
Chapter 13

Functional Testing

A functional specification is a description of intended program1 behavior,
distinct from the program itself. Whatever form the functional specification
takes — whether formal or informal — it is the most important source of in-
formation for designing tests. The set of activities for deriving test case spec-
ifications from program specifications is called functional testing.

Functional testing, or more precisely, functional test case design, attempts
to answer the question “What test cases shall I use to exercise my program?”
considering only the specification of a program and not its design or imple-
mentation structure. Being based on program specifications and not on the
internals of the code, functional testing is also called specification-based or
black-box testing.

Functional testing is typically the base-line technique for designing test
cases, for a number of reasons. Functional test case design can (and should)
begin as part of the requirements specification process, and continue through
each level of design and interface specification; it is the only test design tech-
nique with such wide and early applicability. Moreover, functional testing is
effective in finding some classes of fault that typically elude so-called “white-
box” or “glass-box” techniques of structural or fault-based testing. Func-
tional testing techniques can be applied to any description of program be-
havior, from an informal partial description to a formal specification and at
any level of granularity, from module to system testing. Finally, functional
test cases are typically less expensive to design and execute than white-box
tests.

1In this chapter we use the term “program” generically for the artifact under test, whether
that artifact is a complete application or an individual unit together with a test harness. This is
consistent with usage in the testing research literature.
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Required Background

� Chapters 14 and 15:
The material on control and data flow graphs is required to understand
section 13.7, but it is not necessary to comprehend the rest of the chap-
ter.

� Chapter 27:
The definition of pre- and post-conditions can be helpful in understand-
ing section 13.8, but it is not necessary to comprehend the rest of the
chapter.

13.1 Overview

In testing and analysis aimed at verification2 — that is, at finding any dis-
crepancies between what a program does and what it is intended to do —
one must obviously refer to requirements as expressed by users and specified
by software engineers. A functional specification, i.e., a description of the ex-
pected behavior of the program, is the primary source of information for test
case specification.

Functional testing, also known as black-box or specification-based test-
ing, denotes techniques that derive test cases from functional specifications.� ��������� �
�����

Usually functional testing techniques produce test case specifications that
identify classes of test cases and be be instantiated to produce individual test
cases.

A particular functional testing technique may be effective only for some
kinds of software or may require a given specification style. For example,
a combinatorial approach may work well for functional units characterized
by a large number of relatively independent inputs, but may be less effec-
tive for functional units characterized by complex interrelations among in-
puts. Functional testing techniques designed for a given specification nota-
tion, e.g., finite state machines or grammars, are not easily applicable to other
specification styles.

The core of functional test case design is partitioning the possible behav-
iors of the program into a finite number of classes that can reasonably ex-
pected to consistently be correct or incorrect. In practice, the test case de-
signer often must also complete the job of formalizing the specification far
enough to serve as the basis for identifying classes of behaviors. An impor-
tant side effect of test design is highlighting weaknesses and incompleteness
of program specifications.

Deriving functional test cases is an analytical process which decomposes
specifications into test cases. The myriad of aspects that must be taken into

2Here we focus on software verification as opposed to validation (see Chapter 2). The prob-
lems of validating the software and its specifications, i.e., checking the program behavior and its
specifications with respect to the users’ expectations, is treated in Chapter 12.
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Test cases and test suites can be derived from several sources of information, includ-
ing specifications (functional testing), detailed design and source code (structural test-
ing), and hypothesized defects (fault-based testing). Functional test case design is an
indispensable base of a good test suite, complemented but never replaced by by struc-
tural and fault-based testing, because there are classes of faults that only functional test-
ing effectively detects. Omission of a feature, for example, is unlikely to be revealed by
techniques which refer only to the code structure.

