g, b) is convex

iff ∆Ψ1(x) > 0 where ∆Ψ1(x) = Ψ1(x) − Ψ1(x − 1) defines the marginal return of

robot i from Ψ1. Strategic substitutes property means that marginal return of a robot

i from an edge with a robot j is decreasing in the number of edges formed by robot

j. Again, formally πi(g, b) has strategic substitutes property iff ∆Ψ2(x, b) < 0 where

∆Ψ2(x, b) = Ψ2(x, b)−Ψ2(x− 1, b) defines the marginal returns of robot i from Ψ2.

Proposition 3.1. The function πi(g, b) in Equation 3.4 under the assumed forms of

Ψ1,i and Ψ2,ij is convex and has strategic substitutes property.
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Proof. Note Ψ1,i(ηi(g), b) = ηi(g)
ρ0∑

j∈Ni(g)
δij/ηi(g)

and Ψ2,ij(ηj(g), b) =
1

ηj(g)
ρ0
δij
. Ψ1,i(ηi(g))

is strictly increasing with respect to ηi(g) since for x, y ∈ N, x < y ⇔ Ψ1,i(x) < Ψ1,i(y) .

Hence the function πi(g, b) is convex. Since the inequality Ψ2,ij(x, b)−Ψ2,ij(x−1, b) < 0

holds for ∀x ∈ N, πi also satisfies the strategic substitutes property.

The second term - namely the cost - is related with when the robot expects to do

worse in regards to the network. According to the assumed communication strategy,

as the number of its neighbors increases, the communication quality will deteriorate.

This consideration is encoded by a cost function as:

κi(g, b) = cηi(g) (3.5)

where c is cost parameter 3 .

3.2.1. Pairwise Stability & Pairwise Nash Stability

As explained earlier, the payoff functions are not sufficient to determine what

constitutes an acceptable assistance network for each robot. Again, pairwise stability

is used to define acceptable assistance networks. The formal definition of pairwise sta-

bility is given by Definition 2.1 in Chapter 2. The existence of pairwise stable networks

cannot be guaranteed in general. However, when payoff functions vi of Equation 3.3

have local spillovers, convexity and strategic substitutes properties, the following result

holds [64]:

Proposition 3.2. If the payoff functions all have local spillovers, convexity and strate-

gic substitutes properties, then there exists at least one pairwise stable network.

Pairwise Nash stability is a refinement of pairwise stability based on Nash equi-

librium [41] as given in Definition 2.2 in Chapter 2. With α−submodularity4 , the

marginal gain associated with a group of edges already in the network is at least as

3Although not investigated in this work, the cost parameter c may become varying for each robot.
Our stability and convergence results are also valid in case of the varying c.

4The definitions of both α−submodularity and marginal gain are presented in Section 2.4.3.
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high as the sum of individual edge marginal gains scaled by α. For the particular payoff

functions, the marginal gains can be expressed as given in Lemma 3.3.

Lemma 3.3. Let vi, i ∈ R be a set of payoff functions defined as vi(g, b) = πi(g, b)−

cηi(g). Then,

δvi(g, b, ℓ) = |ℓ|(1− c) +
∑

ij∈ℓ

ρ0
ηj(g)δij

(3.6)

Proof. By definition, the marginal gain is equal to:

δvi(g, b, ℓ) = vi(g, b)− vi(g − ℓ, b)

= πi(g, b)− cηi(g)− [πi(g − ℓ, b)− cηi(g − ℓ)]

= πi(g, b)− πi(g − ℓ, b)− c|ℓ| (3.7)

Expanding the term πi(g, b)− πi(g − ℓ, b) in the right hand side of Equation 3.7

= ηi(g) +
∑

j∈N (g)

ρ0
ηj(g)δij

−


ηi(g − ℓ) +

∑

j∈N (g−ℓ)

ρ0
ηj(g)δij




= |ℓ|+
∑

ij∈ℓ

ρ0
ηj(g)δij

(3.8)

Hence, the result.

Theorem 2.8 provides the necessary and sufficient conditions on the payoff func-

tions vi, i ∈ R, for the set of pairwise stable networks and the set of pairwise Nash

stable networks to coincide. For the particular payoff functions, the conditions of

Theorem 2.8 hold as shown in Proposition 3.4.

Proposition 3.4. Consider payoff functions vi, i ∈ R with vi(g, b) = πi(g, b)− cηi(g).

All pairwise stable networks are also pairwise Nash stable.
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Proof. ∀i ∈ R,∀g ∈ G, ∀ℓ ⊆ Ei(g), consider δvi(g, b, ℓ). By definition,

|ℓ|(1− c) +
∑

ij∈ℓ

ρ0
ηjδij

= α
∑

ij∈ℓ

[
1− c+

ρ0
ηjδij

]

= |ℓ|(1− c) +
∑

ij∈ℓ

ρ0
ηjδij

(3.9)

Now consider the left hand side of Equation 3.9. By Lemma 3.3

1− c+
ρ0

ηj(g)δij
= δvi(g, b, ij)

This implies that

δvi(g, b, ℓ) =
∑

ij∈ℓ

δvi(g, b, ij) (3.10)

Hence α−submodularity condition holds with α = 1. The results follows by Theorem

2.8.

3.3. Centralized Pairwise Games Based Networks

As acceptability is defined based on pairwise stability with respect to the payoff

functions, the coordinator needs to employ a scheme that ensures the resulting topol-

ogy to be pairwise stable. This is achieved via having the coordinator play centralized

pairwise games utilizing the payoff functions [65]. If the payoff functions satisfy local

spillovers, convexity and strategic substitutes properties, the resulting network is en-

sured of being pairwise stable - which implies that it is acceptable to all the robots in

regards to their respective objectives.

3.3.1. Centralized Pairwise Games

Each CPG is a stochastic process that proceeds via a series of game moves until

all the payoffs satisfy a termination condition. At the onset, all the robots relay their
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state information b to the coordinator. Let g̃k(b) denote the network at the k th game

move of the pairwise game with robot configuration state b. The b argument is omitted

for notational simplicity whenever possible. In each game move, the coordinator does

the following:

• Select a robot pair ij randomly,

• Determine the action to consider which is either to establish edge ij if aij = 0 or

to sever it if otherwise.

• Compare vi and vj values with the payoffs resulting from this action and update

the respective components of a as follows:

aij =





0 if vi(g̃k − ij, b) > vi(g̃k, b) or vj(g̃k − ij, b) > vj(g̃k, b)

1 if vi(g̃k + ij, b) > vi(g̃k, b) and vj(g̃k + ij, b) > vj(g̃k, b)

(3.11)

Thus, a game move between the pair ij either leads to

• The removal of an existing edge between them iff vi(g̃k − ij, b) > vi(g̃k, b) or

vj(g̃k − ij, b) > vj(g̃k, b) or

• The setup of a new edge if vi(g̃k + ij, b) > vi(g̃k, b) and vj(g̃k + ij, b) > vj(g̃k, b).

The network state a changes throughout the sequence of game moves. All entries

where there are no corresponding game moves being made remain unchanged. The

algorithm in Figure 3.2 presents the centralized pairwise game of coordinator. The

stochastic process continues until the network becomes pairwise stable. As this is a

time-consuming check, it may be done only at sampled game moves depending on the

network size as presented in the algorithm as shown in Figure 3.3. In each move, a pair

is selected (line 5 of the algorithm shown in Figure 3.2). If these are connected in the

network g̃k, it considers breaking it up. Otherwise it considers the effect of forming an

edge (lines 6-16 of the algorithm shown in Figure 3.2). Let g∗(b) be the final network

topology. Once the game terminates, the coordinator sends the network topology via

transmitting g∗(b) to the robots. The network topology does not change until the next
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game.

1: Get information from all the robots

2: g̃0 ← g(t)

3: k ← 0 ⊲ Game move index

4: while g̃k is not pairwise stable do

5: Select a pair ij randomly

6: if ij ∈ E then ⊲ Does edge ij exist?

7: if vi(g̃k − ij, b) > vi(g̃k, b) or vj(g̃k − ij, b) > vj(g̃k, b) then

8: aij = 0

9: E ← E\ij ⊲ Break up the edge ij

10: end if

11: else

12: if vi(g̃k + ij, b) > vi(g̃k, b) and vj(g̃k + ij, b) > vj(g̃k, b) then

13: aij = 1

14: E ← E ∪ ij ⊲ Establish the edge ij

15: end if

16: end if

17: k ← k + 1

18: end while

19: g∗(b)← g̃k

20: Send g∗(b) to robots

Figure 3.2. Centralized pairwise game at time t.

3.3.2. Convergence

Let K(b) = {g̃k(b)}
∞
k=1 denote the sequence of networks generated throughout the

CPG with initial state g̃0 = g(t). The sequence K(b) converges to a network g∗(b) if

limk→∞ g̃k(b) = g∗(b). Each CPG produces an improving path - namely a sequence of

networks where the removal or the addition of the edge benefits the robot(s) whose

consent is necessary for the change [38]. However, the improving path might lead to

a cycle where a number of networks are repeatedly visited [38]. One way to ensure

convergence to a pairwise stable network is to rule out the existence of cycles - as
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1: for all ij ∈ E do

2: if vi(g̃k − ij, b) > vi(g̃k, b) or vj(g̃k − ij, b) > vj(g̃k, b) then

3: return g̃k is not pairwise stable

4: end if

5: end for

6: for all ij /∈ E do

7: if vi(g̃k + ij, b) > vi(g̃k, b) and vj(g̃k + ij, b) > vj(g̃k, b) then

8: return g̃k is not pairwise stable

9: end if

10: end for

11: return g̃k is pairwise stable

Figure 3.3. Checking pairwise stability for network g̃k.

presented in [66]:

Proposition 3.5. If a pairwise stable network exists, there are no closed cycles.

Note that Proposition 3.5 is a restatement of Lemma 1 of [38].

Corollary 3.6. If a pairwise stable network exists, starting from any network, a CPG

converges to a pairwise stable network with probability 1.

The payoff functions ensure the existence of pairwise stable network and cycles

are ruled out by Proposition 3.5, a CGP converges to a pairwise stable network with

probability 1.

3.4. Simulations

In our simulations, robot teams with populations of 50 and 100 in a workspace of

radius 2 km are considered. The robots are cylinder-shaped robots with radii 25 cm.

Pairwise stable networks for a random robot configuration state b with three different

initial network topologies g̃0 are as shown in Figure 3.4. The link cost parameter of
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Figure 3.4. Pairwise stable networks with 100 robots. (a) With initial network

g̃0(b) = ∅; (b) With random initial network g̃0(b) = g′; (c) With initial network fully

connected g̃0(b) = gr.

payoff functions is c = 8 so that point-to-point communications within around 300

meters become viable. It is observed that the resulting networks - while being similar

- have nevertheless some differences among them. This suggests that pairwise stable

networks are not unique.

3.4.1. Statistical Analysis

In the next set of simulations, the effect of cost parameter c on the resulting

pairwise stable networks is investigated. The robot configuration state b is as previously

taken while the initial network topology is g̃0(b) = ∅. The link cost parameter c is varied

between 4 to 12. Sample pairwise stable networks are as shown in Figure 3.5. As the

link cost decreases, the resulting network becomes connected while connectivity also

increases. On the other hand, if the link cost is increased, pairwise networks divide the

robots into a number of distinct groups where this number is controlled by the cost

parameter and where each group is minimally connected. With c = 8, the network

has less than four connections per robot. In order to study real-time performance,

processing time is studied. A mobile robot in our laboratory with Intel Atom 1.6 GHz

processor and 2 GB RAM is programmed as the communication coordinator. For 10

random robot configuration states and for three different initial network topologies, the
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Figure 3.5. Pairwise stable networks with 100 robots for varying cost parameters with

empty initial network. (a) c = 4; (b) c = 8; (c) c = 12.

coordinator run pairwise games 10 times and generates the pairwise stable networks.

This is repeated for two different robot team sizes. Pairwise stability is checked every

500 game moves for 50 robots and every 1000 game moves for 100 robots – in order

to expedite convergence time as discussed previously. The resulting number of game

moves and the processing times are presented in Table 3.1.

Next, the number of game moves necessary for attaining pairwise stability is

investigated. Of course, the cardinality ofA – namely |A| = 2(
r
2) – is extremely large for

robot team sizes r = 50, 100. The number of game moves gives the number of different

states visited in A until a pairwise stable network is reached. In this perspective,

it is observed that on the average, 3000-4500 game moves are made with 50 robots.

This number goes up to 14000-20000 game moves with 100 robots. Timewise, this

corresponds to 0.05-0.2 seconds for 50 robots and 1-3 seconds for 100 robots. Let

it be remarked that in a real multirobot application, as the change in the robots’

configuration states will be gradual between consecutive pairwise games, there will not

be as much difference between the consecutive initial network topologies. Hence, both

the number of game moves and the processing times will be expected to be considerably

lower.
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Table 3.1. Number of game moves & Processing time.

Num. of game moves (x1000) – Time (sec.)

r g̃0(b) Min. Max. Mean Std. Dev.

∅ 2 – 0.04 4 – 0.09 3.05 – 0.07 0.5 – 0.015

50 g′ 3.5 – 0.14 5 – 0.2 4.31 – 0.17 0.43 – 0.013

gr 3.5 – 0.14 5.5 – 0.21 4.25 – 0.17 0.46 – 0.016

∅ 10 – 0.71 17 – 1.42 14.44 – 1.15 1.06 – 0.1

100 g′ 17 – 2.4 22 – 2.8 19.4 – 2.62 0.88 – 0.07

gr 17 – 2.32 22 – 2.82 19.26 – 2.6 1.12 – 0.11

3.4.2. Comparative Analysis

In this Section, the proposed approach is compared with the proximity based

communication where robots establish links with all robots within a fixed commu-

nication range ρc meters. Of course, while proximity-based networks are essentially

randomly generated networks, pairwise stable networks are generated with a specific

set of objectives in mind. In order to make the comparison as fair as possible, ρc is

selected such that average communication payoff value v̄i(g, b) is maximized:

ρc = arg max
ρc∈[100,500]

v̄i(g, b) (3.12)

The resulting ρc = 240 meters is used in the proximity based approach.

The simulations are done with a team of 100 robots with link cost c = 8 at

100 random configuration states b with the network topology initialized to g0 = ∅.

Sample network topologies for the proposed game based and standard proximity based

approaches are shown in Figure 3.6. The resulting networks are compared with respect

to four measures: (i) The minimum value of individual payoff functions vi, (ii) The

average of the ratio of the number of missing links over the number of missing and
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Figure 3.6. Network topologies: (a) Centralized pairwise game based, (b) Proximity

based.

established links, (iii) The average of the ratio of the number of established, but not

desired links over the number of total established links, and (iv) The percentage of

networks that are pairwise stable. The results are as presented in Table 3.2. It is

observed that while in centralized pairwise game approach, none of the robots have

negative communication payoff values, this is not the case for proximity based approach.

A 34.9% result in the average ratio of the number of missing links over the number

of non-established links corresponds to an average of 37 missing links in 100 robot

scenario. This means that robots are missing the benefits they would reap if they had

actually established these links. The third measure is around 5.8% that indicates that

the networks have an average of four links that would be better off if not established.

Finally as expected, none of the networks are pairwise stable - even in case when the

proximity parameter ρc is optimally selected with respect to the average payoff values.

3.5. Conclusion

This chapter studies the problem of effective communication network topologies.

It proposes a centralized model of how the network may evolve over time. In this

model, a network coordinator updates the network topology. Periodically, the robots

contact the network coordinator. In turn, the communication coordinator considers

the individual communication payoff functions of all the robots, their current states
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Table 3.2. Centralized pairwise game based vs. proximity based.

Pairwise Game Proximity

Minimum vi 0.15 -0.12

Missing links % 0 34.9

Undesired links % 0 5.8

Pairwise stable % 100 0

and the current network simultaneously and finds a network topology acceptable to

all the robots. This is accomplished via pairwise games which are basically iterated

processes consisting of a sequence of game moves. In case the communication payoff

functions satisfy local spillovers, convexity and strategic substitutes properties, each

pairwise game is ensured of convergence to a pairwise stable network. Simulation

results provide insights on the resulting network topology and the processing time as

well as comparative results with the proximity based approach.
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4. ASSISTANCE NETWORKS

In multi-robot systems operating in unknown environments, robots need to han-

dle tasks they encounter dynamically [67,68]. If these tasks require cooperative actions,

then the robots can complete them only with assistance from other robots [69]. For

example, such assistance may comprise of sharing of information, providing additional

resources or giving physical help [70–72]. While these tasks and their particular re-

quirements will vary depending on the application, in all, the question of which robot

should assist which robot needs to be addressed effectively in order for the tasks to be

successfully completed. This is a challenging task. First of all, as tasks are dynamic,

they occur at unpredictable places or times which implies that the assisting robots

cannot be assigned a priori. Secondly, the problem is exacerbated by the fact that

some robots will be busy when others are seeking assistance. Finally, there will be task

related constraints that need to be taken into account.

In this chapter, the problem of dynamic and cooperative tasks in multi-robot

systems is considered. In particular, all the robots are assumed to be capable of

handling any of the encountered tasks, but only with the assistance of another robot5 .

Robots are assumed to give assistance when required - except when they are actually

engaged in a task themselves. Finally, since robots can be engaged in one task at a

time, a task with timeout cannot be started within a fixed period. As posed, this

is an instance of dynamic multirobot task allocation (MRTA) problem [68, 73]. In

the taxonomy of MRTA problems consisting of three categories (single-task (ST) vs

multitask (MT) robots, single-robot (SR) vs multirobot (MR) tasks and instantaneous

(IA) vs time-extended (TA) assignment), it falls in the category of ST-MR-IA problems.

