Automated Web Performance Analysis

Martin Pinzger (Mpinzger@gmail.com)
Department of Telecooperation
Johannes Kepler University Linz Austria
Introduction

- Performance is a key feature in many systems nowadays.
- Nowadays → predominant manual analysis
- A system capable of automatically
 - creating a web performance simulation
 - conduct trend analysis of the system under test (SUT)
 - creates an analysis of the SUT → report, pro-active server tuning, performance optimisations
System Under Test (SUT)
Automated Web Performance Simulation

Monitoring Points

Simulation Model
Concept Orientation

- Data Collection
- Simulation
- Prediction
- Management
Potential Chain

1. system starts
2. initial simulation model
3. continuous comparison process
4. adaptation of the simulation
5. reached the claimed accuracy → prediction component
6. analysis of the SUT
Management Component

- Process Chain Control
 - execution of the components
 - optional, pause or terminate components

Data Collection Component

- Monitoring Component
 - Active Software Monitoring
 - Passive Software Monitoring
 - Active and Passive Software Monitoring
Simulation Component

- Model Generation Component
 - Minimum complexity simulation model
 - Average complexity simulation model
 - Maximum complexity simulation model
- Model Comparison Component
- Model Adjustment Component
 - Stepwise
 - Reference Table
 - Random Estimation (MA, AR, ARMA, ARIMA)
Prediction Component

- **Longterm Analysis- and Statistical Component**
 - longterm analysis (MA, AR, ARMA, ARIMA, ...)
 - semantic analysis / trend analysis
 - statistical / mathematical functions

- **Scenario Generation and Execution Component**
 - generates scenarios
 - executes scenarios based on the simulation model
 - reports the results back to the data collection component

- **Reporting Component**
Work Plan/Focus 1/2

- developing a reference architecture supporting automated web performance analysis
 - Is it meaningful when the simulation model and the SUT are confronted with the same requests?
 - Is it practicable to use an automatic adjusting simulation model?
 - Is it possible to adjust the simulation model parameters without interrupting the simulation process?
Work Plan/Focus 2/2

- a prototypical implementation of the architecture, where I intend to integrate existing approaches and tools for subcomponents
 - What type of simulation model should be created?
 - Analytic model
 - Queuing-Network-Model
 - Monte-Carlo-Model

- perform case studies illustrating the suggested approach
Thank you for your attention!