Consider a program that is supposed to accept files in either plain ASCII text, or
HTML, or PDF formats and generate standard PostScript. Suppose the programmer over-
looks the PDF functionality, so the program accepts only plain text and HTML files. Intu-
itively, a functional testing criterion would require at least one test case for each item in
the specification, regardless of the implementation, i.e., it would require the program to
be exercised with at least one ASCII, one HTML, and one PDF file, thus easily revealing
the failure due to the missing code. In contrast, criterion based solely on the code would
not require the program to be exercised with a PDF file, since all of the code can be exer-
cised without attempting to use that feature. Similarly, fault-based techniques, based on
potential faults in design or coding, would not have any reason to indicate a PDF file as a
potential input even if “missing case” were included in the catalog of potential faults.

A functional specification often addresses semantically rich domains, and we can use
domain information in addition to the cases explicitly enumerated in the program spec-
ification. For example, while a program may manipulate a string of up to nine alphanu-
meric characters, the program specification may reveal that these characters represent a
postal code, which immediately suggests test cases based on postal codes of various lo-
calities. Suppose the program logic distinguishes only two cases, depending on whether
they are found in a table of U.S. zip codes. A structural testing criterion would require
testing of valid and invalid U.S. zip codes, but only consideration of the specification and
richer knowledge of the domain would suggest test cases that reveal missing logic for
distinguishing between U.S.-bound mail with invalid U.S. zip codes and mail bound to
other countries.

Functional testing can be applied at any level of granularity where some form of spec-
ification is available, from overall system testing to individual units, although the level of
granularity and the type of software influence the choice of the specification styles and
notations, and consequently the functional testing techniques that can be used.

In contrast, structural and fault-based testing techniques are invariably tied to pro-
gram structures at some particular level of granularity, and do not scale much beyond
that level. The most common structural testing techniques are tied to fine-grain pro-
gram structures (statements, classes, etc.) and are applicable only at the level of modules
or small collections of modules (small subsystems, components, or libraries).
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account during functional test case specification makes the process error prone.
Even expert test designers can miss important test cases. A methodology for
functional test design systematically helps by decomposing the functional
test design activity into elementary steps that cope with single aspect of the
process. In this way, it is possible to master the complexity of the process and
separate human intensive activities from activities that can be automated.
Systematic processes amplify but do not substitute for skills and experience
of the test designers.

In a few cases, functional testing can be fully automated. This is possible
for example when specifications are given in terms of some formal model,
e.g., a grammar or an extended state machine specification. In these (excep-
tional) cases, the creative work is performed during specification and design
of the software. The test designer’s job is then limited to the choice of the test
selection criteria, which defines the strategy for generating test case specifi-
cations. In most cases, however, functional test design is a human intensive
activity. For example, when test designers must work from informal speci-
fications written in natural language, much of the work is in structuring the
specification adequately for identifying test cases.

13.2 Random versus Partition Testing Strategies

With few exceptions, the number of potential test cases for a given program
is unimaginably huge — so large that for all practical purposes it can be con-
sidered infinite. For example, even a simple function whose input arguments
are two 32-bit integers has ��� � ���� legal inputs. In contrast to input spaces,
budgets and schedules are finite, so any practical method for testing must se-
lect an infinitesimally small portion of the complete input space.

Some test cases are better than others, in the sense that some reveal faults
and others do not.3 Of course, we cannot know in advance which test cases
reveal faults. At a minimum, though, we can observe that running the same
test case again is less likely to reveal a fault than running a different test case,
and we may reasonably hypothesize that a test case that is very different from
the test cases that precede it is more valuable than a test case that is very
similar (in some sense yet to be defined) to others.

As an extreme example, suppose we are allowed to select only three test
cases for a program that breaks a text buffer into lines of 60 characters each.
Suppose the first test case is a buffer containing 40 characters, and the second
is a buffer containing 30 characters. As a final test case, we can choose a buffer
containing 16 characters or a buffer containing 100 characters. Although we
cannot prove that the 100 character buffer is the better test case (and it might
not be; the fact that 16 is a power of 2 might have some unforeseen signifi-
cance), we are naturally suspicious of a set of tests which is strongly biased
toward lengths less than 60.

3Note that the relative value of different test cases would be quite different if our goal were to
measure dependability, rather than finding faults so that they can be repaired.
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While the informal meanings of words like “test” may be adequate for everyday con-
versation, in this context we must try to use terms in a more precise and consistent man-
ner. Unfortunately, the terms we will need are not always used consistently in the liter-
ature, despite the existence of an IEEE standard that defines several of them. The terms
we will use are defined below.