It is ST since each robot is capable of handling only one task at a time It is MR as each

robot needs assistance from another robot. Finally, it is IA since robots cannot plan

for future tasks as they are completely unknown a priori. In a more recent taxonomy

of MRTA problems, additional dimensions associated with interrelated utilities and

5While only tasks that can be completed with assistance from one robot are considered, this
approach can be extended to multi-robot assistance problems.
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constraints are introduced [68]. In this new taxonomy, the problem falls in the domain

of MRTA problems with cross-schedule dependencies where schedule optimization is

required in order to enable coordination among robots. As discussed in the sequel, most

previous work aim to find an explicit assignment of assisting robots. As this has proven

to be strongly NP-hard, approximate solutions with an emphasis on computational

feasibility and practical applicability need to be developed [68,74].

The contribution of this chapter is to propose a novel approach to this problem.

In particular, the concept of ‘assistance networks’ is introduced. In contrast to finding

an explicit assignment of assisting robots, which is a challenging problem as explained,

the assistance network designates potential helpmates in an implicit manner based on

its topology. Each robot - when faced with a task - can seek an assisting robot among

its immediate neighbors in the network in a decentralized manner. As time evolves

and robots encounter new tasks, the topology of the assistance network needs to be

updated. This is done by a network coordinator in a centralized manner. In order

for the network topology to be acceptable to all the robots, their assistance related

preferences are taken into account. The update process is modeled as a centralized

pairwise game (CPG). With certain restrictions on robots’ preferences, the CPG is

shown to converge to a pairwise stable network [65]. The assistance network is ensured

of having an acceptable topology where robots flexibly get assistance or give assistance

during their operation. Simulations and experimental results demonstrate that the

assistance network enables effective allocation of assisting robots while being easily

implemented with a multi-robot system.

The outline of the Chapter is as follows: First, related work that address the

ST-MR-IA problems is reviewed in Section 4.1. Dynamic and cooperative tasks are

described in Section 4.2. The assistance networks are introduced in Section 4.4 where

the role of the assistance network coordinator with respect to the assistance network is

also explained and the payoff functions are defined. In Section 4.6, extensive simulation

results demonstrate that the robots are capable of completing tasks effectively in a

variety of different scenarios - including a comparative study with proximity-based

assistance. Experimental results with a team of five mobile robots as presented in
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Section 4.7 verify the practicality of assistance networks for dynamic and cooperative

tasks. The Chapter concludes with a general discussion and future directions.

4.1. Related Literature

The ST-MR-IA problem is most commonly viewed as an instance of optimal as-

signment of a set of tasks to the robots based on maximizing the overall performance

while taking their individual performances into consideration [73, 75]. The proposed

approaches differ primarily in the formulation of the constrained optimization problem

and how it is solved [76]. While the definition of optimization problems vary from

finding optimal coalition structures to utility maximization, optimization methods can

be categorized as being centralized or distributed [77]. Centralized approaches are sim-

pler to implement, but become practically infeasible as the number of tasks and robots

increase. On the other hand, while distributed approaches are advantageous with re-

spect to reliability and scalability, the efficiency of the resulting solutions are harder

to ensure. In practice, systems may not conform to a strict centralized/decentralized

dichotomy and may contain both elements [78].

Most commonly, the optimization problem is defined as finding the optimal par-

titioning of the robots into task-specific coalitions - motivated by game-theoretic work

that aims to generate optimal coalition structures [79]. The set partitioning problem

has been shown to be strongly hard where an exponential number of coalition structures

needs to be searched [79]. It is difficult to approximate the problem using techniques

from combinatorial auctions [80]. For robotics applications, the tasks have been put

in a taxonomy based on demands, resources and profit objectives [81]. While solutions

for five distinct classes of the problem are proposed, these solutions may not be ap-

plicable in robotic scenarios where the capabilities on the robots are sharable between

different coalitions [82]. In this perspective, many heuristic algorithms have been de-

veloped [73]. An anytime algorithm is shown to have bounded solution with a minimal

search [83]. Improved solutions are obtained such as a polynomial time dynamic pro-

gramming approach in the case of agents of different types being indistinguishable or

solutions to be within a constant factor of the optimal utility the population of coali-
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tions are restricted [84]. In case of constrained resources, a greedy optimal solution is

proposed via a leader follower coalition method where coalition utility is maximized for

every assigned task [85]. Two natural greedy heuristics are extended via a new greedy

heuristic that considers the expected loss of utility due to the assigned robots and task

as an offset and uses the offset utility for task assignment [74].

Distributed approaches solve the constrained optimization problem in a decentral-

ized manner [86]. In a class of problems known as distributed constraint optimization

problems (DCOPs), each robot or group controls one set of variables and together they

have the joint goal of maximizing a global objective function [44, 87]. Complete algo-

rithms maximize a global objective function, however are not feasible in ST-MR-IA

problems due to the inherent complexity of the problem. In best response algorithms,

each robot or group reacts on the basis of local knowledge so that there is no need for

tree-like communication [88]. However, since each group’s utility is defined as the sum

of the terms of the global objective function, each decision-making has to consider all

the other payoffs as well [44]. In social networks, the robots are distributed over a given

network and only neighboring agents are allowed to work together in a task [89,90]. As

the complexity of the problem remains NP-complete and it is not approximable within

some factor, distributed efficient greedy algorithms require that robots have only local

knowledge about tasks and resources. However, in these work, the network topology

is assumed to be given a priori and fixed. As such, the robots face with the difficult

problem of searching a factorial sized space for an optimal strategy which naturally

has adverse effects on performance [91].

Alternatively, the desired allocation could consider the preferences of all the

robots individually. Here, in contrast to optimizing with respect to a single objective,

a set of objective functions is simultaneously optimized. In general, multiobjective

optimization may lead to different solutions as compared to optimizing with respect

to a single objective [44]. The robots choose these tasks via considering individual

motivations in a fully distributed, behavior-based architecture [92]. In market-based

approaches, the robots submit bids based on their respective expected costs and the

robot with the best bid takes the task [93–95]. The auctions can be conducted either
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in centralized or distributed manner. The centralized auctioneer provides a framework

for considering optimization of a global objective and can be combinatorial [96] or

greedy [97]. However, it has the communication related and computational disadvan-

tages of the fully centralized approaches [77]. Distributed auction approaches are de-

rived from centralized auctions using regional opportunistic centralization [93,98–100].

An approach based on token passing avoids the large communication bandwidth re-

quirement from which market-based approaches suffer [101]. In all, the quality of the

solutions produced needs careful analysis - with the growth of robot team size [67].

Multiobjective decision-making has been studied extensively in game theory [39,

45]. Here, each player is associated with its individual considerations and the goal is to

find a solution that is acceptable to all the players simultaneously. This is in general

different from optimizing with respect to a single global objective function if even all

the robots have the same objectives. It is known that game-theoretic solutions and

Pareto-optimal solutions (namely the solution to a single objective function) may differ

when the individual objective functions are dependent on those of other robots [102].

The objective functions are not sufficient to determine what is an acceptable solution

for each robot - as they will be coupled with each other. In general, it will not be pos-

sible to find a single solution that simultaneously optimizes each objective. Additional

preference information regarding what constitutes an acceptable solution is introduced.

The simplest definitions are pairwise stability and pairwise Nash stability [39]. A prob-

lem similar to ours is modeled as a Markov game [91]. However, due to computational

intractability, the acceptability of the robot schedules – that are explicitly generated

via a sequence of approximating potential games – cannot be guaranteed.

In this chapter, game-theoretic ideas are used from a different perspective. In

particular, the concept of assistance networks is introduced for our particular case of

ST-MR-IA problem. As robots encounter new tasks, there is no explicit assignment of

assisting robots to them. Rather, which robot can help which other robot is loosely

specified via the assistance network - similar to social networks as discussed previously.

A model of network formation needs to specify how the robots establish edges together

with a network equilibrium concept. Here, the model that has been developed for
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centralized network topology as explained in Chapter 3 is adopted.

4.2. Dynamic and Cooperative Tasks

As a robot is moving around in its workspace, it will come across a number

of tasks. All robots are assumed to be capable of handling encountered tasks when

assisted by another robot. There is no a priori information regarding their spatial

locations or when a robot will encounter one. One way to give the robot an ability

to respond to encountered tasks is to give it an internal state where it can store its

knowledge of the tasks. Let hi
k =

[
hi
k,1 h

i
k,2

]
denote the k th task encountered by robot

i. It is associated with two properties - its time of encounter as denoted by hi
k,1 ∈ R

and its status hi
k,2 that has discrete set of values defined as:

hi
k,2 =





1 if task k was completed

1− if task k is being handled

0 if task k is waiting to be handled

−1 if task k could not be completed

When a robot encounters a task, it adds it to the set of tasksHi asHi =
{
hi
1, h

i
2, . . . h

i
ni

}
.

where ni is number of encountered tasks. The value ni is initially zero and increases

over time. The status of a task is initialized as waiting hi
k,2 = 0. It is assumed that

tasks encountered by each robot are particular to it. Each task can be completed only

with assistance from one other robot.

4.3. Task Automaton

The robots handle the encountered tasks in a decentralized manner based on the

current assistance network. The task automaton is associated with four states: ‘idle’,

‘handling’, ‘assisting’ and ‘waiting’ as shown in Figure 4.1. Normally, the robot is in

idle state. If the robot is handling a task or assisting another robot, it is in the handling

or assisting states respectively. If it is waiting for assistance, it is in the waiting state.
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The rules of this process are as follows:

(i) A robot i can either handle one task or assist another one robot at a time.

(ii) When in idle state, it considers a task in Hi and requests assistance from im-

mediate neighbors Ni(g) as designated by the assistance network depending on

availability and proximity.

(iii) In case its assistance request is accepted, the robot goes into handling state and

stays in this state for duration of ∆th.

(iv) A robot accepts an assistance request if it is in the idle state. Once it starts

assisting, it remains in the assisting state for duration of ∆th regardless of any

network update.

(v) A robot needs to handle each task within a maximum period ∆to - after which a

timeout occurs.

(vi) In case a robot cannot get any assistance, it goes into the waiting state and

remains in this state until either it gets assistance or timeout occurs.

From the robots’ perspective, the first rule states that each robot cannot simultaneously

handle a task and assist another robot. If the robots are capable of assisting other

robots while handling their own tasks, this rule may be relaxed accordingly. The

second rule implies that potential helpmates are implicitly specified by their local

neighborhood Ni(g) as designated by assistance network g. The third and fourth rules

constrain the resources of the robot pair engaged in a task for a duration of ∆th. Note

handling times and assistance times are taken to be same - referred to as task time

in the sequel. The fifth rule requires the robots need to start handling tasks within a

certain amount of time. Otherwise, time-outs occur which imply failure to complete

the corresponding tasks. Finally, the last rule implies that a robot cannot handle a task

unless it gets assistance. In case of a timeout, the robot fails to handle the particular

task and it goes into idle state. If the tasks are not homogeneous, the parameters

∆th and ∆to may vary depending on the type of the tasks. However, for the sake of

simplicity, in this work, they are assumed to be the same for all the tasks. The robot

updates its tasks’ states according to this automaton. The robots need to handle as

many tasks as they can. Let it be noted that the robots do not check if a task they
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Figure 4.1. Robot’s task automaton.

have encountered has been previously handled by another robot. As such, a task may

possibly be handled by different robots. This can be avoided via either marking the

handled task or global communication and coordination - which may not be desired

or possible. Furthermore, it may be advantageous to handle tasks multiple times in

applications where additional information regarding tasks over time is preferable.

4.4. Assistance Network

The assistance network enables the robots to choose their helpmates in a decen-

tralized manner - namely the robots seek assistance from neighboring robots in the

assistance network. It is defined as g(t) ∈ G where G = {g′|g′ ⊆ gr} is the set of all

possible graphs on R and gr is the complete graph. The set of edges E(g) ⊆ Q repre-

sents the robot pairs i and j between which a direct cooperation edge is established.

Note that the case when g(t) = gr corresponds to complete cooperation in which all the

robots can assist with each other. The 1-hop neighborhoods Ni(g)
△
= {j ∈ R |ij ∈ E }

correspond to the edges of graph g. The cardinality of Ni(g) is denoted by ηi(g). It

is assumed that the robots are able to get assistance with the robots in Ni(g) using
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point-to-point communication.

The assistance network topology can vary from being fully connected (ηi(g) =

r−1, ∀i ∈ R) to completely disconnected (ηi(g) = 0). In the former case, the helpmate

selection process becomes critical as all robots can potentially request assistance from

all other robots and finding a robot that is free to help without time-outs faces serious

scalability challenges with the growth of robot team size [2,67]. In the latter case, the

robots will have no potential helpmates. Hence, both cases are unacceptable.

4.5. Assistance Network Coordinator

A network coordinator is responsible for determining the assistance network

topology. It finds a topology that is acceptable to all the robots via centralized pairwise

games as presented in Section 3.3 of Chapter 3. Again, acceptability is defined based

on payoff functions encoding the robots’ preferences individually as vi : G × F → R.

While distance is one criterion in determining the admissible robots, it is not the sole

criterion – as in case of nearby robots being occupied themselves, time-outs are likely to

occur. Furthermore, if there are many robots that are close to each other, the number

of potential assisting robots may not be large. Hence, there are other considerations in

designating the assisting robots. For example, robots that likely to assist fewer robots

will be preferred. In this perspective, each robot’s preferences are related with the gain

and cost associated to having a particular neighborhood Ni(g). Correspondingly, the

payoff functions vi : G × F → R are comprised of two terms encoding gain and cost

respectively as in Equation 3.3.

The gain πi(g, b) is related with when the robot expects to do better in regards to

the assistance network. Common sense dictates that it should be able to get assistance

whenever it requests to do so. Hence, waiting time for help should be minimal. For

this, with no other considerations, each robot would prefer to have edges with as many

robots as possible as this certainly increases its chances of getting a help. However,

having as many neighbors as possible does not ensure immediate help as response time

from each will deteriorate as the number of their respective neighbors increases. Thus,
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at the same time, these neighbors should be ready to assist themselves which implies

that they should be linked with as few robots as possible. These considerations are

encoded by a gain function defined as:

Ψ1,i(ηi(g)) = ηi(g)

Ψ2,ij(ηj(g), b) =
1

ηj(g)

ρ0
δij

(4.1)

where for each pair ij of robots, δij =‖ bi − bj ‖ denotes the robots’ pairwise distance.

The term Ψ1,i increases in the number of its collaborative edges and Ψ2,ij decreases in

the number of its neighbors’ edges. The term Ψ2,ij decreases in the average distance

between its neighbors. Together, they imply that each robot prefers having as many

close neighbors as possible that in turn have few neighbors themselves - as this would

increase the likelihood of getting assistance in shorter time.

The cost term is related with when the robot expects to do worse in regards to

the assistance network. As the number of its neighbors increases, its decision-making

requires more of its resources and hence slows it down. This consideration is encoded

by a cost function as:

κi(g, b) = cηi(g) (4.2)

where c is cost parameter. It is observed that the payoff functions have local spillovers,

convexity and strategic substitutes properties [63, 64]. As such, the stability and con-

vergence results presented in Section 3.3 of Chapter 3 prevail.

4.6. Simulation Results

4.6.1. CPG-Based Assistance Networks

First task handling with CPG-based assistance networks is considered. For

this purpose, extensive simulations have been conducted with 50 robots placed in a
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Figure 4.2. Robot missions in a 12.5 km2 workspace. (a) Low packed mission; (b)

High packed mission.

workspace of radius 2 km. The robots are in a patrolling mission. As robots encounter

tasks, they need to take cooperative action. In the simulations, two levels of robots’

packedness (low or high) are considered as shown in Figure 4.2. In missions with

low packedness, the robots are relatively distant from each other when they encounter

tasks. In contrast, with high packedness, the robots are located much closer to each

other. Depending on the level of packedness, the mission duration tf varies from 140

minutes to 196 minutes. The assistance networks are formed with two levels of cost

parameter c ∈ {2, 4}. Initially, the robots have no potential assisting robots - namely

E(g(0)) = ∅. Note that the cardinality of A – namely |A| = 2(
r
2) – is extremely large

even for robot team size r = 50. The number of game moves gives the number of dif-

ferent states visited in A until a pairwise stable network is reached. The convergence

times of pairwise games have been investigated [65]. For the worst case scenarios of

50 robots, an average of 3000-4500 game moves are required before reaching pairwise

stability. However if the changes in the robots’ states are gradual with respect to net-

work update period Tg, then consecutive network topologies will not differ much. In

our case, the network update period Tg = 2.5 minutes. Hence, the number of game

moves is expected to be considerably lower. In our simulations, the pairwise stability
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is also checked every 500 game moves. Timewise, this corresponds to 0.05-0.2 seconds

for 50 robots. Sample pairwise stable networks are as shown in Figure 4.3. Increasing

c divides robots into distinct components - which implies that the parameter c controls

the assistance network density. For each level of packedness and c value, 20 different

missions are conducted where robots all start at random initial locations. Hence, 80

different missions are generated.
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−1500
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(b)

Figure 4.3. Sample pairwise stable assistance networks in missions with low

packedness for varying cost parameter c. (a) c = 2, (b) c = 4.

Next, tasks are considered. As the focus is on the effective allocation of assisting

robots so that these tasks can be completed, tasks encountered by each robot are

generated as a Poisson process with parameter λ ∈ {2, 10}. As the average number

of tasks in a time interval δt is λδt, the number of tasks will increase with increased

λ value – hence making the mission more difficult and challenging. With λ = 2, the

total number of tasks vary between 250 and 350 which corresponds to an average of 5-6

tasks per robot. The total number of tasks goes up to 1200 - 1650 with λ = 10. In this

case, each robot encounters on the average 29 - 33 tasks. Sample spatial distributions

of tasks encountered in a mission for different λ values are as shown in Figure 4.4 where

there are 257 and 1272 tasks respectively. For each λ value, 10 different task scenarios

are generated. The task duration varies from short to long as ∆th ∈ {30, 300} seconds.
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Similarly time-out parameter is varied as ∆to ∈ {60, 180} seconds. Hence, there are 80

different task scenarios.
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Figure 4.4. Sample missions with low packedness. Robots encounter 257 tasks with

λ = 2 while this number goes up to 1272 tasks with λ = 10. Note that these tasks are

not known a priori and can be completed only with assistance of another robot. With

c = 2, ∆th = 300 and ∆to = 60, the completed tasks are as shown by green plus signs

while timed out tasks are shown by red minus signs.

