Evaluating Your ASE Research

Jamie Andrews
Department of Computer Science
University of Western Ontario
London, Ontario, Canada
N6A 2T2
andrews@csd.uwo.ca

Plan of Talk

• The Drive for Evaluation
• Experiments
• Case Studies
You and Your Research

• You have done some work on automating software engineering tasks
• You think it's pretty good
• How to convince others?
• An older way:
 – Show a small example
 – Contrast your methods with others
 – Make a persuasive argument

Problems with the Older Way

• Given techniques A and B, we can almost always find an example where A performs better than B
• How does this generalize?
• Your subjective opinion vs. referee's
• More persuasive writers win

The Drive for Evaluation

• Nowadays, good SE publication venues expect evaluation of research
 – TSE, TOSEM; ICSE, ASE, FSE, etc.
• Primary methods of evaluation:
 – Experiments
 – Case studies
Plan of Talk

• The Drive for Evaluation
• **Experiments**
• Case Studies

Experiments

• Characteristics of experiments
• Objective measures
• Statistical analysis
• Threats to validity
• Experiment design

Characteristics of Experiments

• Subjects: things you are changing / using / acting on / treating / helping
 – Programmers, projects, programs, specs, test suites, ...
• Treatments: things you are doing associated with your research work
 – Tools used, processes followed, program analysis techniques, test case generation techniques, ...
Classic Experiments

- Classic experiments:
 - Subjects drawn from target population
 - Subjects selected randomly
- Examples:
 - Subjects = patients; treatments = different drugs
 - Subjects = trees; treatments = different fertilizers

SE Experiments with Human Subjects

- Experimental subjects often not drawn from target population
 - Targets: programmers in industry
 - Subjects: students
- Differences between subjects and targets unpredictable

SE Experiments with Human Subjects

- Challenges:
 - Ethics approval
 - Assigning subjects to treatment groups
 - Subjects learn, change
 - Subjects drop out
SE Experiments with Non-Human Subjects

- Subjects often not randomly drawn from target population; rather chosen due to simple availability
 - Technically "pseudoexperiments"
- Main challenge: Subject preparation can be tedious, little reward

Objective Measures

- Numerical measures not based on experimenter's opinion
- Examples:
 - Likert-scale ("on a scale of 1 to 7,...") answers from subjects
 - Cost: CPU time, clock time, effort, number of test cases, size of model
 - Effectiveness: Coverage, accuracy, precision / recall, number of bugs per KLOC

Statistical Analysis

- Visualizations
- Comparisons
- Correlations
Visualizations

- Scatter plots, line plots, bar graphs, pie charts
 - Can be done by gnuplot or Excel
- Box plots, more complex visualizations: use a statistics package
 - SPSS, Minitab, R

Comparisons

- Comparing mean, standard deviation of data set A and data set B not enough
 - Must take into account number of data points
- Student's t test was the first to do this
 - Available on Excel
 - Paired vs. unpaired versions
 - If p value < 0.5, "statistically significant"
- Wilcoxon ("Mann-Whitney", "rank sum") also useful
 - Makes fewer assumptions about data

Correlations

- Pearson (standard) correlation
- Spearman correlation
- Kendall correlation
- "Correlation is not causation!"
Threats to Validity

• No experiment perfect
• Various possible ways that results of experiment may not generalize
 – Technical term for these ways: “threats to validity”
• Modern approach: openly discuss:
 – Threats to validity
 – Any measures taken to minimize them

Experiment Design

• An milligram of preparation is worth a kilogram of:
 – Having to re-run experiments
 – Having to justify weak results
• Books / courses on experiment design

Plan of Talk

• The Drive for Evaluation
• Experiments
• Case Studies
Experiments are Infeasible / Impractical When...

- Research is at an initial stage
- Result uncertain and experiment would take a long time
- Subjects are inaccessible / too large
 - e.g. product lines
- "Case study" may be an option

Examples vs. Case Studies

- All aspects under researcher's control
- Used to illustrate technique
- Post-hoc, ad-hoc, selective detail

- Some aspects not under researcher's control
- Used to evaluate technique in practice
- Preparation, detailed analysis of data

Elements of Case Studies

- Research questions
- Expectations
- Quantitative and qualitative data wanted
- Subject selection
- Data analysis
Example Case Study

• Research questions:
 – Was our tool useful and easy to use for software engineers?
 – In what ways did they find it helped?
 – What problems (if any) did they have with it?

• Expectations:
 – It was useful in understanding code design
 – There are some known usability problems

Example Case Study

• Quantitative and qualitative data wanted:
 – How often they needed to use the tool
 – How long it took them to do the tasks
 – Their reactions to the tool

• Subjects:
 – Two software engineers at company X, each with over 5 years of experience

Example Case Study

• Writeup includes:
 – Raw data on frequencies of use, amounts of time taken
 – Quotations, reactions from software engineers
References and Resources

• Experiments:
 – Example papers: most papers by those authors and by Basili, Briand, Harrold, Ostrand, Rothermel

References and Resources

• Case studies:
 – Example: Baniassad et al., "Design Pattern Rationale Graphs: Linking Design to Source", *ICSE 2003*

Thanks to...

• [wpclipart.com](http://www.wpclipart.com) for the open source images

• You, the audience
 – Questions?