Independently testable feature (ITF): An ITF is a functionality that can be tested inde-
pendently of other functionalities of the software under test. It need not correspond
to a unit or subsystem of the software. For example, a file sorting utility may be ca-
pable of merging two sorted files, and it may be possible to test the sorting and
merging functionalities separately, even though both features are implemented by
much of the same source code. (The nearest IEEE standard term is “test item.”)

As functional testing can be applied at many different granularities, from unit test-
ing through integration and system testing, so ITFs may range from the function-
ality of an individual Java class or C function up to features of a integrated system
composed of many complete programs. The granularity of an ITF depends on the
exposed interface at whichever granularity is being tested. For example, individual
methods of a class are part of the interface of the class, and a set of related methods
(or even a single method) might be an ITF for unit testing, but for system testing the
ITFs would be features visible through a user interface or application programming
interface.

Test case: A test case is a set of inputs, execution conditions, and expected results. The
term “input” is used in a very broad sense, which may include all kinds of stimuli
that contribute to determining program behavior. For example, an interrupt is as
much an input as is a file. (This usage follows the IEEE standard.)

Test case specification: The distinction between a test case specification and a test case
is similar to the distinction between a program and a program specification. Many
different test cases may satisfy a single test case specification. A simple test spec-
ification for a sorting method might require an input sequence that is already in
sorted order. A test case satisfying that specification might be sorting the particular
vector (“alpha,” “beta,” “delta.”) (This usage follows the IEEE standard.)

Test suite: A test suite is a set of test cases. Typically, a method for functional testing
is concerned with creating a test suite. A test suite for a program, a system, or an
individual unit may be made up of several test suites for individual ITFs. (This usage
follows the IEEE standard.)

Test: We use the term test to refer to the activity of executing test cases and evaluating
their result. When we refer to “a test,” we mean execution of a single test case, ex-
cept where context makes it clear that the reference is to execution of a whole test
suite. (The IEEE standard allows this and other definitions.)
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Accidental bias may be avoided by choosing test cases from a random dis-
tribution. Random sampling is often an inexpensive way to produce a large
number of test cases. If we assume absolutely no knowledge on which to
place a higher value on one test case than another, then random sampling
maximizes value by maximizing the number of test cases that can be created
(without bias) for a given budget. Even if we do possess some knowledge sug-
gesting that some cases are more valuable than others, the efficiency of ran-
dom sampling may in some cases outweigh its inability to use any knowledge
we may have.

Consider again the line-break program, and suppose that our budget is
one day of testing effort rather than some arbitrary number of test cases. If the
cost of random selection and actual execution of test cases is small enough,
then we may prefer to run a large number of random test cases rather than
expending more effort on each of a smaller number of test cases. We may in
a few hours construct programs that generate buffers with various contents
and lengths up to a few thousand characters, as well as an automated proce-
dure for checking the program output. Letting it run unattended overnight,
we may execute a few million test cases. If the program does not correctly
handle a buffer containing a sequence of more than 60 non-blank characters
(a single “word” that does not fit on a line), we are likely to encounter this
case by sheer luck if we execute enough random tests, even without having
explicitly considered this case.

Even a few million test cases is an infinitesimal fraction of the complete
input space of most programs. Large numbers of random tests are unlikely
to find failures at single points (singularities) in the input space. Consider,
for example, a simple procedure for returning the two roots of a quadratic
equation ��� � �� � 	 � � and suppose we choose test inputs (values of the
coefficients �, �, and 	) from a uniform distribution ranging from ���
� to
��
�. While uniform random sampling would certainly cover cases in which
�����	 � � (where the equation has no real roots), it would be very unlikely to
test the case in which � � � and � � �, in which case a naive implementation
of the quadratic formula

� �
����

�� � ��	

��

will divide by zero (see Figure 13.1).
Of course, it is unlikely that anyone would test only with random values.