Table 4.1. Simulation results for varying cost c in CPG-based assistance.

λ

c 2 4

∆th sec 30 300 30 300

∆to sec 60 180 60 180 60 180 60 180

2

M̄1% 10.8 4.5

M̄2% 0.2 0.1 12.9 6.9 1.5 1.3 16.1 9.4

M̄3% 7.2 7.2 8.2 8.4 7.1 7.2 7.8 7.9

10

M̄1% 10.8 4.5

M̄2% 0.2 0.1 44.5 36.1 4.1 3.6 53.6 47.3

M̄3% 7.8 7.8 10.4 11.2 7.2 7.3 8.0 8.2



67

Table 4.2. Simulation results for varying packedness in CPG-based assistance.

λ

Packedness Low High

∆th sec 30 300 30 300

∆to sec 60 180 60 180 60 180 60 180

2

M̄1% 5.5 9.5

M̄2% 1.6 1.3 16.6 9.7 0.9 0.8 14.2 8.1

M̄3% 9.2 9.3 10.1 10.3 5.7 5.8 6.3 6.5

10

M̄1% 5.5 9.5

M̄2% 1.7 1.4 50.5 43.6 1.0 0.8 46.0 37.9

M̄3% 9.8 9.9 11.7 12.1 6.1 6.1 7.6 8.0

Then, the multi-robot system is simulated with 80 different missions and 80

different task scenarios - leading to 6400 mission-task scenarios. A sample mission-task

scenario with low packedness is as shown in Figure 4.4. where the assistance network is

formed with cost parameter c = 2. The task automaton is associated with parameters

∆th = 5 minutes and ∆to = 60 seconds. Tasks that are successfully completed are

shown in green while those that were timed-out are in red. When the number of tasks

are relatively fewer (λ = 2), 84% of the 257 tasks are completed. As the number of

tasks is increased (λ = 10), the percentage of the completed tasks goes down to 54%

with 687 out of the 1272 tasks being completed.

Statistical results are as shown in Table 4.1 and Table 4.2 - where the variations

are with respect to the cost parameter c or packedness. The results are analyzed with

respect to three performance measures:

• M1 - Mission network density: It is defined as:

M1 = 100
1

Ngr(r − 1)

Ng∑

l=1

∑

i∈R

ηi(g(lTg)) (4.3)
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where Ng =
tf
Tg

is the number of times the assistance network is updated in a

mission with completion time tf . Of course, tf will vary from mission to mission

which implies that Ng will vary accordingly. If M1 = 100, the network is maximal

with the number of edges r(r−1)
2

. In this case, each robot has to find a particular

assisting robot from a larger set - which implies higher computational and com-

munication requirements. With M1 < 100, the number of edges goes down to M1

percent of r(r−1)
2

. Hence, it is preferable to have M1 as small as possible.

• M2 - Percentage of timed-out tasks: The goal is to have a low M2. Depending

on the occurrence of tasks, task duration ∆th and time-out duration ∆to, it may

not be possible to have M2 = 0. In this case, completing only a percentage of

tasks is unavoidable.

• M3 - Normalized pairwise distance: The average distance between all the caller-

assisting robot pairs during the course of a mission normalized by the workspace

diameter 2ρo. With higher value, the computational requirements associated with

the assisting robot selection and assistance are both expected to increase. Thus,

M3 should be as low as possible.

In the simulations, average values of these measures - denoted as M̄1, M̄2 and M̄3

respectively - are computed. If there are too many tasks, it may not be possible to

have M̄2 = 0. An optimistic upper bound on the maximum number of tasks that can

be completed can be computed - assuming a topology with disconnected robot pairs.

Thus, each robot has only one neighbor. Furthermore, suppose that the tasks occur

in an alternating manner for each robot which implies that each robot can complete

one task every 2∆th periods. Thus, in a r robot team with mission of duration tf , the

maximal number of tasks that can be completed without time-outs will be bounded

above by NH = r
tf
∆th

. In our case, these roughly correspond to 16500 tasks for ∆th = 30

and 1650 tasks for ∆th = 300. Of course, as this is an optimistic upper bound, the

number of tasks that can be completed is expected to be comparatively smaller.

The network density M̄1 is the highest with cost c = 2 - which implies that

the robots have the opportunity to get assistance from more robots as compared to a

higher cost value. The percentage of timed-out tasks M̄2 varies between 0.1% to 53%



69

depending on ∆th, ∆to and λ. With low ∆th and λ and high ∆to values, the robots

will be able to complete nearly all the tasks as expected. In contrast, with high ∆th

and λ and low ∆to values, the robots are likely to fail completing many tasks as indeed

it is the case here. It is observed that with ∆th = 30 seconds, the robots are able to

complete tasks effectively even if the value of λ is increased from 2 to 10 while this is

not the case for ∆th = 300 seconds. Thus, as ∆th is increased, the robots can handle

less tasks. When the parameter ∆to is increased, the robots may have much time to

handle the waiting tasks. Hence, the number of the timed-out tasks will decrease.

Finally, normalized pairwise distance M̄3 varies between 7.1% and 11.2%. For example

when M̄1 goes from 4.5% to 10.8%, M̄3 goes from 8.2% to 11.2% - meaning that the

distance between the caller and assisting robots will increase from 10 meters to 60

meters. Thus, there is a trade-off between having a large number of assisting robots

and low computational and communication requirements. For example, the selection of

particular assisting robot can be ignored since even with M̄1 = 10%, each robot selects

out of 3-4 robots - a relatively small number. However, with near full-connectivity, the

robots will have to select a particular robot out of 40-49 robots, such an assumption

will no longer hold and percentage of time-outs will increase accordingly.

Table 4.3. The effects of increasing various parameters.

Measure

Parameter M̄1 M̄2 M̄3

∆th ↑ − ↑ ↑

∆to ↑ − ↓ −

c ↑ ↓ ↑ ↓

λ ↑ − ↑ ↑

Packedness ↑ ↑ ↓ ↓

As seen in Table 4.2, the performance is also dependent on robots’ packedness.

The more packed robots are, the higher will be the density of the assistance network

as measured by M̄1. Since the density and the level of packedness both increase, the

robots can handle more tasks with lower pairwise distances. The percentage of timed-
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out tasks M̄2 varies between 0.8% to 50%, which is similar to the result in Table 4.1.

The normalized pairwise distance M̄2 varies between 5.7% and 12.1%. The changes

of ∆th, ∆to and λ values have the same effects on the task completion performance

as mentioned above. When these results are all put together, the effects of increasing

various parameters can be summarized in Table 4.3. As expected, network density

increases with decreased cost parameter and increased robot packedness. Timed-out

tasks decrease as all parameters decrease with the exception of ∆to. Finally, normalized

pairwise distance decreases as cost parameter and packedness both increase.

Table 4.4. Simulation results for varying proximity ρh in proximity-based assistance.

λ

∆th sec 30 300 30 300

∆to sec 60 180 60 180 60 180 60 180

ρh meters 248 143

2

M̄1% 10.4 4.7

M̄2% 13.8 12.3 27.3 20.4 38.1 35.9 49.5 43.5

M̄3% 5.7 5.8 6.2 6.3 4.2 4.2 4.3 4.4

10

M̄1% 10.4 4.7

M̄2% 14.0 12.7 55.5 48.5 38.5 36.6 70.6 66.2

M̄3% 6.0 6.1 7.4 8.0 4.3 4.3 4.7 4.9

4.6.2. Comparative Study: CPG-Based vs Proximity-Based Assistance

Next, the performance of the system with CPG-based assistance networks is

compared with proximity-based assistance where the network coordinator updates the

topology based purely on proximity considerations. Namely all robots within a range

ρh are designated as potential assisting robots. Of course, the selection of ρh is critical

to performance. If it is too small, then the robots may end up not having any robots

that can assist them. On the other hand, if its value is large, this will possibly lead to

a completely connected assistant network which has its own problems as discussed in

Section 4.4. For fair comparison, its value is selected so that the compared networks

have similar network density. For example, for c = 2, average density in CPG-based
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Table 4.5. Simulation results for varying packedness in proximity-based assistance.

λ

Packedness Low High

∆th sec 30 300 30 300

∆to sec 60 180 60 180 60 180 60 180

ρh meters 311 161

2

M̄1% 5.5 9.5

M̄2% 9.5 8.3 24.7 17.5 22.6 21.0 34.1 27.9

M̄3 8.1 8.2 8.7 8.9 3.5 3.6 3.8 4.0

10

M̄1% 5.5 9.5

M̄2% 9.9 8.7 55.9 49.4 23.0 21.7 58.7 51.9

M̄3% 8.5 8.6 9.9 10.4 3.7 3.8 4.8 5.3

assistance networks is 10.8. In order to have a similar level of density, ρh = 248. With

this in mind, it is varied as ρh ∈ {248, 143} meters for various cost scenarios and

ρh ∈ {311, 161} for various packedness scenarios.

The results are as seen in Tables 4.4-4.5 respectively. It is observed that in CPG-

based assistance networks, the percentage of timed-out tasks is considerably lower

as compared to proximity-based assistance. In turn, the average pairwise distance

M̄3 is slightly lower – as proximity-based assistance is programmed only with this in

mind whereas the topology of CPG-based assistance networks takes both the number

of neighbors and the distance into consideration. Robots may be willing to assist

even if they are distant from each other. Hence, pairwise distance in the CPG-based

assistance turns out to be higher than that of the proximity-based. For ∆th = 30 sec,

the percentage of timed-out tasks in the CPG-base is about 1%, which does not depend

on the value of λ. On the other hand, that of the proximity-based varies from 9% to

30%.



72

Figure 4.5. The experimental setup of a patrolling mission. It is assumed that as

robots start moving around, they encounter dynamic and cooperative tasks which

they need to handle.

4.7. Experiments

4.7.1. Experimental Platform

This section contains a report of experimental evaluation of the proposed ap-

proach with a multirobot system composed of five Turtlebot robots that are operating

in a workspace of 6m × 6m as shown in Figure 4.5. All the robots are equipped with

on-board processing, gyro, and Hokuyo laser range scanner with 4m field of depth

and encoders. They move with maximum speed around 0.1 meters/second in the

workspace. The robots have been programmed using Robot Operating System (ROS).

The map of workspace is built using gmapping package in ROS with one of the robots

prior to the experiment. This map is then shared by all the robots. Localization is

achieved via the Adaptive Monte Carlo Localization package that is available in ROS.

The control software has a special novel architecture that extends the sense-act loop

of control architectures to sense-communicate-act paradigm. [103]. For the interested

reader, the new control architecture is presented in summary in Appendix E. Two new

modules are introduced: communication and network update. The communication

module enables the robots to communicate with potential assisting robots as deemed

by the current assistance network. The network update module has different function-
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alities depending on the running robot. If a robot has the additional role of being

the network coordinator, periodically it receives each robot’s information, updates the

network topology and informs all the robots accordingly. Otherwise, each robot simply

relays its position information to the coordinator and waits for the updated network

topology. For patrolling, a modified version of feedback-based navigation is used [104].

For this, MPFR library is used to operate on the big numbers while implementing

the navigation controller [105]. All the robots also have a task detection module that

is responsible for detecting encountered tasks. This module should be implemented

depending on the application and the type of tasks that may be encountered. For

example, in case of object moving tasks, the robot should be able to detect this task

accordingly. Finally, they all have a task handling module as described in Section 4.2.

the corresponding algorithm for this module is given in detail in Appendix B.

4.7.2. Experimental Results

Similar to the simulations, as they are moving around in this area, they dynami-

cally encounter tasks that require cooperation. Robot 3 (with red cone) is assigned to

be the network coordinator. It evolves the assistance network with the cost parameter

c = 1.5. The network update period Tg = 15 seconds.

Again, as our focus is on overall system performance, as the robots are moving

around, the tasks they encounter are generated synthetically by a Poisson process with

parameter λ = {3, 6}. These values result on average 7 tasks (λ = 3) and 23 tasks

(λ = 6) per minute during each mission. The task duration is ∆th = 10 seconds and

maximum allowable waiting time is ∆to = 20 seconds. The robots participate in 5

mission-task scenarios for each λ. Four sampled instances from one of these mission-

task scenarios is as shown in Figure 4.6. As robots start out at time 0+, the assistance

network is formed. The robots have not encountered any tasks yet. About one third of

their mission, the assistance network has evolved accordingly with 3 tasks completed.

The robots are engaged in 2 tasks while 6 new tasks are waiting to be handled. It

should be noted that as the workspace has an area of 36 m2, nearby tasks are seen as

one in the figures. At time 2tf/3, two of previously waiting tasks are now completed.
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(a)

(b)

Figure 4.6. A sample experiment - a 5-robot mission with λ = 6. (a) Assistance

network evolution. The circles indicate robots while the assistance network g is shown

by the dotted lines; (b) Encountered tasks and their statuses. Each completed task is

shown by a green plus while each timed out task is shown by red minus. Each task

being handled is indicated by blue star while red small circles indicate waiting tasks.
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Altogether 10 tasks have been completed. 5 new tasks are waiting while 2 tasks are

being handled. Finally at the end of the mission, 15 out of 23 encountered tasks have

been completed.

Table 4.6. Average percentage of timed-out tasks.

Robots

λ R1 R2 R3 R4 R5

3 0 0 0 0 0

6 18.5 35.8 16.7 49 47.5

The individual timed-out task percentages for λ = 6 are as presented in Table 4.6.

These vary between 17% to 49% - which imply about 15% variation in performance with

respect to average timed-out percentage of 29.9%. Statistical performance measures

are shown in Table 4.7. The network density turns out to be 43%. Although this

value seems to be high compared to the simulations with 50 robots, it corresponds to

average of 1.7 potential assisting robots in the 5-robot experiment. This is in contrast

to average of 2.3 robots for a density of 4.8% of density in 50-robot simulations. With

λ = 3, all the tasks are completed without any time-outs. Interestingly, when the

number of tasks increases with increased λ = 6, about a third of the tasks cannot be

completed. This suggests that the cost parameter can be used to control the density

of the assistance network.

Table 4.7. Experimental statistics.

@
@
@
@@

λ
3 6

M̄1% 43.4 43.2

M̄2% 0 29.9
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4.8. Conclusion

This chapter considers the problem of determining the assisting robots in tasks

requiring the cooperation of robot pairs. It presents a novel approach based on assis-

tance networks that designates potential helpmates in an implicit manner based on its

topology. Each robot – when in need - seeks to find an assisting robot among its im-

mediate neighbors in the assistance network in a decentralized manner. As the robots

are moving around, the assistance network topology needs to be continually updated.

This update is done by a coordinator in a centralized manner - following a methodology

similar to that of centralized network topologies. Extensive simulation results indicate

that tasks can be handled effectively depending on occurrence of tasks and their associ-

ated constraints. As expected, as the number of encountered tasks increases, the robots

may fail to complete all the tasks. While this may be offset by increasing the assistance

network density via decreasing the cost parameter in the payoff functions, there is a

trade-off between increased number of potential assisting robots and computational

and communication requirements as measured by the pairwise distance between each

robot and its assisting robots. Indeed, with decreased cost parameter values, while

time-out percentages decrease, pairwise distance between robots’ and their potential

assisting robots increase. The practical applicability of the proposed approach is tested

in a series of experiments with a team of five robots.
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5. COALITION FORMATION GAMES FOR DYNAMIC

MULTIROBOT TASKS

Multi-robot systems operating in unknown environments need to handle tasks

they encounter dynamically [68, 73]. Some of these tasks may require a multitude of

different resources in order to be successfully completed. If the robots vary in their

sensory, actuation and computational capabilities, they may not individually possess

all of the required resources to accomplish a task. In case of insufficient resources,

a new subgroup of robots needs to be formed - considering the whole robot team

and having the required resources. While the type of tasks and the resources they

require will vary depending on the application, in all, the question of assembling the

teams of robots – commonly referred to as coalitions - capable of doing the tasks to be

addressed effectively. This is a challenging task. As tasks are dynamic, they occur at

unpredictable places or times which implies that the robot teams cannot be assigned

a priori. If the coalitions are formed with resources far surpassing the requirements,

then it may not be possible to accomplish other encountered tasks. Furthermore,

robots’ locations will need to be considered since choosing far away robots may lead

to unacceptable task start periods.

In this chapter, we consider the problem of coalition formation for dynamic tasks

with particular resource requirements. In a taxonomy of MRTA problems based on

three orthogonal dimensions - namely single-task (ST) vs multi-task robots (MT) de-

pending on whether each robot is capable of executing single or multiple tasks at the

same time; single-robot tasks (SR) vs. multi-robot tasks (MR) depending on whether

a task can be completed by a single robot or several robots (a coalition) and instanta-

neous assignment (IA) vs. time-extended assignment (TE) depending of whether only

current tasks or future tasks are considered [73], this problem is an instance of the

ST-MR-IA problems. As it is known to be strongly NP-hard, approximate solutions

with an emphasis on computational feasibility and practical applicability need to be

developed [68].
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This chapter proposes a coalition formation games (CFG) based approach to

forming coalitions by considering both the task requirements and the resources and

capabilities of the robots together. We assume that each robot can participate in one

task only and thus can be a member of only one coalition. We model the coalition

formation problem as a coalitional game and propose a centralized coalition forma-

tion (CCF) algorithm. Using CCF, a task coordinator autonomously forms coalitions

for each pending task a coalition while maximizing the coalitions’ values in terms of

resource satisfaction while accounting for moving to task site. It is shown that inde-

pendent disjoint coalitions are capable of performing these tasks.

The outline of this chapter is as follows: First, related work is reviewed in Sec-

tion 5.1. Next, coalitions and tasks are formulated in Section 5.2. The task coordinator

is explained in Section 5.4 followed by a discussion of coalitional stability in Section 5.5.

