The Linux Edge

Linus Torvalds

inux today has millions of users, thousands of developers, and a growing mar-

ket. It is used in embedded systems; it is used to control robotic devices; it has

flown on the space shuttle. I'd like to say that I knew this would happen, that

it’s all part of the plan for world domination. But honestly this has all taken

me a bit by surprise—I was much more aware of the transition from one Linux user to

one hundred Linux users than the transition from one hundred to one million users.

Linux has succeeded not because the
original goal was to make it widely portable
and widely available, but because it was
based on good design principles and a good
development model. This strong founda-
tion made portability and availability easier
to achieve.

Originally Linux was targeted at only
one architecture: the Intel 80386 CPU.
Today Linux runs on everything from
PalmPilots to Alpha workstations; it is the
most widely ported operating system avail-
able for PCs. If you write a program to run
on Linux, then, for a wide range of
machines, that program can be “write once,
run anywhere.” It’s interesting to look at
the decisions that went into the design of
Linux, and how the Linux development
effort evolved, to see how Linux managed
to become something that was not at all
part of the original vision.

Linux today has achieved many of the
design goals that people originally assumed
only a microkernel architecture could
achieve. When I began to write the Linux

kernel, the conventional wisdom was that
you had to use a microkernel-style archi-
tecture. However, [am a pragmatic person,
and at the time I felt that microkernels (a)
were experimental, (b) were obviously
more complex, and (c) executed notably
slower. Speed matters a lot in a real-world
operating system, and I found that many of
the tricks researchers were developing to
speed microkernel processing could just as
easily be applied to traditional kernels to
accelerate their execution.

By constructing a general kernel model
drawn from elements common to all typi-
cal architectures, the Linux kernel gets
many of the portability benefits that other-
wise require an abstraction layer, without
paying the performance penalty paid by
microkernels.

By allowing for kernel modules, hard-
ware-specific code can often be confined to
a module, keeping the core kernel highly
portable. Device drivers are a good exam-
ple of effective use of kernel modules to
keep hardware specifics in the modules.

38

April 1999/Vol. 42, No. 4 COMMUNICATIONS OF THE ACM

This is a good middle ground between
putting all the hardware specifics in the
core kernel, which makes for a fast but
unportable kernel, and putting all the hard-
ware specifics in user space, which results
in a system that is either slow, unstable, or
possibly both.

But Linux’s approach to portability has
been good for the development community
surrounding Linux as well. The decisions
that motivate portability also enable a large
group to work simultaneously on parts of
Linux without the kernel getting beyond
my control. The architecture generaliza-
tions on which Linux is based give me a
frame of reference to check kernel changes
against, and provide enough abstraction
that I don’t have to keep completely sepa-
rate forks of the code for separate architec-
tures. So even though a large number of
people work on Linux, the core kernel
remains something that I can keep track of.
And the kernel modules provide an obvious
way for various programmers to work inde-
pendently on parts of the system that
should be independent.

I’'m sure we made the right decision with
Linux to do as little as possible in the ker-
nel space. At this point I dont envision
major updates to the kernel. A successful
software project should mature at some
point, after which the pace of change
within the project typically slows down.
There aren’t a lot of major new innovations
in store for the kernel. It’s more a question
of supporting a wider range of systems than
anything else: taking advantage of Linux’s
portability to bring it to new systems.

Some particular application areas will
continue to drive kernel development. Web
serving has always been an interesting
problem, because it’s the one real applica-
tion that is really kernel intensive. In a way,
Web serving has been dangerous for me,
because I get so much feedback from the
community using Linux as a Web serving
platform that I could easily end up opti-
mizing only for Web serving. I have to keep
in mind that Web serving is an important
application but not everything.

I want Linux to be on the cutting edge,
and even a bit past the edge, because what’s
past the edge today is what’s on your desk-

top tomorrow. In the near future, areas for
development are clustering, Symmetric
Multi-Processing (SMP), and embedded
systems. But at this point, the most excit-
ing developments for Linux will happen in
user space, not kernel space. The changes
in the kernel will seem small compared to
what’s happening further out in the system.
From this perspective, where the Linux ker-
nel will be isnt as interesting a question as
what features will be in Red Hat 17.5 or
where Wine (the Windows emulator) is
going to be in a few years.

In 15 years, I expect somebody else to
come along and say, hey, I can do every-
thing that Linux can do but I can be lean
and mean about it because my system
won't have 20 years of baggage holding it

The most exciting

developments for Linux
will happen in user
space, not kernel
space. The changes in
the kernel will seem
small compared to
what's happening

further out in the system.

back. They’ll say Linux was designed for
the 80386 and the new CPUs are doing
the really interesting things differently.
Let’s drop this old Linux stuff. This is
essentially what I did when creating Linux.
And in the future, they’ll be able to look at
our code, use our interfaces, and provide
binary compatibility, and if all that hap-
pens I'll be happy. @

LiNUS TORVALDS (torvalds@transmeta.com) works at
Transmeta Corporation.

COMMUNICATIONS OF THE ACM April 1999/Vol. 42, No. 4

39