Regardless of the overall testing strategy, most test designers will also try some
“special” values. The test designer’s intuition comports with the observation
that random sampling is an ineffective way to find singularities in a large
input space. The observation about singularities can be generalized to any
characteristic of input data that defines an infinitesimally small portion of
the complete input data space. If again we have just three real-valued inputs
�, �, and 	, there is an infinite number of choices for which � � 	, but random
sampling is unlikely to generate any of them because they are an infinitesimal
part of the complete input data space.
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Figure 13.1: The Java class “roots,” which finds roots of a quadratic equation.
The case analysis in the implementation is incomplete: It does not properly
handle the case in which �����	 � � and � � �. We cannot anticipate all such
faults, but experience teaches that boundary values identifiable in a specifi-
cation are disproportionately valuable. Uniform random generation of even
large numbers of test cases is ineffective at finding the fault in this program,
but selection of a few “special values” based on the specification quickly un-
covers it.
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54 Functional Testing

The observation about special values and random samples is by no means
limited to numbers. Consider again, for example, breaking a text buffer into
lines. Since line breaks are permitted at blanks, we would consider blanks a
“special” value for this problem. While random sampling from the character
set is likely to produce a buffer containing a sequence of at least 60 non-blank
characters, it is much less likely to produce a sequence of 60 blanks.

The reader may justifiably object that a reasonable test designer would not
create text buffer test cases by sampling uniformly from the set of all char-
acters, but would instead classify characters depending on their treatment,
lumping alphabetic characters into one class and white space characters into
another. In other words, a test designer will partition the input space into
classes, and will then generate test data in a manner that is likely to choose
data from each partition.4 Test designers seldom use pure random sampling;
usually they exploit some knowledge of application semantics to choose sam-
ples that are more likely to include “special” or trouble-prone regions of the
input space.

A testing method that divides the infinite set of possible test cases into a
finite set of classes, with the purpose of drawing one or more test cases from
each class, is called a partition testing method. When partitions are chosen� ��
������ �
�����

according to information in the specification, rather than the design or im-
plementation, it is called specification-based partition testing, or more briefly,
functional testing. Note that not all testing of product functionality is “func-� ��
�������������
� �
�����

tional testing.” Rather, the term is used specifically to refer to systematic test-
ing based on a functional specification. It excludes ad hoc and random test-
ing, as well as testing based on the structure of a design or implementation.� ���������� �
�����

Partition testing typically increases the cost of each test case, since in ad-
dition to generation of a set of classes, creation of test cases from each class
may be more expensive than generating random test data. In consequence,
partition testing usually produces fewer test cases than random testing for
the same expenditure of time and money. Partitioning can therefore be ad-
vantageous only if the average value (fault-detection effectiveness) is greater.

If we were able to group together test cases with such perfect knowledge
that the outcome of test cases in each class were uniform (either all suc-
cesses, or all failures), then partition testing would be at its theoretical best.
In general we cannot do that, nor even quantify the uniformity of classes of
test cases. Partitioning by any means, including specification-based partition
testing, is always based on experience and judgment that leads one to believe
that certain classes of test case are “more alike” than others, in the sense that
failure-prone test cases are likely to be concentrated in some classes. When
we appealed above to the test designer’s intuition that one should try bound-
ary cases and special values, we were actually appealing to a combination of
experience (many failures occur at boundary and special cases) and knowl-

4We are using the term “partition” in a common but rather sloppy sense. A true partition
would separate the input space into disjoint classes, the union of which is the entire space. Parti-
tion testing separates the input space into classes whose union is the entire space, but the classes
may not be disjoint.
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edge that identifiable cases in the specification often correspond to classes of
input that require different treatment by an implementation.

Given a fixed budget, the optimum may not lie in only partition testing or
only random testing, but in some mix that makes use of available knowledge.
For example, consider again the simple numeric problem with three inputs,
�, �, and 	. We might consider a few special cases of each input, individually
and in combination, and we might consider also a few potentially-significant
relationships (e.g., � � �). If no faults are revealed by these few test cases,
there is little point in producing further arbitrary partitions — one might then
turn to random generation of a large number of test cases.