Extensive simulations provide insight into task performance in a multi-robot system

consisting of 50 robots in Section 5.6.

5.1. Related Literature

We review coalitions in multi-agent systems, game theory and robotics.

5.1.1. Multi-Agent Systems

Coalition formation is a key topic in multiagent systems where the goal is to find

a coalition structure that maximizes the sum of the values of the coalitions. It is an

instance of a set partition problem which is known to be a NP-complete [106]. As

the exorbitant number of coalition structures does not allow exhaustive search for the

optimal one, the focus has been on finding a coalition structure via a partial search

with guaranteed proximity to the optimum. It has been shown that the number of

nodes that need to be searched for establishing a bound is required to be greater than

a calculated threshold [79] where an algorithm that establishes a tight bound within

this minimal amount of search is also presented. In [107], a greedy heuristic is used to

yield a coalition structure that is provably within a bound the of best - limiting the
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coalition sizes. This approach is general as it can be applied in environments that are

not necessarily super-additive and agents are assigned tasks in a distributed manner .

5.1.2. Game Theory

As the task allocation problem among the agents is mapped into the problem

of the formation of coalitions, coalition formation games (CFG) provides a suitable

analytical tool for studying the formation of coalitions among a number of players [108,

109]. CFG is branch of game theory investigating algorithms to study how coalitions

form in cases where superaddivity - namely where any two disjoint coalitions, when

acting together, can get at least as much as they can when acting separately - does not

hold. Hence, grand coalition is no longer optimal [110]. Thus, in coalition formation,

the focus is on split and merge rules that transform partitions of players with a concept

of stable partitions [111]. Coalition stability is related to the type of membership

changes allowed. In hedonistic games, only one individual agent is considered to change

its coalition at a time [112]. With this, the notions of stability vary from contractual

individual stability to individual stability to Nash stability. In more general settings,

groups of agents are allowed to change their coalitions simultaneously. In this case,

the definition of stability is based on the set of allowable coalitional changes. In all,

a comparison operator that orders the sets of coalitions is defined. This comparison

operator is either based on the the coalition value that quantifies the worth of a coalition

or the individual players’ payoff [113].

5.1.3. Robotics

In robotics applications, the problem is generally viewed as an instance of optimal

assignment of a set of tasks to the robots with respect to an overall performance

objective while taking their individual constraints into consideration. The objectives

encode demands, resources and gains if possible [81]. The decision-making varies from

being centralized to being distributed [76, 77]. Centralized approaches are simpler

to implement, but become practically infeasible as the number of tasks and robots

increase. On the other hand, while distributed approaches are advantageous with
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respect to reliability and scalability, the efficiency of the resulting solutions are harder

to ensure. In practice, systems may not conform to a strict centralized/decentralized

dichotomy and may contain both elements [78].

Most applications assume that all the tasks are known initially. In these prob-

lems, the tasks are allocated iteratively. In this perspective, many heuristic algorithms

have been developed [73]. For example, in [114], multi-agent task allocation algo-

rithm [107] is modified in order to accommodate the fact that resources of a coalition

are not collectively available and cannot be redistributed. An anytime algorithm is

shown to have bounded solution with a minimal search [83]. Improved solutions are

obtained such a polynomial time dynamic programming approach in the case of agents

of different types being indistinguishable or solutions to be within a constant factor of

the optimal utility the population of coalitions are restricted [84]. Two natural greedy

heuristics are extended via a new greedy heuristic that considers the expected loss of

utility due to the assigned robots and task as an offset and uses the offset utility for

task assignment [74].

Distributed approaches solve the constrained optimization problem in a decentral-

ized manner [86]. For example, in a class of problems known as distributed constraint

optimization problems (DCOPs), each robot or group controls one set of variables and

together they have the joint goal of maximizing a global objective function [44,87]. For

example, distributed efficient greedy algorithms require robots have only local knowl-

edge about tasks and resources. In best response algorithms, each robot or group

reacts on the basis of local knowledge so that there is no need for tree-like communica-

tion [88]. In social networks, the robots are distributed over a given network and only

neighboring agents are allowed to work together in a task [89, 90]. However, in these

works, the network topology is assumed to be given a priori and fixed. As such, the

robots face with the difficult problem of searching a factorial sized space for an optimal

strategy which naturally has adverse effects on performance [91].

Alternatively, in multi-objective approaches, a set of objective functions is si-

multaneously optimized. In general, multiobjective optimization may lead to different
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solutions as compared to optimizing with respect to a single objective [44]. One of the

most popular approaches that falls in this category is the market based strategy [95].

Market based task allocation combines the efficiency of a centralized approach (the

auctioneer decides with overview of the situation) with advantages of distributed ap-

proaches (much of the calculation is done by the individual robots preparing their

bids) [92]. An auctioneer announces tasks, and robots make bids, indicating their cost

or utility to deal with the tasks and assigns tasks. The auctions can be conducted either

in centralized or distributed manner. The centralized auctioneer provides a framework

for considering optimization of a global objective and can be combinatorial [96] or

greedy [97]. In case of constrained resources, a greedy optimal solution is proposed

via a leader follower coalition method where coalition utility is maximized for every

assigned task [85]. The auction process may be split into task and robot auctions

as is done in the Double Round Auction approach [115]. With increased number of

robots, market based systems are not always the most appropriate approach. This is

because they use the auctioneer as a central decision maker, use an explicit assignment

of individuals to jobs, and need some form of global or at least long distance communi-

cation. All of these elements reduce the scalability and robustness of the system, and

conflict with the distributed and purely local way of working of many systems [67,116].

Distributed auction approaches are derived from centralized auctions using regional

opportunistic centralization [93, 98–100]. However, the locality of decisions may block

idle, but remote robots coming to assistance.

A variety of different approaches have also been proposed. An approach based

on token passing avoids the large communication bandwidth requirement from which

market-based approaches suffer [101]. Two distributed and efficient approaches that

rely on simple interaction through light signals or more advanced gossip-based com-

munication scheme to announce task requirements among the robots [116]. However,

these are applicable only in very simple task scenarios. The number of robots is tuned

in order to improve the group efficiency using a biology inspired method [117] or energy

optimization [118].

Finally, let it be noted tasks may be dynamically encountered. To our knowledge,
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ST-MR-IA problems with dynamic tasks have been relatively less considered. The

iterated type algorithms need to modified in order to accommodate dynamic multi-

robot tasks.

5.2. Coalitions & Tasks

A multirobot system consists of a set of R = {1, . . . , r} robots. We assume that

each robot i ∈ R has radius ρi ∈ R and is uniquely identifiable. It is associated with a

time-varying state bi ∈ R
2. The robots are assumed to be heterogeneous which imply

that they vary in their resources. Assuming there are Nr different types of resources,

each robot i is also associated with a resource vector ri = [ri(1), . . . , ri(Nr)]
T with

ri(j) ≥ 0, j = 1, . . . , Nr where ri(j) ∈ R≥0 denotes the amount of j-th resource that

robot i has. If robot i does not have any of resource j, then ri(j) = 0.

5.2.1. Coalitions & Resources

A coalition Cc is a non-empty subset of R. The set R is known as the grand coali-

tion while a coalition with just one robot is referred to as singleton coalition. A collec-

tion in R is any family of C = {C1, . . . , Cs} of mutually disjoint coalitions. If ∪s
c=1Cc =

R where s is the number of coalitions, then C is called a partition [111]. If partitions

evolve over time, then they become time varying as C(t) =
{
C1(t), . . . , Cs(t)(t)

}
with

the number of coalitions s(t) becoming time-varying as well. Hence coalitions are not

static, but rather changing over time.

Each coalition Cc is associated with a set of resources with possible types of

the resources known. The resource vector is denoted Rc = [Rc(1), . . . , Rc(Nr)]
T with

Rc(j) ≥ 0, j = 1, . . . , Nr. It is assumed that resources are additive - namely

Rc(j) =
∑

k∈Cc

rk(j)
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Furthermore, each coalition has a leader (head). The leader coordinates the

coalition. The leader may change over time since the coalitions may evolve over time.

The rules for selecting leader are as follows:

• The leader does not change unless it leaves the coalition.

• If the leader leaves the coalition or the coalition does not have a leader, the robot

with the smallest robot ID value becomes the coalition leader.

5.2.2. Tasks & Resources

It is assumed that the workspace is bounded by radius ρ0. As a robot or a

coalition of robots is moving around this workspace, it will come across a number of

tasks. There is no a priori information regarding their spatial locations or when they

are likely to encounter one. Each task T is defined by the following:

• t1 - Robot ID of the robot that has encountered the task.

• t2 - Time of encounter.

• t3 - Location of the task

• t4 - Vector of the required resources defined as t4 = [τ1, ..., τNr ]. If resource l is

not required for the task t, then τl = 0.

• t5 - Maximum allowable waiting period for handling the task. Failure to do so

results in task time-out.

• t6 - Coalition leader ID in the coalition that is handling this task.

• t7 - Time when the task starts being handled
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• t8 - Status of the task defined as:

t8 =





0− if task is waiting in the coalition

0+ if task is waiting in the coordinator

1+ if task is being handled

1− if a coalition is assigned, but task has not started yet

1 if task was completed

−1 if task could not be completed

When a task is initiated, t8 = 0− - which indicates the task has been just encountered.

When resources are found to be insufficient, t8 = 0+. The case t8 = 1− indicates that

a coalition has been assigned, but all the coalition members have not reached to the

task site.
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Figure 5.1. Task automaton of a coalition.

5.3. Task Automaton

Every time a coalition encounters a task, the leader activates the task automaton.

The task automaton is associated with four states: ‘idle’, ‘handling’, ‘succoring’ and
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‘waiting’ as shown in Figure 5.1. Normally, the coalition is in idle state. When a

coalition encounters a task, it creates an instance of task T . It then checks for the

following:

Rule 1: If the coalition is idle and has enough resources for this task - namely ∀τj, j =

1, . . . , Nr Rc(j) ≥ τj it goes into the handling state.

In the handling stage, before starting with the task, the coalition checks for

excessive resources and attempts to be as lean as possible - namely

Rule 2: If the coalition has surplus of resources, ∀τj, j = 1, . . . , Nr Rc(j) − τj > 0

then split as much as possible.

In case resources are excessive, then without contacting the coordinator, the

leader splits its coalition so that some robots may be free to participate in other coali-

tions. If the leader is taken out, the coalition then chooses the next leader. In all cases,

it then starts handling the task.

If the coalition does not have enough resources, then it reports this task to the

task coordinator and switches to waiting state - namely:

Rule 3: If the coalition is idle, but does not have enough resources, then it then reports

the task to the task coordinator and waits for a response.

The coalition remains at the location where it encounters the task - waiting for

a response from the task coordinator. If the task coordinator does not convey an

assignment within a certain time, the coalition goes into idle state again.

If the task coordinator conveys a particular task, member robots move to the

task site. During this movement, the coalition will be in succoring state. Once all the

robots reach the task location, the coalition goes into handling state. At the end of

task completion, the task information is transmitted to the task coordinator.
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Finally, the coalition may encounter new tasks while it is not in the idle state. In

this case,

Rule 4: If the coalition is not idle, the coalition leader informs the coordinator of this

task.

5.4. Task Coordinator

The task coordinator is responsible for forming the robot coalitions capable of

performing each reported task 6 . Let T = [T 1, . . . , T nt ] be the set of reported tasks

which are waiting (either in the coalition or in the coordinator) where nt is their total

number. As tasks get completed or timed-out, they are removed from this list. As

tasks are dynamic, they occur at unpredictable places or times which implies that nt

is changing over time.

The task coordinator is associated with a time-varying state C(t) that designates

the current set of coalitions C(t) =
{
C1(t), . . . , Cs(t)(t)

}
where ∪s(t)

c=1Cc ⊆ R. The set

C(t) is updated periodically and remains the same between updates. In each update,

the task coordinator finds a new map αt : T → C(t) ∪ ∅. If α(T ) = ∅, this means that

a coalition with sufficient resources cannot be formed. The map αt is defined based on

coalition values via coalition formation games.

5.4.1. Coalition Value

The coalition value describes the overall utility each coalition Cc ∈ C(t) receives

associated with task T . As such it is comprised of three terms. The first term measures

whether the coalition has sufficient resources to complete the task as measured by
∑Nr

j=1 γ(τj −Rc(j)) where

γ(x) =





0 x <= 0

x2 x > 0
(5.1)

6This may be one of the robots with the additional task of being a coordinator.
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Secondly, robots that utilize that resources to greater extent are preferred. This is

measured by the term
∑Nr

j=1

(
1− Rc(j)

τj

)2

. Finally, the proximities of coalition members

to the task site are also taken into consideration - as nearby free robots will be preferred.

This is measured by
∑

l∈Cc

δi,T
2ρo

All these considerations are taken into account:

v(Cc, T ) =
1

1 + β(Cc, T )
(5.2)

where

β(Cc, T ) = w1

Nr∑

j=1

γ(τj −Rc(j)) + w2

Nr∑

j=1

(
1−

Rc(j)

τj

)2

+ w3

∑

l∈Cc

δi
2ρo

with the value δi is the distance between robot i and the location of task T . The

parameters w1, w2 and w3 are relative weighting parameters of resource satisfaction,

resource excessiveness and site proximity.

5.4.2. Comparing Partitions

In this case, the comparison of different partitions is based on comparing coali-

tions using their values.

Definition 5.1. A comparison relation ⊲ is defined for comparing two collections A

and B that are partitions of the same set R. If A⊲B, then the partition A is preferred

to partition B.

Note that each comparison relation is used only to compare partitions of the same

set of players. So partitions of different sets of players are incomparable.

Various criteria can be used as comparison relation between partitions [111]. An

adequate individual value order that can be used is the Pareto order. Let the ϕi(Cc)
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denote the payoff of each robot for being in coalition Cc ∈ C. Let this be equal to

ϕi(C, T ) = ϕi(Cc, T ) = v(Cc, T )

The Pareto-order is defined as:

A ⊲ B ⇔ ϕi(A, T ) ≥ ϕi(B, T ) ∀i ∈ R

with at least one strict inequality (>) for one robot k.

5.4.3. Coalition Formation Games

This process is modeled based on coalition formation games using the Pareto

order as a comparison relation. However, even with a modest robot population size,

the number of partitions - namely the Bell number - is exorbitant. For example, for

r = 10, the number of partitions is 115975. As such, the number of partitions is too

large to allow for exhaustive search for the optimal one [79].

In this framework, we resort to coalition formation games. We model the coali-

tion allocation problem as a coalitional game and propose a centralized algorithm for

coalition formation. Using the Pareto order as a comparison relation, we propose a

centralized coalition formation algorithm based on two rules called ‘merge’ and ‘split’

that allow to modify a partition C of R as follows [119]:

• Merge: {C1, . . . , Ck} → ∪
k
j=1Cj where ∪

k
j=1Cj ⊲ {C1, . . . , Ck}.

• Split: ∪k
j=1Cj → {C1, . . . , Ck} where {C1, . . . , Ck} ⊲ ∪

k
j=1Cj.

The coordinator uses merge and split operations on the existing coalitions. As

such, different coalitions are allowed to interact - taking the decision to merge or split

based on the comparison relation ⊲. With Pareto order, the task coordinator decides

to merge or split coalitions only if at least one coalition is able to strictly improve its
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individual value through this process without decreasing the other coalitions’ values.

Therefore, the merge rule by Pareto order is a binding agreement among the robots to

operate together if it is beneficial for the tasks.

5.4.4. Coordinator Algorithm

The coordinator periodically considers all the tasks waiting for coalitions and

starts a coalition formation game as shown in Figure 5.2. In this algorithm, only idle

or waiting coalitions are considered. Merge-split rules are iteratively applied until no

all the coalitions associated with all the tasks stabilitize. Note that as a result, some

tasks may be associated with empty set – which implies that the coordinator cannot

find a coalition capable of performing that particular task.

5.5. Partition Stability & Convergence

Stability is related to the type of coalition membership changes allowed [119]. If

group movements are allowed, then robots may change coalitions in arbitrary groups.

Allowable membership changes are defined by a defection function D that associates

with each partition C of R a group of collections in R. Namely it consists of all

collections C = {C1, . . . , Cl}whose players can leave the partition S by forming new

and separate group of players ∪l
j=1Cl divided according to the collection C. A partition

C = C1, ..., Cl of R is D-stable if no group of robots is interested in leaving C when

the robots who leave can only form the collections allowed by D. Mathematically,

Definition 5.2. D-Stability Assume a comparison relation ⊲ and a defection function

D. A partition P is called D-stable if ∀ C ∈ D(P ) such that C[P ] 6= C, C[P ] ⊲ C.

The most general case is with defection function Dc, where for each partition P ,

Dc(P ) is the family of all collections in R. As such, any group of robots can leave

P and create an arbitrary collection in R. However, in this case, it is known that

value functions need to be superadditive – which is not the case here. An alternative

definition is using a defection function Dhp - where for each partition P , Dhp(P ) is the
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1: while Change in partition C, repeat do

2: while Change in partition C, merge do

3: for all T k ∈ T | tk8 = 0− or tk8 = 0+ do

4: if tk8 = 0+ then

5: Assign Cc with the highest v(Cc, T
k)

6: end if

7: Find a coalition Cd such that Cc ∪ Cd ⊲ Cc

8: if Cd /∈ ∅ then

9: Cc = Cc ∪ Cd

10: end if

11: end for

12: end while

13: while Change in partition C, split do

14: for all T k ∈ T | tk8 = 0− or tk8 = 0+ do

15: Find i ∈ Cc such that Cc − {i} ⊲ Cc

16: Cc = Cc − {i}, C = C ∪ {i}

17: end for

18: end while

19: end while

Figure 5.2. The algorithm representing the coordinator automaton.
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Table 5.1. Simulation settings.

Parameter Value

Mission duration 60 minutes

Number of robot types 10

Number of resource types 5

Number of task types 10

Time-out duration {1, 2} minutes

Task rate λ for each robot {5, 10, 20} tasks per hour

Range of resource values of tasks [30, 50] units

Range of resource values of robots [5, 10] units

Range of handling duration [2, 5] minutes

family of all P -homogeneous partitions in R. In this case, the defection function Dhp

allows the players to leave the partition P only by means of merges or splittings - albeit

with multiple applications. A partition is Dhp-stable if and only if it is the outcome of

iterating the merge and split rules. This is an immediate consequence of Theorem 5.3

as presented in [119] that guarantees the existence of a Dhp-stable partition.

Theorem 5.3. [119] A partition P := P1, ..., Pk of R is Dhp-stable if and only if the

following two conditions are satisfied:

(i) ∀i ∈ {1, ..., k} and for each partition C1, ..., Cl of coalition Pi v(Pi) ≥
∑l

i=1 v(Ci)

(ii) ∀L ⊆ {1, ..., k}
∑

i∈L v(Pi) ≥ v(
⋃

i∈L Pi)

Since each rule application increases the values of the coalitions with an assigned

task, the process terminates. This is stated in Theorem 5.4. Hence the resulting

partition will be Dhp-stable.

Theorem 5.4. [111] Suppose that ⊲ is a comparison relation. Every iteration of the

merge and split rules terminates.
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5.6. Simulations

Extensive simulations have been conducted with 50 robots placed in a workspace

of radius 100 meters. The robots are cylinder shaped with radii 15 cm and can move

with maximum speed of 0.6 meters/second. General simulation settings are as pre-

sented in Table 5.1. The robots or coalitions - if formed - are assumed to be in a

patrolling mission in this workspace while in idle state. Each robot is one of 10 types

- categorized according to its resources.

As tasks are encountered, each coalition invokes its task automaton. Whereas,

the coordinator applies its automaton every 10 seconds. Hence, the coordinator consid-

ers the waiting tasks every 10 seconds. Each task may become one of 10 types - again

categorized according to required resources as given in Table 5.1. Comparing robot’s

resources and tasks’ requirements, the populations of coalitions capable of accomplish-

ing the encountered tasks are expected to vary between 3 to 10 robots. Time-out

periods are taken to be 1 or 2 minutes - which imply relatively fast response times are

required. Tasks that fail to start in this period cannot be completed. Once a task is

completed, the respective coalition starts moving in a direction as determined by the

coalition leader.

As our focus is on the formation of coalitions with sufficient resources, it is as-

sumed that tasks are generated as a Poisson process with parameter λ ∈ {5, 10, 20}

tasks per hour. As the average number of tasks will increase with increased λ value,

hence making the overall missions more difficult and challenging. Maximum allowable

waiting period for handling the task is varied as t5 = ∆to ∈ {60, 120} seconds.

At the beginning of each simulation, 10 different robot types and 10 different

tasks are generated - with capabilities and task resource requirements falling randomly

in the range as shown in Table 5.1. Sample robot and task types are as shown in

Table 5.2 and Table 5.3. The handling duration of a detected task is also randomly

generated from the range of handling duration. The parameters in the coalition value

function are selected as w1 = 1, w2 = 1, and w3 = 1.
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Table 5.2. Robots’ resources for a sample mission.

Resources

Robot Type r(1) r(2) r(3) r(4) r(5)

1 6 5 5 9 8

2 7 8 8 8 7

3 7 5 6 7 8

4 7 8 5 5 7

5 5 6 8 5 5

6 6 9 7 6 6

7 6 6 9 7 5

8 7 9 7 8 6

9 9 8 9 8 6

10 6 6 5 8 5

For each level of each level of task rates and time-out, 50 different missions are

conducted with robots all start at random initial locations. Hence, 300 missions are

generated. Sample spatial distributions of tasks encountered in a mission for different

λ values are as shown in Figure 5.3 where there are 48 and 98 tasks respectively. Tasks

that are successfully completed are shown in green while those that were timed-out are

in red. When the number of tasks are relatively fewer (λ = 5), 94% of the 48 tasks

are completed. As the number of tasks is increased (λ = 20), the percentage of the

completed tasks goes down to 78% with 77 out of the 98 tasks being completed.

Statistical results are as shown in Table 5.4. The percentage of timed-out tasks

varies between 4.1% to 25.1% depending on ∆to and λ. With high ∆to and low λ values,

the coalitions are able to complete many tasks ther encounter. In contrast, with low

∆to and high λ values, the tasks are likely to time out. Hence, with the increase in time-

out durations, the number of handled tasks increases. Average number of coalitions

decreases with the increase in λ. This is because with the low λ values, there are less

encountered tasks, hence there is no much need for merging coalitions. The last row
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Table 5.3. The required resources for the tasks for a sample mission.

Required resources

Task Type τ1 τ2 τ3 τ4 τ5

1 47 44 42 42 47

2 44 38 32 41 36

3 44 48 42 33 48

4 41 40 47 49 46

5 39 33 35 45 44

6 34 42 46 38 30

7 35 40 48 41 41

8 34 33 33 37 31

9 48 44 30 32 41

10 35 35 41 31 31

in Table 5.4 gives the average number of decision-making of the coordinator. Since

the coodinator considers the waiting tasks every 10 seconds, the maximum number

of decision-making of the coordinator will be 360. According to the results, with

the decrease in λ, the coalitions are able to handle their tasks without informing the

coordinator.

Table 5.4. Simulation results.

λ 5 10 20

∆to (min.) 1 2 1 2 1 2

Measures

Avrg. % of timed-out tasks 6.4 4.1 11.9 8.3 25.1 16.1

Avrg. num. of tasks 44.1 43.5 61.2 60.3 90.1 82.1

Avrg. num. of coalitions 15.5 12.3 10.7 11.7 8.3 9.4

Avrg. num. of coor. dec. 44.7 52.2 79.1 102.2 149 179.8

The average number of iterations for the coordinator automaton in Figure 5.2
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Figure 5.3. Sample missions. The missions gets more challenging as the number of

tasks increases. Robots encounter 48 tasks with λ = 5 while this number goes up to

98 tasks with λ = 20. Note that these tasks are not known a priori and can be

completed only by a group of robots. With ∆to = 1 minute, the completed tasks are

as shown by green plus signs while timed out tasks are shown by red minus signs.

is presented in Table 5.5. The automaton has one main loop and two inner loops

(merge and split). Taking the size of all possible partitions into account, the number

of iterations for these loops is considerably low, thereby finding a partition for a given

set of waiting tasks quickly.

5.7. Conclusion

This chapter considers the cooperative tasks requiring a set of resources. As the

effective formation of robot teams endowed with these resources is crucial, the focus is

on effective coalition formation. A task coordinator - similar to network coordinator

– determines coalitions and assigning tasks. Its process is modeled as a coalition

formation game where groups of robots are evaluated together in regards to each task’s

required resources and cost of forming a coalition. As new tasks are encountered,

coalitions merge and split, hence the resulting coalitions are capable of doing these
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Table 5.5. Average number of iterations (main loop - merge loop - split loop).

∆to seconds

60 120

λ

5 1.47-2.7-1.7 1.44-2.57-1.68

10 1.3-1.98-1.49 1.26-1.84-1.43

20 1.2-1.59-1.38 1.17-1.5-1.34

tasks. Since the number of iterations for finding a suitable partition is considerably

low, the proposed approach can be applied on the real-time robotic applications.
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6. CONCLUSION

This thesis is concerned with multi-robot systems where robot cooperation is

crucial to performance. The cooperation problem is examined from three critical and

related aspects.

First, the problem of achieving effective communication topologies is considered.

Two alternative approaches - namely decentralized or centralized network topologies -

are proposed. These approaches define how network may form and evolve over time

based on network related payoff functions and pairwise games. While all-to-all net-

work, as is assumed in most works, is the simplest approach, it faces serious problems

with the increase in the number of robots. Another most common approach is based

on proximity in which only robots within a certain range are able to communicate

with each other. However, distance may not always be best criterion in determin-

ing the network topology. In this manner, the contribution of both decentralized and

centralized approaches is that the robots are able to manage the network topology

while considering their network and/or task related objectives. In the decentralized

approach, the robots - while engaged in their tasks - update the network topology

periodically where the game interval is considerably smaller than the update period.

The equilibrium networks are defined based on pairwise stability and pairwise Nash

equilibrium. The pairwise game setting provides a general and practical scheme that

can be employed by the robots simultaneously in order to contact other robots and

update their local network topology depending on the exchanged information. As an

application, we consider mutual link-based payoff functions and show that if each game

is played with configuration states fixed to values corresponding to the game onset, the

resulting networks are pairwise stable and thus acceptable to all the robots. Next, the

case of centralized network topologies is considered. In this case, a network coordi-

nator is held responsible for finding a network topology acceptable to all the robots.

The robots communicate with a network coordinator periodically to get the updated

network topology. In turn, the coordinator considers the individual payoff functions of

all the robots, their current states and the current network simultaneously and finds
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a network topology acceptable to all the robots. This is accomplished via centralized

pairwise games which are basically iterated processes consisting of a sequence of game

moves. With payoff functions satisfying local spillovers, convexity and strategic sub-

stitutes properties, each pairwise game is ensured of convergence to a pairwise stable

network.

Next, the problem of determining the assisting robots in tasks requiring the co-

operation of robot pairs is considered. Most previous works aim to find an explicit

assignment of assisting robots. As this has been proven to be strongly NP-hard, ap-

proximate solutions with an emphasis on computational feasibility and practical appli-

cability need to be developed. For this problem, a novel concept of assistance networks

is introduced. In contrast to finding an explicit assignment of assisting robots, the

assistance network designates potential helpmates in an implicit manner based on its

topology. Each robot seeks to find an assisting robot among its immediate neigh-

bors in the assistance network in a decentralized manner. As the robots are moving

around, the assistance network topology needs to be continually updated. This update

is done by a coordinator in a centralized manner. The coordinator process follows a

methodology similar to that of centralized network topologies where acceptability is

defined based on pairwise stability and pairwise Nash stability. Extensive simulation

and experimental results indicate that tasks can be handled effectively depending on

occurrence of tasks and their associated constraints. It is observed that as the number

of encountered tasks increases, the percentage of timed-out tasks increases with a fixed

cost parameter. This suggests an adaptive scheme for the cost parameter depending

on missed tasks as well as allowable helpmate proximity. As part of future work, this

issue can be investigated further. Also, assistance networks can be generalized to more

complicated dynamic and cooperative task scenarios.

Finally, the more general case of tasks requiring a multitude of resources is con-

sidered. A task coordinator is held responsible for finding robot coalitions endowed

with these resources with minimal cost. This process is modeled as a series of coalition

formation games. Extensive simulation results demonstrate the practical applicability

of the proposed approaches in real-time multi-robot applications.
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As explained at the introduction to the thesis, the experimental evaluation has

been done on a team of five robots that were designed and built in the laboratory. Con-

siderable effort has been spent for this endeavor. Furthermore, the operation of these

robots has necessitated the design and development of a novel control architecture. In

a collaborative effort, a novel sense-communicate-act architecture has been developed

and implemented in ROS. Finally, the problem of getting a set of robots in a loosely

specified formation - referred to as realization problem - has been studied. In this

study, initially an approach based on genetic algorithms has been developed. Due to

computational complexity that hinders real-time applications, an alternative approach

based on artificial potential functions has also proposed as presented. However, further

study is required in order to study its robustness properties.
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APPENDIX A: MULTI-ROBOT DYNAMICS FOR

NAVIGATION

Each robot’s dynamics obeys a differential equation as defined by the gradient

flow of an appropriately defined function ϕi : F × G → [0, 1] that encodes its task as:

ḃi = −Dbiϕi(b, χi(g)) ∀i ∈ R (A.1)

Of course, more general formulations are also possible. The information set χi(g) ⊂ R

of each robot is a set-valued function that specifies the set of robots whose configuration

states are available to it [120]. We assume that each robot i is endowed with sensors

that allow it to know its own state bi while those of other robots can only be acquired via

inter-robot link. If χi(g) = {i}, it only knows about itself and is completely oblivious to

other robots. If the information set consists of itself and immediate neighbors as χi(g) =

{i}∪Ni(g), then the robot gets configuration state information from neighboring robots.

In this case, as network changes, so does each information set χi(g). If the cardinality

of this set is |χi(g)| = r, then the network is all-to-all. If |χi(g)| << r, then the robot

has a direct link with only a subset of robots. If this holds for all the robots, then

network density will be considerably lower compared to all-to-all network.

We use a feedback based approach that is a modified version of artificial potential

functions [104,121]. In this framework, if the robots are not communicating ( χi(g) =

{i}) at all and hence are totally myopic, the probability of successful task termination

is expected to be low. On the other hand, with complete information (χi(g) = R),

almost all tasks can be completed as presented in [121]. Different from that work, with

pairwise game theoretic communication, each robot exchanges information only with

robots in χi(g) = {i}∪Ni(g). In the sequel, we present a summary of this approach for

completeness. The interested reader is kindly referred to [121] for details. First define
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the function ϕ̂i : F × G → [0,∞) that encodes the task.

ϕ̂i(b, χi(g)) =
γi(b, χi(g))

ki

βi(b, χi(g))

It consists of two terms. The function γi encodes proximity to goal positions not only

for itself, but also those of its immediate neighbors with which it is in communication

with as:

γi(b, χi(g)) =
∑

j∈χi(g)
(bj − hj)

T (bj − hj)

Hence, from the perspective of each robot, as it is minimized iff both the robot and its

neighbors reach their goal positions, information sharing enables cooperation among

neighboring robots. This is required in order to ensure that in cases where robots block

each other (i.e. one robot being at its goal position blocking other robots reaching their

destinations), the blocking robots move out of their goal positions in order to allow

the blocked robots to do so. The denominator βi encodes the distance from freespace

boundary and thus information exchange here is used for collision avoidance among

neighboring robots.

βi(b, χi(g)) = β0i

∏

j∈χi(g)
j 6=i

βijβ0j

Here βij = (bi − bj)
T (bi − bj)− ρ2ij denotes the pairwise distance and β0j = ρ20j − ‖bj‖

2

denotes the proximity to the workspace boundary. The parameter ki ∈ Z
+ is a relative

weighting parameter. The function ϕ̂i is made admissible via composing it with σ :

[0,∞) → [0, 1] defined as by σ(x) = x
x+1

. In order to make the goal a non-degenerate

critical point, further composition with a sharpening function σd : [0, 1]→ [0, 1] defined

as σd(x) = x1/ki is used. Hence, the function ϕi is defined as:

∀i ∈ R ϕi(b, χi(g)) = σd ◦ σ ◦ ϕ̂i(b, χi(g))
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The solution of this family of differential equations describes the state trajectory of

each robot. The robots continue moving until ∀i ∈ R, ḃi = 0 which in turn implies

that at the corresponding configuration state b∗, ∀i ∈ R, Dbiϕi(b
∗, χi(g)) = 0. Of

course, whether the associated task is achieved or not depends on the task specific

properties of b∗.
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APPENDIX B: TASK HANDLING ALGORITHM

The task handling automaton in Figure 4.1 is defined by the algorithm as shown

in Figure B.1 and Figure B.2.

1: t← 0 ⊲ Initialize time

2: k ← 0 ⊲ Initialize task index

3: w ← 0 ⊲ Initialize temporary index for task

4: state ← “idle” ⊲ Initialize state of handling process

5: while in operation do

6: if new task then

7: k ← k + 1

8: hi
k,1 ← t ⊲ Note task time

9: hi
k,2 ← 0

10: Hi ← Hi ∪ hi
k

11: if state is “idle” then

12: Ask for assistance from the neighbors Ni(g)

13: if ∃ available assisting robot j ∈ Ni(g) then

14: ts ← t

15: hi
k,2 ← 1− ⊲ Status to “being handled”

16: state ← “handling”

17: else

18: w ← k ⊲ waiting for assistance

19: state ← “waiting”

20: end if

21: end if

22: end if

Figure B.1. Algorithm for handling tasks of robot i.
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23: if ∃ hi
l | h

i
l,2 6= 1− & t− hi

l,1 ≥ ∆to then

24: hi
l,2 ← −1 ⊲ Status to “not handled”

25: end if

26: if ∃ hi
l | h

i
l,2 = 1− & t− ts ≥ ∆th then

27: hi
l,2 ← 1 ⊲ Status to “handled”

28: state ← “idle”

29: end if

30: if ( state is “idle” & ∃ hi
l | h

i
l,2 = 0 & l 6= w ) or ( state is “waiting” & ∃

hi
l | l = w ) then

31: if ∃ available assisting robot j ∈ Ni(g) then

32: ts ← t

33: hi
l,2 ← 1− ⊲ Status to “being handled”

34: state ← “handling”

35: else

36: w ← l ⊲ waiting for assistance from Ni(g)

37: state ← “waiting”

38: end if

39: end if

40: if request assistance from robot j ∈ Ni(g) then

41: if state is “idle” then

42: state ← “assisting” ⊲ Start assisting robot j

43: ts ← t

44: else

45: Reject the request

46: end if

47: end if

48: if state is “assisting” & t− ts ≥ ∆th then

49: state ← “idle”

50: end if

51: t← t+∆t

52: end while

Figure B.2. Algorithm for handling tasks of robot i (continued).
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APPENDIX C: ROBOTIC PLATFORM DEVELOPMENTS

Edarg2-v1 Edarg2-v2 Edarg2-v3 Edarg2-v4

Figure C.1. The evolution of mobile robot platforms.

The four different robots we have designed and produced from the beginning of

the thesis are shown in Figure C.1. The history of these robots is as follows:

(i) EDARG2-v1: The EDAR G2 robot (Event Driven Assembler Robot 2nd Gener-

ation) has been redesigned and built in the Intelligent Systems Laboratory. The

robot is as shown in Figure C.1. It consists of a two degrees of freedom base,

a three freedom arm and a one degree of freedom gripper. Electrical infrastruc-

ture and software framework has been developing. EDARG2 has capabilities of

grasping and holding parts. The tests performed on the robot revealed multi-

ple problems with the mechanical design and realization. Major problems are as

follows:

• Translational and rotational motors’ shafts are not properly mounted to the

gear. Hence set-screw damages motors’ shaft.