13.3 A Systematic Approach

Deriving test cases from functional specifications is a complex analytical pro-
cess that partitions the input space described by the program specification.
Brute force generation of test cases, i.e., direct generation of test cases from
program specifications, seldom produces acceptable results: test cases are
generated without particular criteria and determining the adequacy of the
generated test cases is almost impossible. Brute force generation of test cases
relies on test designers’ expertise and is a process that is difficult to monitor
and repeat. A systematic approach simplifies the overall process by dividing
the process into elementary steps, thus decoupling different activities, divid-
ing brain intensive from automatable steps, suggesting criteria to identify ad-
equate sets of test cases, and providing an effective means of monitoring the
testing activity.

Although suitable functional testing techniques can be found for any gran-
ularity level, a particular functional testing technique may be effective only
for some kinds of software or may require a given specification style. For ex-
ample, a combinatorial approach may work well for functional units charac-
terized by a large number of relatively independent inputs, but may be less
effective for functional units characterized by complex interrelations among
inputs. Functional testing techniques designed for a given specification no-
tation, e.g., finite state machines or grammars, are not easily applicable to
other specification styles. Nonetheless we can identify a general pattern of
activities that captures the essential steps in a variety of different functional
test design techniques. By describing particular functional testing techniques
as instantiations of this general pattern, relations among the techniques may
become clearer, and the test designer may gain some insight into adapting
and extending these techniques to the characteristics of other applications
and situations.

Figure 13.2 identifies the general steps of systematic approaches. The
steps may be difficult or trivial depending on the application domain and the
available program specifications. Some steps may be omitted depending on
the application domain, the available specifications and the test designers’
expertise. Instances of the process can be obtained by suitably instantiating
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different steps. Although most techniques are presented and applied as stand
alone methods, it is also possible to mix and match steps from different tech-
niques, or to apply different methods for different parts of the system to be
tested.

Identify Independently Testable Features Functional specifications can be
large and complex. Usually, complex specifications describe systems that can
be decomposed into distinct features. For example, the specification of a web
site may include features for searching the site database, registering users’
profiles, getting and storing information provided by the users in different
forms, etc. The specification of each of these features may comprise several
functionalities. For example, the search feature may include functionalities
for editing a search pattern, searching the data base with a given pattern,
and so on. Although it is possible to design test cases that exercise several
functionalities at once, the design of different tests for different functionali-
ties can simplify the test generation problem, allowing each functionality to
be examined separately. Moreover, it eases locating faults that cause the re-
vealed failures. It is thus recommended to devise separate test cases for each
functionality of the system, whenever possible.

The preliminary step of functional testing consists in partitioning the spec-
ifications into features that can be tested separately. This can be an easy step
for well designed, modular specifications, but informal specifications of large
systems may be difficult to decompose into independently testable features.
Some degree of formality, at least to the point of careful definition and use of
terms, is usually required.

Identification of functional features that can be tested separately is dif-
ferent from module decomposition. In both cases we apply the divide and
conquer principle, but in the former case, we partition specifications accord-
ing to the functional behavior as perceived by the users of the software under
test,5 while in the latter, we identify logical units that can be implemented
separately. For example, a web site may require a sort function, as a service
routine, that does not correspond to an external functionality. The sort func-
tion may be a functional feature at module testing, when the program under
test is the sort function itself, but is not a functional feature at system test,
while deriving test cases from the specifications of the whole web site. On
the other hand, the registration of a new user profile can be identified as one
of the functional features at system level testing, even if such functionality is
implemented with several modules (unit at the design level) of the system.
Thus, identifying functional features does not correspond to identifying sin-
gle modules at the design level, but rather to suitably slicing the specifications
to be able to attack their complexity incrementally, aiming at deriving useful
test cases for the whole system under test.