• Misalignment in mounting gears.

• Balance problem while moving.

Solutions to the problems:

• Gears should be produced according with motor’s shaft shape.

• Positions of the gears on the planes should be processed simultaneously.

• Coupling mechanism should be used in the translational motor since it needs
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more torques than the others.

• For balance of the robot, two wheels can be used instead of one wheel.

(ii) EDARG2-v2: The robots need to have smoothly running mechanical systems in

order to be fully controllable and operational. Substantial testing of the robot

units at the beginning of this term allowed us to fully test and diagnose the

mechanical abilities. These tests showed that certain mechanical problems that

would be detrimental to the robots’ operation and full functioning had not been

solved. These problems could cause damage to the electromechanical parts such

as overloading of the motors. These problems and solutions can be summarized

under three categories as follows:

• Driving the gears directly: As shown in Figure C.2, linear and rotational

motors directly drive their gear. Due to the direct driving, misalignment

of the motors or the gears forces the shaft, thereby damaging the motors.

A solution to this problem is to design and manufacture a new coupling

mechanism. This was done for the translational and the rotational motors.

(a) (b)

Figure C.2. (a) Linear motor and its gear group; (b) Rotational motor and its gear

group.

• Problems with the aluminum beams: Each robot has four aluminum beams

connecting parts of its structure as shown in Figure C.3. As these beams

were not identical and were not symmetrically positioned, motors and gears

had positioning problems. The solution to this problem was to manufacture
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a new aluminum beams and re-mount them.

Figure C.3. Aluminum pipes connecting the planes.

• Setscrews: They are used to fasten motor’s shaft to a gear as shown in

Figure C.4. Under overload, these screws may slip off the motor’s shaft.

The solution to this problem was to erode the inside of the parts being

connected to motor shafts based on the shape of the corresponding motor

shaft.

Figure C.4. Setscrews.

(iii) EDARG2-v3: New design for EDARG2 shown in Figure C.5 is based on the

differential drive which is the simplest possible drive mechanism. This mechanism

consists of two wheels controlled by separate motors. The newly designed robot

has also capabilities of grasping and holding parts. After manufacturing the first

prototype, some electro-mechanical tests were applied to detect the efficiency of

the mechanical units. The detected problems are as follows:
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• Left driving mechanism is stressed more than the right mechanism. There-

fore, the robot cannot move straight.

• Gripper mechanism cannot move forward.

• The distance the gripper gets away from the body is too small that it cannot

approach to any part without colliding with it.

(a) (b)

Figure C.5. (a) New design for EDARG2; (b) Top view of the design.

(iv) EDARG2-v4: This new design was based on the differential drive which is the

simplest possible drive mechanism. However, while the project was about to be

completed, the firm with which we have made a contract canceled the project

due to their technical inadequacy. Hence, we plan to buy mobile robot platform

and design and manufacture the gripper mechanism for this platform.

The best option for the mobile robot platform is IRobot Create shown in Fig-

ure C.6a since it is the cheapest mobile robot base and is being used widely in the

robotic community. The hardest part in the project is to design and manufacture

light and small gripping mechanism. For this purpose, we worked with a group

of students from Department of Mechanical Engineering. The designed griper is

shown in Figure C.6b. The gripper will be placed between the top two planes in
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(a) (b)

Figure C.6. (a) New platform for EDARG2; (b) The designed gripper.

the robot.
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APPENDIX D: EDARG2 Robot

EDARG2 is a differential wheel autonomous robot with a development history as

explained in Appendix C. The last generation of this robot is as shown in Figure D.1.

The robot can be used both manually by connecting remotely or in automated mode.

Figure D.1. EDARG2.

D.1. Hardware

The technical specifications of the robots are as follows:

• Driving Mechanism: Differential drive

• Diameter: 33.5cm

• Height: 60cm

• Maximum speed: 0.5 m/s

• Weight: 6 kg

• Wheel Diameter: 63.5 mm

• Wheel Encoders: 360/32 degree, 2 cm accuracy
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• Maximum Moving Time: 3.5 hours (with 3Ah battery fully charged and no pay-

load)

• Communication with Robot Base: UART

• Battery for Hokuyo and Kinect: 12V 4.5AH

• DC to DC Converter for Hokuyo: Converting 12V to 5V

Its processing is done by a Asus Eee PC Netbook (Dual Core 1.6GHz Processor, 2

GB DDR3, 320GB HDD and WLAN 802.11 b/g/n@2.4GHz). Furthermore, its sensing

capabilities are as follows:

• Kinect (laser range scanner + camera),

• Hokuyo URG-04LX,

• Cliff sensors,

• Bump sensor

The wiring diagram of EDARG2 can be seen in Figure D.2.

Figure D.2. Wiring diagram of EDARG2.

D.2. Software

The software of the robots requires the installation of the following software:
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• Operating System: Ubuntu 12.04 LTS

• ROS (Robot Operating System) Fuerte, Desktop Sharing, Remote Desktop Viewer

• Additional Libraries: MPFR-v3.1.2, GNU Scientific Library-v1.15

• Software Development Environment: Qt-SDK-Linux-x86-v1.2.1

D.3. User’s Guide

Before starting, the wiring should be made appropriately according to the wiring

diagram as shown in Figure D.2.

D.3.1. Powering the Robots

While the robot base and computing unit have their own integrated batteries,

Hokuyo and Kinect sensors require 5V and 12V power sources, respectively. The

external 12V source should be converted into 5V using DC to DC converter for Hokuyo

sensor. After powering on the robot base, the netbook and the sensors, the robot is

ready for the operation.

D.3.2. Remote Connection

The robot can be controlled via remote connection. The following steps need to

be followed:

• Desktop Sharing program should be working on the robot. It should also be

noted that the robot should be connected to the network (either via WiFi or

LAN connection).

• The remote computer connects to the robot via Remote Desktop Viewer program

which is on the same network with the robot.

• The robot can be teleoperated with a keyboard using ‘turtlebot teleop’ package

in ROS.
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D.3.3. Automated Mode

The following steps should be done sequentially in order to run the robots in

automated mode.

• Connect to the current ad hoc network.

• Run roscore to activate ROS.

• The coordinator robot runs the communication node:

rosrun communicationISL communication

• The coordinator robot runs the following launch file

experiment-irobot-coor.launch:

<launch>

<node name="map_server" pkg="map_server" type="map_server"

args="/home/irobot3/fuerte_workspace/sandbox/map/haritaYagmur.yaml"/>

<node name="hokuyo_node" pkg="hokuyo_node" type="hokuyo_node">

<param name="frame_id" value="/base_laser"/>

</node>

<node name="tf_broadcaster" pkg="robot_setup_tf" type="tf_broadcaster"

output="screen" />

<node pkg="tf" type="static_transform_publisher" name="link1_broadcaster"

args="0 0 0 0 0 0 base_footprint base_link 100" />

<node name="turtlebot_node" type="turtlebot_node.py" pkg="turtlebot_node">

<rosparam>

publish_tf: True

has_gyro: True

odom_angular_scale_correction: 1.3043

odom_linear_scale_correction: 1.0

gyro_scale_correction: 1.4556

gyro_measurement_range: 250.0

</rosparam>

</node>

<node name="amcl" type="amcl" pkg="amcl">

<rosparam>

odom_alpha1: 0.1

odom_alpha2: 0.1

odom_alpha3: 0.1
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odom_alpha4: 0.1

</rosparam>

</node>

<node name="navigation" pkg="navigationISL"

type="navigation" output="screen" />

<node name="hotspothandler" pkg="hotspothandlerISL"

type="hotspothandler" output="screen" />

<node name="hotspotobserver" pkg="hotspotobserverISL"

type="hotspotobserver" output="screen" />

</launch>

• Regular robots run the following launch file

experiment-irobot.launch:

<launch>

<node name="map_server" pkg="map_server" type="map_server"

args="/home/irobot4/fuerte_workspace/sandbox/map/haritaYagmur.yaml"/>

<node name="hokuyo_node" pkg="hokuyo_node" type="hokuyo_node">

<param name="frame_id" value="/base_laser"/>

</node>

<node name="tf_broadcaster" pkg="robot_setup_tf"

type="tf_broadcaster" output="screen"/>

<node pkg="tf" type="static_transform_publisher" name="link1_broadcaster"

args="0 0 0 0 0 0 base_footprint base_link 100" />

<node name="turtlebot_node" type="turtlebot_node.py" pkg="turtlebot_node">

<rosparam>

publish_tf: True

has_gyro: True

odom_angular_scale_correction: 1.3043

odom_linear_scale_correction: 1.0

gyro_scale_correction: 1.4556

gyro_measurement_range: 250.0

</rosparam>

</node>

<node name="amcl" type="amcl" pkg="amcl">

<rosparam>

odom_alpha1: 0.1

odom_alpha2: 0.1

odom_alpha3: 0.1
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odom_alpha4: 0.1

</rosparam>

</node>

<node name="communication" pkg="communicationISL"

type="communication" output="screen" />

<node name="navigation" pkg="navigationISL"

type="navigation" output="screen" />

<node name="hotspothandler" pkg="hotspothandlerISL"

type="hotspothandler" output="screen" />

<node name="hotspotobserver" pkg="hotspotobserverISL"

type="hotspotobserver" output="screen" />

</launch>

• The coorinator robot runs the coordinator node:

rosrun coordinatorISL coordinator

The robots use the following configuration file based on JSON format:

configISL.json:

"linkCost":"1.5",

"maxGameMove":"6000",

"checkPSPeriod":"10",

"numrobots":"4",

"Tg":"15",

"Tc":"4",

"radius":"17.5",

"linearVelocity":"0.1",

"angularVelocity":"0.4",

"angleThreshold":"20",

"distanceThreshold":"20",

"ro":"300",

"kMin":"8",

"kMax":"10",

"partDist":"300",

"iscoordinator":"1",

"robotID":"3",
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"initialX":"0",

"initialY":"180",

"targetX":"120",

"targetY":"210",

"poissonMU":"0.1",

"timeoutHotspot":"20",

"handlingDuration":"10",

"waitingDuration":"2",

"amclfakeLoopRate":"0.5",

"amclfakeIncrement":"2",

"Robots":{"Robot":[{"name":"IRobot1","ip":"10.42.0.1","coordinator":"0",

"initialX":"-180","initialY":"-90"},{"name":"IRobot2","ip":"10.42.0.2",

"coordinator":"0", "initialX":"30", "initialY":"30"},{"name":"IRobot4",

"ip":"10.42.0.4","coordinator":"0", "initialX":"-150", "initialY":"210"},

{"name":"IRobot5", "ip":"10.42.0.5","coordinator":"0", "initialX":"-240",

"initialY":"0"}]}, "Obstacles":{"Obstacle": [{"id":"1","radius":"45",

"x":"-100","y":"25"}, {"id":"2","radius":"45","x":"180","y":"120"}, {"id":"3",

"radius":"45", "x":"130","y":"-120"}]}
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APPENDIX E: CONTROL ARCHITECTURE

In this section, the control architecture that was developed for multi-robot sys-

tems is described. This architecture extends the sense-act loop of control architectures

to sense-communicate-act paradigm. In this new paradigm, the control architecture has

to incorporate two new modules: communication and network topology update. The

communication module enables the exchange of information with neighboring robots

as deemed by the current communication network. As the robots and environment are

both dynamic, the communication network topology has to be evolving dynamically.

In network topology update module, the topology is updated periodically considering

the communication or task related objectives. There are two alternative approaches

– centralized or decentralized network update. The two modules are integrated into

ROS. With this extended architecture, multi-robot scenarios with network based com-

munication can easily be developed. This is a collaborative work done together with

Hakan Karaoguz. The proposed architecture is developed in the framework of Robot

Operating System (ROS) - an open-source robot meta-operating system. With this

extended architecture, multi-robot application scenarios with network based commu-

nication can easily be developed. The rest of this section summarizes the system as

presented in [103]. The robot architecture for a multi-robot system is presented in

Section E.1. The communication module is explained in Section E.2. In Section E.3,

the network update module is described.

E.1. Control Architecture

The control architecture is comprised of three layers [122]. The physical layer

consists of actuator and sensors modules. The actuator module consists of motors and

their drivers. The sensors read the internal state of the robot as well as providing

sensory feedback. This layer is hardware specific and needs to be modified as robotic

platform or components are changed.

The next layer is the hardware abstraction layer. This layer serves as an inter-
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Communication Network Update

Task-1 Task-2 Task-t

Sensor-1 Sensor-s Motion Control

R1

R2
R r

Figure E.1. Functional layer. Rectangles represent the nodes in the ROS. Circles

show the other robots.

mediate layer between the physical layer and robotic modules. They are independent

of the robotic platform or the hardware components. We use ROS which provides

hardware abstraction, device drivers, message-passing and package management. In

particular, the following properties are extremely convenient for multirobot applica-

tions [123]:

(i) Modularity: Separate processes (navigation, network update, mapping) can all

be separated out. They interact through an interface in which software pro-

cesses (a.k.a. “nodes” in ROS) communicate about shared “topics” in ROS.

Publish/Subscribe allows each node to send and receive only the desired data

(messages).

(ii) Separation of physical and messaging interface helps avoid hardware dependen-

cies.

(iii) Inter-module communication is enabled via asynchronous callback functions that

are called whenever data is available for processing.
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The final layer is the functional layer. It is comprised of a collection of robotic modules.

(i) Motion control: This module updates the velocity of the wheels and providing

the odometry information.

(ii) Sensing: These modules are responsible for providing sensory information to

the other modules from the sensors. A separate module is associated with each

different sensor.

(iii) Communication: These modules are associated with inter-robot communication.

• Communication: This module is responsible for communication with other

robots via sending or receiving messages.

• Network update: This module updates the communication state ai.

(iv) Task modules: These modules associated with the different capabilities and func-

tionalities of robots. Some of these modules are essential – meaning that all the

robots will have these modules. Other modules are optional and the robot may

not have them at all.

• Navigation: This module generates the velocity profile for moving the robot

in its workspace and thus affects bi. It sends the current bi to the communi-

cation module every Tc seconds.

• Localization: This module localizes the robot and generates bi for each robot

individually.

Each module is active concurrently with the other modules and may interact possibly

with many of them. These modules are implemented as ”nodes” in the ROS as shown

in Figure E.1. Each node behaves like a separate process, but can interact with the

other nodes via the publish/subscribe mechanism provided by the ROS. As the robots

are engaged in a particular task, some of the task modules will be activated depending

on what’s required of the robot.

E.2. Communication Module

The communication module of robot i is responsible for the incoming and outgo-

ing messages. A TCP based communication protocol is used. This module performs
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Control Byte Message Type ID Message Data

Figure E.2. Message structure.

the following:

• Open a socket with each robot j 6= i in the team.

• Receive the incoming messages from the sender robots.

• After decoding the message, publish the incoming message to the related node(s).

• After receiving the outward bounded messages from the nodes, encode the out-

going message and send it to the receiver robot.

Note that all the sockets are opened at the beginning of operation in order not to

make an extra effort on opening and closing sockets as the network topology changes.

However, only some of these sockets will be in use depending on the network topology.

The remaining sockets will be idle. Let it be noted that having opened, but idle

sockets requires only negligible computation and communication overhead. This is

because both end-points generate and respond to periodic TCP-generated keep-alive

messages that occur at least once every 2 hours [124].

The message format is based on the modified version of CVS (comma-separated

values). Each message contains three parts as shown in Figure E.2.

• Control Byte: This byte is for error checking purposes and is set to “AA”.

• Message Type ID: This byte specifies the type of information in the message.

• Data: This part is of variable length as depending on the message type.

Note that communication is done in a robot-to-robot manner instead of broadcast.

Hence the message data does not have any robot identity information regarding the

sender robot.
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E.3. Network Update Module

Hence, network update is based on modifying the collective communication state

a based on either decentralized or centralized network topologies.

E.3.1. Decentralized Network Update Strategy

In this approach, each robot decides for its neighbors Ni(g) independently of

other robots by updating its communication state ai every Tg seconds. The network

update proceeds as follows:

• This module is activated every Tg seconds.

• It attempts a series of temporary direct communications with other robots and

updates ai directly.

• The update process is continued until a predefined time ∆Tg is reached.

As robots are resource constrained, each robot is viewed as maximizing its own benefit

from participation in the communication network. Thus, the updating of the network

topology is based on an payoff function vi : G × F → R. For details, the reader is

referred to Chapter 2.

E.3.2. Centralized Network Topology

In the centralized approach, a network coordinator is responsible for determining

the network topology. Hence, the functionality of network update module depends

on whether the particular robot is a regular robot or a network coordinator. In case

of a regular robot, the network module simply sends position information bi to the

coordinator and receives the updated communication state ai as:

• Send position state bi to the network coordinator periodically every Tg seconds.

• Update the collective communication state ai based on received information from

the network coordinator.
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In turn, the coordinator does the following:

• Receive position bi from all the robots.

• Find a network topology acceptable to all the robots based on received infor-

mation and update a. It ensures that sent information is consistent - namely

aij = aji.

• Send ai to each robot.

The topology update is based on robots’ communication objectives vi : G × F → R

that encode their communication strategies while they are engaged in their tasks. The

set F refers to the set of all robots positions.

E.3.3. Inter-Robot Messages

The list of possible messages depends on the requirement of the application. In

our case, we define three types of message in the implementation.

(i) Message Type ID = 1. In this case, the data contains robot’s position state bi in

the global coordinate system. A sample message for this type is ‘‘AA’’, ‘‘1’’,

‘‘0;0’’ which says that my current position is at (0,0).