5Here the word user indicates who uses the specified service. It can be the user of the system,
when dealing with specification at system level; but it can be another module of the system,
when dealing with specifications at unit level.
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Figure 13.2: The main steps of a systematic approach to functional program
testing.
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Independently testable features are described by identifying all the inputs
that form their execution environments. Inputs may be given in different
forms depending on the notation used to express the specifications. In some
cases they may be easily identifiable. For example, they can be the input al-
phabet of a finite state machine specifying the behavior of the system. In
other cases, they may be hidden in the specification. This is often the case of
informal specifications, where some inputs may be given explicitly as param-
eters of the functional unit, but other inputs may be left implicit in the de-
scription. For example, a description of how a new user registers at a web site
may explicitly indicate the data that constitutes the user profile to be inserted
as parameters of the functional unit, but may leave implicit the collection of
elements (e.g., database) in which the new profile must be inserted.

Trying to identify inputs may help in distinguishing different functions.
For example, trying to identify the inputs of a graphical tool may lead to a
clearer distinction between the graphical interface per se and the associated
calbacks to the application. With respect to the web-based user registration
function, the data to be inserted in the database are part of the execution
environment of the functional unit that performs the insertion of the user
profile, while the combination of fields that can be use to construct such data
is part of the execution environment of the functional unit that takes care of
the management of the specific graphical interface.

Identify Representative Classes of Values or Derive a Model The execution
environment of the feature under test determines the form of the final test
cases, which are given as combinations of values for the inputs to the unit.
The next step of a testing process consists of identifying which values of each
input can be chosen to form test cases. Representative values can be identi-
fied directly from informal specifications expressed in natural language. Al-
ternativey, representative values may be selected indirectly through a model,
which can either be produced only for the sake of testing or be available as
part of the specification. In both cases, the aim of this step is to identify the
values for each input in isolation, either explicitly through enumeration, or
implicitly trough a suitable model, but not to select suitable combinations of
such values, i.e., test case specifications. In this way, we separate the prob-
lem of identifying the representative values for each input, from the problem
of combining them to obtain meaningful test cases, thus splitting a complex
step into two simpler steps.

Most methods that can be applied to informal specifications rely on ex-
plicit enumeration of representative values by the test designer. In this case,
it is very important to consider all possible cases and take advantage of the in-
formation provided by the specification. We may identify different categories
of expected values, as well as boundary and exceptional or erroneous values.
For example, when considering operations on a non-empty lists of elements,
we may distinguish the cases of the empty list (an error value) and a single-
ton element (a boundary value) as special cases. Usually this step determines
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characteristics of values (e.g., any list with a single element) rather than actual
values.

Implicit enumeration requires the construction of a (partial) model of the
specifications. Such a model may be already available as part of a specifi-
cation or design model, but more often it must be constructed by the test
designer, in consultation with other designers. For example, a specification
given as a finite state machine implicitly identifies different values for the in-
puts by means of the transitions triggered by the different values. In some
cases, we can construct a partial model as a mean for identifying different
values for the inputs. For example, we may derive a grammar from a specifi-
cation and thus identify different values according to the legal sequences of
productions of the given grammar.

Directly enumerating representative values may appear simpler and less
expensive than producing a suitable model from which values may be de-
rived. However, a formal model may also be valuable in subsequent steps of
test case design, including selection of combinations of values. Also, a for-
mal model may make it easier to select a larger or smaller number of test
cases, balancing cost and thoroughness, and may be less costly to modify and
reuse as the system under test evolves. Whether to invest effort in producing a
model is ultimately a management decision that depends on the application
domain, the skills of test designers, and the availability of suitable tools.

Generate Test Case Specifications Test specifications are obtained by suit-
ably combining values for all inputs of the functional unit under test. If rep-
resentative values were explicitly enumerated in the previous step, then test
case specifications will be elements of the Cartesian product of values se-
lected for each input. If a formal model was produced, then test case specifi-
cations will be specific behaviors or combinations of parameters of the model,
and single test case specification could be satisfied by many different con-
crete inputs. Either way, brute force enumeration of all combinations is un-
likely to be satisfactory.

The number of combinations in the Cartesian product of independently
selected values grows as the product of the sizes of the individual sets. For a
simple functional unit with 5 inputs each characterized by 6 values, the size
of the Cartesian product is �� � 	� 		� test case specifications, which may be
an impractical number for test cases for a simple functional unit. Moreover, if
(as is usual) the characteristics are not completely orthogonal, many of these
combinations may not even be feasible.

Consider the input of a function that searches for occurrences of a com-
plex pattern in a web database. Its input may be characterized by the length
of the pattern and the presence of special characters in the pattern, among
other aspects. Interesting values for the length of the pattern may be zero,
one, or many. Interesting values for the presence of special characters may be
zero, one, or many. However, the combination of value “zero” for the length
of the pattern and value “many” for the number of special characters in the
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pattern is clearly impossible.
The test case specifications represented by the Cartesian product of all

possible inputs must be restricted by ruling out illegal combinations and se-
lecting a practical subset of the legal combinations. Illegal combinations are
usually eliminated by constraining the set of combinations. For example, in
the case of the complex pattern presented above, we can constrain the choice
of one or more special characters to a positive length of the pattern, thus rul-
ing out the illegal cases of patterns of length zero containing special charac-
ters.

Selection of a practical subset of legal combination can be done by adding
information that reflects the hazard of the different combinations as perceived
by the test designer or by following combinatorial considerations. In the for-
mer case, for example, we can identify exceptional values and limit the com-
binations that contain such values. In the pattern example, we may consider
only one test for patterns of length zero, thus eliminating many combinations
that can be derived for patterns of length zero. Combinatorial considerations
reduce the set of test cases by limiting the number of combination of values of
different inputs to a subset of the inputs. For example, we can generate only
tests that exhaustively cover all combinations of values for inputs considered
pair by pair.

Depending on the technique used to reduce the space represented by the
Cartesian product, we may be able to estimate the number of test cases gen-
erated with the approach and modify the selected subset of test cases accord-
ing to budget considerations. Subsets of combinations of values, i.e., poten-
tial special cases, can be often derived from models of behavior by applying
suitable test selection criteria that identify subsets of interesting behaviors
among all behaviors represented by a model, for example by constraining the
iterations on simple elements of the model itself. In many cases, test selection
criteria can be applied automatically.

Generate Test Cases and Instantiate Tests The test generation process is
completed by turning test case specifications into test cases and instantiating
them. Test case specifications can be turned into test cases by selecting one
or more test cases for each item of the test case specification.

13.4 Category-Partition Testing

Category-partition testing is a method for generating functional tests from in-
formal specifications. The main steps covered by the core part of the category-
partition method are:

A. Decompose the specification into independently testable features: Test de-
signers identify features to be tested separately, and identify parame-
ters and any other elements of the execution environment the unit de-
pends on. Environment dependencies are treated identically to explicit
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parameters. For each parameter and environment element, test de-
signers identify the elementary parameter characteristics, which in the
category-partition method are usually called categories. � ��
��
�

 ���
���

�����

�  ��
��
�

B. Identify Relevant Values: Test designers select a set of representative classes
of values for each parameter characteristic. Values are selected in isola- �  ����
� �! ����
�

tion, independent of other parameter characteristics. In the category-
partition method, classes of values are called choices, and this activity is �  ����


called partitioning the categories into choices.

C. Generate Test Case Specifications: Test designers indicate invalid combi-
nations of values and restrict valid combinations of values by imposing
semantic constraints on the identified values. Semantic constraints re-
strict the values that can be combined and identify values that need not
be tested in different combinations, e.g., exceptional or invalid values.

Categories, choices, and constraints can be provided to a tool to auto-
matically generate a set of test case specifications. Automating trivial and
repetitive activities such as these makes better use of human resources and
reduces errors due to distraction. Just as important, it is possible to deter-
mine the number of test cases that will be generated (by calculation, or by ac-
tually generating them) before investing any human effort in test execution. If
the number of derivable test cases exceeds the budget for test execution and
evaluation, test designers can reduce the number of test cases by imposing
additional semantic constraints. Controlling the number of test cases before
test execution begins is preferable to ad hoc approaches in which one may at
first create very thorough test suites and then test less and less thoroughly as
deadlines approach.