(ii) Message Type ID = 2. In this case, the data contains detailed robot information

including the robot’s current position, radius, and goal position. A sample mes-

sage for this type is ‘‘‘AA’’, ‘‘2’’, ‘‘0;0;17.5;500;500’’, which indicates

that I am a robot with 17.5 cm radius at (0,0) location and my desired position

is at (500,500).

(iii) Message Type ID = 3. This message is sent from the coordinator to a robot.

The message data contains a list of Ni(g) of each robot. A sample message

for this type is ‘‘AA’’, ‘‘3’’, ‘‘1; 2’’, which indicates that Robot1 and

Robot2 are your neighbors. If there is no neighbors, the message would become

‘‘AA’’, ‘‘3’’, ‘‘0’’.
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APPENDIX F: PLANAR MULTI-ROBOT REALIZATION

USING GENETIC ALGORITHM

This chapter considers the problem of planar multi-robot realizations of con-

nectivity graphs. The problem is defined as the generation of robot planar positions

whose connectivity graph is identical to an a priori given connectivity graph with the

additional constraint that the robots must not be overlapping with each other. This

problem arises in many applications such as exploration, search, patrolling and collec-

tive games (such as soccer) that require automatic positioning of multiple robots with

a particular underlying connectivity graph constraint. For example, in multi-robot

deployment and coordination tasks with limited communication, robot positions must

satisfy the particular connectivity graphs [33, 125]. This chapter presents a stochastic

approach to this problem and proposes a graph-based genetic algorithm for generating

planar multi-robot realizations.

F.1. Related Literature

There are three related areas: robot networks, disk graphs, and graph drawing.

In multi-robot systems, the concept of connectivity graphs has been introduced which

imposes various constraints on the relative positions of the robots [126,127]. For exam-

ple, connectivity graphs provide a graph-theoretic model for broadcast networks where

the radii of the circles correspond to the communication range ρc. Interestingly, while

many approaches are based on graph based models, the issue of whether an arbitrary

graph has a multi-robot realization or not has been mostly overlooked.

Connectivity graphs are known as unit disk graphs in graph theory – which are the

intersection graphs of closed disks in the plane where each vertex corresponds to a circle

and edge appears between two vertices when the corresponding circles intersect [128].

Of course, the distance unit is not critical since the disks realize the same graph even

if the coordinate system is scaled appropriately. Furthermore, unit disk graphs have
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several alternative definitions that are all equivalent to each other up to a choice of

scale factor. Two such alternatives are the intersection graph of equal radius circles

or a graph formed from a collection of circles all having the same radius where two

circles are connected by an edge if each circle contains the center of the other circle.

The set of disks is said to realize the graph [129]. A realization is therefore a mapping

of the vertices to points which realize the graph. The recognition problem of unit disk

graphs is then posed as: Given a graph, determine if it has a realization [129]. It has

been shown that recognizing unit disk graphs is NP-hard. The results are also shown

to hold for the disk touching graphs – namely all disks have disjoint interiors.

The NP-hardness of the problem has motivated the development of approximate,

potential-based or stochastic approaches – as many problems from different problem

areas nevertheless require solutions to the planar realization problem. An inapprox-

imability result has placed a bound on how well the planar coordinates can be derived

from the connectivity information alone [130]. In graph drawing, where the goal is

to produce aesthetically pleasing drawings of general undirected graphs, one proposed

approach is the spring model algorithm. Here, the graph is viewed to be a mechanical

collection of rings (the vertices) and connecting springs (the edges) with minimal en-

ergy configuration attained when the network graph approaches the goal graph [131].

However, as the spring method is likely to be trapped by local optima, the configu-

rations that are obtained are very poor. In the genetic algorithm TimGA, aesthetic

criteria used such as the number of edge crossings, even distribution of nodes, and

edge length deviation are utilized [132]. An extension of this work that develops new

mutation operators has been proposed in [133]. However, none of these algorithms

enforce adherence to a given connectivity graph by considering both edges and non

edges (namely vertex pairs that should not have a link between them). The novelty of

the proposed approach is to consider the graph realization problem and to propose a

genetic algorithm which has proved to be statistically working.
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F.2. Connectivity Graphs

Suppose that the robots have limited communication range ρc. A disk-neighborhood

of robot i is a closed ball Bρc(bi) of radius ρc >> ρi around bi ∈ R
2 . Given ρc, any con-

figuration b ∈ F induces a state-dependent mapping g : F → G. Here G = {g′|g′ ⊆ Kp}

is the set of all possible graphs on R and Kr is the complete graph [24]. The image of

the graph map is g(b) = (R, E(b)) is known as the connectivity graph [126]. Here E(b)

is the set of edges as defined by the connectivity matrix A(b) = [aij(b)]:

E(b) = {ij | aij = 1} (F.1)

The connectivity matrix A(b) is defined as follows:

aij(b) =





1 δij ≤ ρc and i 6= j

0 otherwise
(F.2)

F.3. Problem Statement

Consider a graph function g : F → G. Suppose we are given g∗ ∈ G. The set

g−1(g∗) ⊂ F represents the set of robot configurations all having graph g∗. The goal

is to find a realization b ∈ F such that b ∈ g−1(g∗).

F.4. General Approach

Our approach is based on genetic algorithms. This Section first gives a broad

overview of genetic algorithms. Following, we describe its adaptation to the planar

realization problem.
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F.4.1. Genetic Algorithms

Genetic algorithms are a class of evolutionary methods for determining the op-

timal classifiers or equivalently an optimal solution [134, 135]. In genetic algorithms,

a classifier is represented by a string of genes that is also known as a chromosome.

The mapping from a chromosome to the features of a classifier is flexible and depends

on the application. In broad overview, genetic algorithms employ stochastic search

to evolve the best chromosome. First, a population set of classifiers is constructed.

Here each chromosome differs somewhat from the others in the population. Next, a

fitness function that evaluates the goodness of each chromosome is constructed. This

function is used to compute the score of each chromosome. Following, the classifiers

are ranked according to their score and only the fittest are retained. These are then

stochastically altered to generate the next generation. There are three primary genetic

operators that govern reproduction: replication, crossover and mutation. Replication

is mere reproduction. Crossover involves the mating of two different chromosomes via

exchanging certain parts. Mutation occurs when the genes change. The overall process

is repeated for the succeeding generation. The process is terminated when at least one

chromosome has a score that exceeds an a priori specified value.

F.4.2. Adaptation to Planar Multi-Robot Realization

In employing genetic algorithms, we must first specify the map from a chromo-

some to the properties of the classifier. In the proposed approach, each chromosome

corresponds to a particular state b ∈ F and hence a team of r robots that are all

located within W . The goal is to generate a state (equivalently a chromosome) that

has the given connectivity graph g∗.

An initial population set S (0) ⊂ F is constructed where the cardinality |S (0 )|

is set a priori to NP . Next, a selection process initiates a new generation S (k) ⊂ F

where k ∈ Z+ is the generation number. The fitness of each chromosome in the

current population is evaluated based on a fitness function f and the members of this

population set are ranked accordingly. The population S (k) is via selecting members
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from S (k − 1) randomly with probability depending on the relative rank value of the

individuals [134]. In this manner, population members having higher fitness are chosen

more than those having lower fitness values. These members of the population are

to be used in the stochastic alteration that follows. Two primary genetic operators

govern reproduction: crossover and mutation. This is followed by replacement where

the population is changed via replacing the children with the parents. Elitism is applied

to keep the best chromosome in new population. If there is no improvement in the elite

chromosome after a predefined number of generations NE, newly generated randomly

realizations are used to replace the pA percent of the population while keeping the

best pB percent of the population. The process is halted when fitness of a generation

reaches a desired level or when the number of generations exceeds a given value NG.

F.5. Fitness Function

Given a member b ∈ S (k) of any population, the fitness function should measure

the similarity between its graph g(b) and the goal g∗. This is equivalent to finding

b ∈ F in such a way that its adjacency matrix A(b) is the same as that A = [aij] of the

given goal graph g∗. Recalling that δij =‖ bi − bj ‖, the fitness function f : F → R
≥0

encodes the following measures.

(a) (b)

Figure F.1. (a) f1 function; (b) f2 function.

First, the similarity of adjacency matrix A(b) of a given realization b with that
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of the goal A is measured. For this, both the edges and no edges of A(b) must be

compared with the corresponding entities of A. If the goal graph has an edge ij and

hence aij = 1, then ρij ≤ δij ≤ ρc which is measured by the function f1 : R
≥0 → [0, 1]

defined as:

f1(x) =





1 x ≤ ρc

e−(x−ρc) x > ρc
(F.3)

Similarly, if the goal graph does not have the edge ij, then aij = 0 which means that

δij > ρc which can be measured by the function f2 : R
≥0 → [0, 1] defined as:

f2(x) =





1 x > ρc

e(x−ρij)/e(ρc−ρij) x ≤ ρc
(F.4)

Hence, the term
∑

ij aijf1(δij) + (1 − aij)f2(δij) varies 0 in case of being completely

different and r(r − 1) in case of being completely identical.

Next, we also measure the amount of dissimilarity between the adjacency matrix

A(b) of b and that A of the goal. It is composed of two terms. For all missing edges

in A(b) that are present in A, the function f3 : R≥0 → R measures the distance each

robot pair need to approach in order to come within each others’ communication range

ρc:

f3(x) = x− ρc (F.5)

Similarly, for all the superfluous edges present in A(b) that should not be present with

respect to A, the function f4 : R
≥0 → R measures how close is the corresponding robot

pair from moving within each others’ neighborhood as:

f4(x) = 2ρo(1− x/ρc) (F.6)

The term 1 +
∑

ij /∈E(b)

ij∈g∗
f3(δij) +

∑
ij∈E(b)

ij /∈g∗
f4(δij) varies between 1 when the target connec-
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tivity graph is realized and being a large number in case of being different.

Hence, the fitness function can be constructed as the ratio of these two terms as:

f(b) =

∑
ij aijf1(δij) + (1− aij)f2(δij)

1 +
∑

ij /∈E(b)

ij∈g∗
f3(δij) +

∑
ij∈E(b)

ij /∈g∗
f4(δij)

(F.7)

F.6. Reproduction

Two primary genetic operators govern reproduction: crossover and mutation.

F.6.1. Crossover

For crossover reproduction, first, a mating pool is generated via considering each

robot i ∈ R and adding it to the mating pool with probability pC . If the number

of robots in this set turns out to be an odd number, a randomly selected robot is

removed from the pool. The crossover operator considers each consecutive two members

b−, b′− ∈ S (k) of the mating pool and replaces them by two offsprings b+ and b′+.

The superscripts − and + indicate each chromosome before and after the crossover

respectively. Three types of crossover operators are considered: Single, multi-point

and square.

F.6.1.1. Single Crossover. In the single point crossover, the location of a randomly

selected robot i is swapped between the parents. That is to say, b+i = b′i
− and b′i

+ =

b−i . All the links are adjusted accordingly. If the crossover leads to an unfeasible

configuration for any of the resulting offsprings, the offsprings are not added to the

population S(k). Instead, the crossover is repeated with another robot l 6= i. If a

feasible configuration is not available after trying all the indices, the crossover operation

is not applied to this pair.
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F.6.1.2. Multi Point Crossover. Multi-point crossover is similar to single point crossover.

Here, the parents are spliced into two groups via choosing a robot index i randomly.

The offsprings are generated via exchanging one of the groups formed. b+ and b′+ are

defined as follows for ∀j ∈ R:

b+j =





b′j
− if 1 ≤ j ≤ i

b−j if i < j ≤ r
(F.8)

b′j
+

=





b−j if 1 ≤ j ≤ i

b′j
− if i < j ≤ r

(F.9)

If the resulting operation leads to an unfeasible configuration for any of the offsprings,

again the offsprings are not added to the population set S(k). Instead, another robot

index l 6= i is selected. This is repeated until either both of the offsprings have feasible

configurations or all the indices are depleted. In case of failure to generate offsprings

having feasible configurations, the pointwise crossover is not done for this pair.

F.6.1.3. Square Crossover. In square crossover, two offsprings are generated via ex-

changing a small set of robots between the two parents [132]. The exchange is based

on two square regions C−,C ′− ⊂ W both centered at the same location c− ∈ W in

W , having the same edge length DC . These square regions are selected in a manner

such that there exists at least two robots i, j ∈ R with bi ∈ C− and b′j ∈ C ′−. Hence,

each square contains at least one robot from one parent. Let M and M ′ denote the

index set of robots in C− and C ′− respectively as:

M =
{
i ∈ R|b−i ∈ C−

}

M ′ =
{
i ∈ R|b′i

−
∈ C ′−

}

Following, two offsprings b+ and b′+ are generated by first duplicating each parent

exactly, exchanging robots inside C− and C ′− while the locations of the rest of the
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Figure F.2. Square crossover. In each graph, the robots are shown with dark circles

and the communication ranges are shown with the dotted circles. If two robots’s

centers are within each others’ communication range, a link is established as shown

by the lines connecting their centers. The dotted circles indicate the squares selected.

The two offsprings are generated via exchanging the robots.

robots are kept unchanged as much as possible. Furthermore, the centers of C− and C ′−

are moved to a new randomly selected location c+ ∈ W in the offsprings’ workspace

while ensuring that there is no collision. Of course, all the robots in the offsprings

having indices identical to those in M and M ′ are removed. The offsprings b+ and b′i
+

are defined as follows:

b+i =





b′i
− − c− + c+ if i ∈M ′

b−i if i /∈M ′
(F.10)
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b′i
+

=





b−i − c− + c+ if i ∈M

b′i
− if i /∈M

(F.11)

A sample square crossover is as shown in Figure F.2. Here, C− contains robots 1 and

2 and hence M = {1, 2}. Similarly, C ′− contains robot 2 and hence M ′ = {2). Next,

C− and C ′− are moved to a new center. The two offsprings are generated via copying

all the robots while exchanging those in M and M ′ respectively. The operation is

completed after removing all the robots having identical indices with those in M and

M ′.

F.6.2. Mutation

The mutation operator is used to increase the variability of the population by

perturbing each robots’ position in a graph with a given probability. The algorithm

uses two different kinds of mutation operators – robot and link mutations. At each

iteration k, all the members of the population S(k) are considered and only one type

mutation is selected with probability pR for robot mutation and pL for link mutation.

If robot mutation is selected, robot mutation is applied on all the robots bi in the

given sample. There are two alternative operators depending on the restriction on the

mutated location of each robot. The new position can be perturbed largely or slightly

which correspond to the two types of operators. Each is selected with probabilities pR1

and pR2 respectively. For example, in Figure F.3a, the position of robot 3 is mutated

with a large perturbation whereas in Figure F.3b, the same robot undergoes a slight

perturbation.

If link mutation is selected, the mutations are applied on the links. There are three

alternative operators and each is applied with probability pL1, pL2 and pL3 respectively.

First, a robot with one link only – known as leaf robot – is rotated through a random

angle while perturbing the link length also slightly without breaking the link as shown

in Figure F.4a for the link between robots 2 and 3. A second type of link mutation is

where a randomly selected link is moved to a new location in W by keeping its length
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and direction. An example is presented in in Figure F.4b where the link between robots

2 and 3 is translated. The third type of mutation is where a randomly selected robot

that also does not have any links is forced to be connected to a randomly chosen nearby

robot. An example is as seen in Figure F.4c where robot 1 is made to establish a link

with robot 2.

(a)

(b)

Figure F.3. Robot mutations. (a) Translation within the workspace; (b) Translation

within a small area.

F.7. Simulations

In this section, we present simulation results from running the proposed algorithm

for varying connectivity graphs. The values of all the parameters are set as presented

in Table F.1. The type of the crossover operation is determined statistically as follows:
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Table F.1. Parameters of the genetic algorithm.

Parameters Symbol Value

Workspace radius ρ0 50

Robot radius ρi 0.5

Connectivity range ρc 20

Population size NP 60

Max. number of generation NG 10000

Crossover probability pC 0.3

Crossover square size DC 15

RM probability pR 0.5

RM1 probability pR1 0.2

RM2 probability pR2 0.2

Mutation square size DM 5

LBM probability pL 0.5

LBM1 probability pL1 0.2

LBM2 probability pL2 0.3

LBM3 probability pL3 0.3

Constancy generation for elite NE 1000

Random new addition percentage pA 33

Best population percentage pB 10
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(a)

(b)

(c)

Figure F.4. Link-based mutations. (a) Rotation based; (b) Translation based; (c)

Connectivity based.

We made 100 simulations with a high number of robots, identical parameter set and

adjacency matrix and with different S(0) using only one of crossover operators. The

performance of each operator is assessed based on the percentage of realizations found in

these simulations which turn out to be 62, 65 and 70 percent for the single-point, multi-

point and square crossover operators respectively. Hence, in the remaining simulations,

the only type of crossover operator used is the square crossover.

We start with r = 8 since an example of an unrealizable graph is the star K1,7

with one central node connected to seven leaves as given by A1. It is well known this
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graph does not have a realization since using geometry, it can be seen that if each of

seven unit disks touches a common unit disk, some two of the remaining seven disks

must touch each other. A2 is a realizable version of this graph. The algorithm does

not generate a realization for A1. For A2, a sample graph is shown in Figure F.5.

A1 =




0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0




A2 =




0 1 1 1 1 1 1 1

1 0 1 0 0 0 0 1

1 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 0 0 1 0 1 0

1 0 0 0 0 1 0 1

1 1 0 0 0 0 1 0




1

2

3

4

5 6

7

8

Figure F.5. A sample graph realization for 8 robots given A2.

Figure F.6. A simple graph for 30 robots.
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Next, we run the algorithm for r = 30 robots and seek realizations of a graph

having degree 3 with a simple connectivity structure shown in Figure F.6. Due to size,

the corresponding adjacency matrix is not provided. We run 100 simulations all with

different initial population set S(0). Six sample realizations generated by the algorithm

are as shown in Figure F.7.
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Figure F.7. Sample 30 robot realizations for a simple connectivity structure.

Finally, we run the algorithm again for r = 30 robots, but this time the realiza-

tions are of a graph having a more complicated connectivity as shown in Figure F.8.

Again 100 simulations with different initial population set S(0) are made. Six sample

realizations generated by the algorithm are as shown in Figure F.9.
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Figure F.8. A complicated connectivity graph for 30 robots.

F.8. Conclusion

This chapter considers the problem of planar multi-robot realizations of connec-

tivity graphs. A realization is a set of robot locations in the planar workspace having

a connectivity graph that is identical to an a priori given connectivity graph with the

additional constraint it must be feasible. As the associated mathematical problem is

known to be NP-hard, a stochastic approach based on genetic algorithms is proposed.

Here, a population set is generated based on randomly generated feasible planar multi-

robot positions. Each member in this set is then evaluated using a novel fitness function

that measures the similarity of its connectivity graph with the given connectivity graph.

New mutation operators that enable the evolution of generations are introduced. An

extensive statistical study with different number of robots demonstrates that the pro-

posed algorithm can be used to obtain realizations for fairly complicated connectivity

graphs.
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Figure F.9. Sample 30 robot realizations for the graph of Figure F.8.
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APPENDIX G: CONNECTIVITY GRAPH BASED

PLANAR MULTI-ROBOT DYNAMIC REALIZATION

This chapter deals with the problem of planar realizations of connectivity graphs

in multirobot systems in a dynamic manner. The realization problem is defined as the

generation of robot planar positions in which the corresponding connectivity graph is

identical to a desired connectivity graph while being feasible. Feasibility means the

robots must not be overlapping with each other. This problem can be also thought

of as formation control problem and may arise in many applications such as explo-

ration, search, patrolling and collective games (such as soccer) that require automatic

positioning of multiple robots with a particular underlying connectivity graph con-

straint. For example, in multi-robot deployment and coordination tasks with limited

communication, robot positions must satisfy the particular connectivity graphs [125].

G.1. Related Literature

The realization problem is related with the following research areas: (i) Disk

graphs and graph drawing; and (ii) Formation control.

Connectivity graphs are known as unit disk graphs in graph theory – which are the

intersection graphs of closed disks in the plane where each vertex corresponds to a circle

and edge appears between two vertices when the corresponding circles intersect [128].A

realization is therefore a mapping of the vertices to planar points which realize the

graph [129]. The recognition problem of unit disk graphs is then posed as finding

a realization for a given graph [129]. It has been shown that recognizing unit disk

graphs is NP-hard. Nevertheless, the relevancy of this problem in many different ap-

plication areas has motivated the development of approximate, force-directed [131,136]

or stochastic approaches [132, 133]. An inapproximability result bounds on how well

the planar coordinates can be derived from the connectivity information alone [130].

However, none of these algorithms enforce adherence to a given connectivity graph.
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The realization problem has been addressed in [137] where both edges and nonedges

are considered and a stochastic approach to the realization problem is proposed based

on genetic algorithms.

Formation control has been extensively studied in the literature [138] where ap-

proaches are based mainly on optimization [139,140] or potential fields [141–144]. The

proposed approaches can be categorized depending on how a formation is defined and

whether the formation has a leader or not. Formations are in general defined by either

exact relative distances-orientations as is assumed in most work [143–148] or relative

distances in inequality form [149]. While connectivity graphs [127] and maintaining

connectivity [146] have been studied [149], the issue of attaining a realization for an

arbitrary graph has been mostly overlooked.

G.2. General Approach

In this chapter, we present a novel approach to the planar graph realization

problem based on a dynamical systems approach that is statistically proved to be

working. First, the set of inequality constraints associated with the connectivity graph

are transformed to equality constraints by defining proximity states in addition to

robot configuration states. Following, an artificial potential function is constructed

as to encode the equality constraints while ensuring feasibility which is then used to

generate the control inputs that govern the robot and proximity state dynamics. The

contribution of this work is that in contrast to our previous work in [137], it not only

finds a realization of the given connectivity graph, but also simultaneously defines the

control input that can be employed by the multirobot system in order to attain that

realization from an arbitrary initial configuration. Hence, the approach may be applied

in multirobot formation control applications. The outline of the Chapter is as follows:

The rest of this Section presents robot states, connectivity and the problem statement.

Section G.4 introduces the proximity state. The construction of the associated artificial

potential function is explained in Section G.5. The robot and proximity dynamics are

developed in Section G.6. A simulation study with different target graphs is presented

in Section G.7. The Chapter concludes with a brief summary.
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G.2.1. State Dependent Connectivity Graph

Suppose that the robots have limited sensing range ρs. A disk-neighborhood

of robot i is a closed ball Bρs(bi) of radius ρs > ρi around bi ∈ R
2. Given ρs, any

configuration b ∈ F induces a state-dependent mapping g : F → G as g(b) = (R, E(b))

- commonly known as connectivity graph. Here, G = {g′|g′ ⊆ Kr} is the set of all

possible (undirected) graphs on R, Kr is the complete graph [24]. E(b) ⊆ Q is the set

of edges defined as:

E(b) = {ij ∈ Q | δij ≤ ρs} (G.1)

Each graph g(b) is associated with a connectivity matrix A(b) = [aij(b)] defined as

follows:

aij(b) =





1 ij ∈ E(b)

0 otherwise
(G.2)

Conversely, the relationship between E(b) and the connectivity matrix A(b) is as follows:

E(b) = {ij | aij(b) = 1} (G.3)

G.3. Problem Statement

Consider a graph function g : F → G. Suppose we are given target graph g∗ ∈ G.

The set g−1(g∗)∩F represents the set of feasible robot configurations all having graph

g∗. The goal is to find a realization b∗ ∈ g−1(g∗) ∩ F .

G.4. Proximity State

While a realization b∗ is yet to be determined, its connectivity matrix A(b∗) ≡ A∗

is known - since g∗ is given. In particular, let A∗ =
{
a∗ij

}
denote the target connectivity
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matrix with q components. Since b∗ is not known, associated pairwise robot distances

δ∗ij =‖ b
∗
i − b∗j ‖ is not known exactly. However, since A∗ is given, they can be specified

via a set of inequality constraints:

δ∗ij =




≤ ρs if a∗ij = 1

> ρs if a∗ij = 0

Further, if a realization b∗ exists, then ∀(i, j) ∈ Q, ∃ η∗ij ∈ R
≥0 such that δij is exactly

defined by

δ∗ij
2 =





ρ2s − η∗ij
2 if a∗ij = 1

ρ2s + η∗ij
2 if a∗ij = 0

Each η∗ij specifies the actual proximity of the associate robot pair to the pairwise

neighborhood boundary – namely δij = ρs at the realization b∗.

Of course, η∗ij are not known and need to be determined. Let ηij denote the

proximity state associated with the respective robot pair (i, j) ∈ Q. Feasibility con-

straints require that proximity states should be such that the resulting pairwise robot

positioning remain within F while satisfying the inequality constraint. If a∗ij = 1, then

0 ≤ η2ij < ρ2s − ρ2ij

On other hand, if a∗ij = 0, then

0 < η2ij < (2ρ0 − ρij)
2 − ρ2s

The admissible proximity space is defined as E ⊂ R
q where constraints on all ηij

are all satisfied simultaneously. Define η ∈ E to be the proximity state vector η =
[
η12 . . . η(r−1)r

]T
.
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G.5. Artificial Potential Function

The artificial potential function ϕ̂ : F × E × G → [0,∞] encodes both types of

constraints – namely proximity constraints and feasibility constraints. It is defined as

the ratio of two terms encoding these constraints as:

ϕ̂(b, η; g∗) =
γ(b, η; g∗)k

β(b)
(G.4)

The semicolon is used to indicate the parametric dependency of ϕ on g∗ and k ∈ Z
+ is

the relative weighting parameter. It is constructed so that

ϕ̂(b∗, η∗) = 0

The function γ encodes the proximity constraint in a manner that depends on

the robot configuration state, proximity state and the target graph. In particular,

if a∗ij = 1, then the distance between the robots should be within ρs. In contrast,

if a∗ij = 0, then the distance between the robots should be greater than ρs. This is

mathematically expressed by γij:

γij(b, η; g
∗) = a⋆ij

(
δ2ij − ρ2c1

)2
+ (1− a⋆ij)

(
δ2ij − ρ2c2

)2
(G.5)

where ρ2c1 = ρ2c − η2ij and ρ2c2 = ρ2c + η2ij. In this framework, each ηij designates what

the distance between each pair of robots (i, j) will be forced to be: Hence,

γij(b, η; g
∗) =





(
δ2ij − ρ2c1

)2
if a⋆ij = 1

(
δ2ij − ρ2c2

)2
if a⋆ij = 0

(G.6)

When γij(b, η; g
∗) = 0, then either δ2ij = ρ2c1 or δ

2
ij = ρ2c2 which means that the inequality
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constraints are satisfied. As this needs to hold ∀(i, j) ∈ Q,

γ(b, η; g∗) =
∑

(i,j)∈Q

γij(b, η; g
∗) (G.7)

The denominator β encodes the distance from freespace boundary based on the

robot state and the workspace restrictions. As the robots’ positions cannot overlap,

this can be encoded by a function βij = δ2ij − ρ2ij. Furthermore, as each robot needs to

stay within the workspace, this restriction is encoded by β0i = ρ20i − ‖bi‖. These two

restrictions need to hold for all the robots and for all the robot pairs as encoded by

the function β :

β(b) =
∏

(i,j)∈Q0

βij (G.8)

where Q0 denotes the index set of robot pairs including the workspace boundary as a

zeroth disk, that is, Q0 △
= Q ∪ {(0, i) |∀i ∈ R}. Note that if ∃(i, j) ∈ Q, δij = 0, then

β(b) = 0.

The function ϕ̂ is made admissible via composing it with σ : [0,∞) → [0, 1]

defined as by σ(x) = x
x+1

. In order to make the goal a non-degenerate critical point,

further composition with a sharpening function σd : [0, 1] → [0, 1] defined as σd(x) =

x1/k is used. Hence, the resulting artificial potential function ϕ : F × E → [0, 1] is

defined as:

ϕ(b, η; g∗) = σd ◦ σ ◦ ϕ̂(b, η; g
∗) (G.9)
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G.6. Robot & Proximity Dynamics

The robots start from an arbitrary initial condition b(0) and η(0). If A(b) 6= A∗,

then they need to move both in F and E so that

lim
t→∞

b(t) = b∗

lim
t→∞

η(t) = η∗

This is a dynamical formulation of the realization problem. While the robots are finding

a realization satisfying the given constraints, they are guided by two dynamics. The

first is related to robots’ state b while the other is related to proximity state η. In this

work, we let both be defined based on ϕ .

The robot dynamics govern how the robots will move in F . It is defined by the

negative gradient flow of ϕ on F :

ḃ = −Dbϕ(b, η; g
∗) (G.10)

with the initial conditions b(0), η(0).

The proximity dynamics determine how the distance forced between the robot

pairs will evolve. It is defined by the negative gradient flow of ϕ on E

η̇ = −Dηϕ(b, η; g
∗) (G.11)

again with the initial conditions b(0), η(0).

Equation G.10 and Equation G.11 together define a set of coupled differential

equations. Let bt(b(0), η(0)) and ηt(b(0), η(0)) respectively denote the integral curve of

ḃ and η̇ through the initial condition b(0), η(0). The limiting sets limt→∞ bt(b(0), η(0))
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and limt→∞ ηt(b(0), η(0)) are defined by Dbϕ(b, η; g
∗) = 0.

−Dbϕ(b, η
∗; g∗) = 0

−Dηϕ(b
∗, η; g∗) = 0

In differential games theoretic framework, this is known as the Nash equilibrium. Of

course, each Nash equilibrium is not ensured of being a realization, unless ϕ(b∗, η∗; g∗) =

0.

G.7. Simulations

In this section, we present simulation results with the proposed approach for

varying connectivity graphs. In our simulations, the workspace radius ρo is taken to

be 10m and the sensing range ρs is set to 2m. All the robots are homogeneous – all

having radii 25cm. A random initial configuration b(0) for the robots is assumed.

We start with r = 8 since an example of an unrealizable graph is the star K1,7

with one central node connected to seven leaves as given by A1. It is well known this

graph does not have a realization. Geometry dictates that if each of seven unit disks

touches a common unit disk, two of the remaining seven disks must touch each other.

A2 is a realizable version of this graph. The robots exceed the maximum allowable time

to generate a realization for A1. For the realizable version A2, a sample realization that

is generated is shown in Figure G.1.

A1 =




0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0




A2 =




0 1 1 1 1 1 1 1

1 0 1 0 0 0 0 1

1 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 0 0 1 0 1 0

1 0 0 0 0 1 0 1

1 1 0 0 0 0 1 0



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Figure G.1. A sample graph realization for 8 robots given A2. The initial position of

each robot i is shown with ∗. Open circle marks indicate the robots. Connections

between robots are shown by thick straight lines while the trajectories are shown by

thin lines.

Next, we consider simple unlabeled graphs of order equal to 7 since the cardinality

of the associated partially order set (poset) is known to be equal to 1077, which means

the total of 221 possible different graphs can be partitioned into 1077 different cells

where all graphs within the same cell are isomorphic to each other [150]. Motivated by

a result that establishes the realizability of planar graphs7 – namely graphs that can be

drawn on a plane in such a way that there are no edge crossings [151] – embedded in

the plane with maximum degree 4 [128], we limit our graphs to degree 4. This reduces

our set to 509 graph types. The desired connectivity matrices A∗ are generated for

these graphs using an algorithm with two inputs: number of robots p and maximum

degree m.

We then use our approach to generate realizations for all the generated 509 con-

nectivity graphs A∗. The initial robot state b(0) is randomly chosen as shown in

Figure G.2. A sampled time evolution of the realization for the connectivity matrix A⋆

7Note that our graphs are not planar in general and hence this result is not applicable to our case
in general.
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in Equation G.12 is shown in Figure G.2.

A⋆ =




0 1 1 1 0 0 0

1 0 0 0 1 1 0

1 0 0 0 1 0 1

1 0 0 0 0 1 0

0 1 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 0 0 0




(G.12)

The first figure shows the robots’ initial positions. The next three graphs show the

robots’ positions at 25%, 50% and 75% of the total realization time. These figures

show the progress of the motion along with the corresponding connectivity. The last

figure shows the realization for the connectivity matrix A⋆. As shown in Table G.1,

all graphs with degree 1 and 2 are successfully realized. However, there are some

graphs with maximum degree 3 and 4 which cannot be realized since these graphs are

most probably not realizable. In general, around 72% of all the graphs are successfully

realized. As the problem is NP-hard, it is not possible to determine whether the rest

is not realizable or the algorithm has terminated unsuccessfully.

Table G.1. Simulation results for the realization.

Degree Total graphs Realized Graphs Success %

1 3 3 100

2 25 25 100

3 121 102 84

4 360 240 66

Total 509 370 72

G.8. Conclusion

In this chapter, we consider the problem of planar multi-robot realizations of

connectivity graphs. A realization is a set of robot locations in the planar workspace

having a connectivity graph that is identical to an a priori given connectivity graph
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with the additional constraint it must be feasible. The problem – known to be NP-hard

- is associated with a set of inequality constraints that need to be satisfied simultane-

ously while ensuring feasibility. We propose a novel dynamical systems approach to

this problem. First, inequality constraints are transformed into equality constraints

via introducing proximity state. Next, an artificial potential function defined over the

free robot configuration space and the admissible proximity space is used to define

the robot and proximity state dynamics for attaining a realization. The advantage of

this approach is that in contrast to previous work, it not only finds a realization, but

also simultaneously defines the control input that can be employed by the multi-robot

system to attain that realization. Hence, the approach may be used in multirobot

formation control.
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Figure G.2. 7 robot scenarios. (a) Random initial states bi(0); (b)-(e) The evolution

of the realization with trajectories.
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APPENDIX H: PUBLICATIONS RELATED TO THESIS

In the course of the PhD studies, the following papers have been published /

submitted / presented:

Chapter 2

• H. Bayram and H. I. Bozma, “Multi-robot Navigation with Limited Commu-

nication - Deterministic vs Game-theoretic Networks”, IEEE/JRS International

Conference on Intelligent Robots and Systems, pp. 1825-1830, 2010.

• H. Bayram and H. I. Bozma, “Pairwise vs coalition game networks for multi-robot

systems”, Proceedings of the 18 IFAC World Congress, pp. 13570-13575, 2011.

• H. Bayram and H. I. Bozma, “Çoklu Robotlar için Algı Tümleşik Oyun-Kuramsal

İletişim Ağı”, ASYU 2012 (Innovations and Aplications in Intelligent Systems

Symposium), pp. 148-152, 2012.

• H. Karaoguz , O. Erkent, H. Bayram and I. Bozma I, “Tek Robottan Çoklu

Robotlara Ortam Haritalama”, EMO Bilimsel Dergi, vol. 4, no. 2, 2013.

• H. Bayram and H. I. Bozma, “Decentralized Network Topologies in Multirobot

Systems”, Advanced Robotics, 2013 (accepted).

Chapter 3

• H. Bayram and H. I. Bozma, “Multirobot Communication Network Topology via

Centralized Pairwise Games”, IEEE International Conference on Robotics and

Automation, pp. 2506-2511, 2013.

Chapter 4

• H. Bayram and H. I. Bozma, “Assistance Networks for Dynamic and Cooperative

Tasks in Multi-Robot Systems”, IEEE Transactions on Robotics, 2013 (submit-

ted).
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Appendix E

• H. Karaoguz, H. Bayram, and H. I. Bozma, “Communication Integrated Control

Architecture in Multirobot Systems”, ICRA Workshop on Towards Fully Decen-

tralized Multi-Robot Systems: Hardware, Software and Integration, 2013.

Appendix F

• H. Bayram and H. I. Bozma, “Planar multi-robot realizations of connectivity

graphs using genetic algorithms”, IEEE/JRS International Conference on Intel-

ligent Robots and Systems, pp. 5163-5168, 2010.
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