We illustrate the category-partition method using a specification of a fea-
ture from the direct sales web site of Chipmunk Electronic Ventures. Cus-
tomers are allowed to select and price custom configurations of Chipmunk
computers. A configuration is a set of selected options for a particular model
of computer. Some combinations of model and options are not valid (e.g.,
digital LCD monitor with analog video card), so configurations are tested for
validity before they are priced. The check-configuration function (Table 13.3)
is given a model number and a set of components, and returns the boolean
value True if the configuration is valid or False otherwise. This function has
been selected by the test designers as an independently testable feature.

A. Identify Independently Testable Features and Parameter Characteristics
We assume that step 
 starts by selecting the Check-configuration feature to
be tested independently of other features. This entails choosing to separate
testing of the configuration check per se from its presentation through a user
interface (e.g., a web form), and depends on the architectural design of the
software system.
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Figure 13.3: The functional specification of the feature Check-configuration
of the web site of a computer manufacturer.
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Step
 requires the test designer to identify the parameter characteristics,
i.e., the elementary characteristics of the parameters and environment ele-
ments that affect the unit’s execution. A single parameter may have multi-
ple elementary characteristics. A quick scan of the functional specification
would indicate model and components as the parameters of check configu-
ration. More careful consideration reveals that what is “valid” must be deter-
mined by reference to additional information, and in fact the functional spec-
ification assumes the existence of a data base of models and components.
The data base is an environment element that, although not explicitly men-
tioned in the functional specification, is required for executing and thus test-
ing the feature, and partly determines its behavior. Note that our goal is not
to test a particular configuration of the system with a fixed database, but to
test the generic system which may be configured through different database
contents.

Having identified model, components, and product database as the pa-
rameters and environment elements required to test the Check-configuration
functionality, the test designer would next identify the parameter character-
istics of each.

Model may be represented as an integer, but we know that it is not to be
used arithmetically, but rather serves as a key to the database and other ta-
bles. The specification mentions that a model is characterized by a set of slots
for required components and a set of slot for optional components. We may
identify model number, number of required slots, and number of optional slots
as characteristics of parameter model.

Parameter components is a collection of ������ ����	����� pairs. The size
of a collection is always an important characteristic, and since components
are further categorized as required or optional, the test designer may identify
number of required components with non-empty selection and number of op-
tional components with non-empty selection as characteristics. The match-
ing between the tuple passed to Check-Configuration and the one actually
required by the selected model is important and may be identified as cate-
gory Correspondence of selection with model slots. The actual selections are
also significant, but for now the test designer simply identifies required com-
ponent selection and optional component selection, postponing selection of
relevant values to the next stage in test design.

The environment element product database is also a collection, so num-
ber of models in the database and number of components in the database are
parameter characteristics. Actual values of database entries are deferred to
the next step in test design.

There are no hard-and-fast rules for choosing categories, and it is not a
trivial task. Categories reflect the test designer’s judgment regarding which
classes of values may be treated differently by an implementation, in addi-
tion to classes of values that are explicitly identified in the specification. Test
designers must also use their experience and knowledge of the application
domain and product architecture to look under the surface of the specifica-
tion and identify hidden characteristics. For example, the specification frag-
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ment in Table 13.3 makes no distinction between configurations of models
with several required slots and models with none, but the experienced test
designer has seen enough failures on “degenerate” inputs to test empty col-
lections wherever a collection is allowed.

The number of options that can (or must) be configured for a particular
model of computer may vary from model to model. However, the category-
partition method makes no direct provision for structured data, such as sets
of ������ ����	����� pairs. A typical approach is to “flatten” collections and de-
scribe characteristics of the whole collection as parameter characteristics.
Typically the size of the collection (the length of a string, for example, or in
this case the number of required or optional slots) is one characteristic, and
descriptions of possible combination of elements (occurrence of a special
characters in a string, for example, or in this case the selection of required
and optional components) are separate parameter characteristics.

Suppose the only significant variation among ������ ����	����� pairs was
between pairs that are compatible and pairs that are incompatible. If we
treated each ������ ����	����� pair as a separate characteristic, and assumed
� slots, the category-partition method would generate all �� combinations of
compatible and incompatible slots. Thus we might have a test case in which
the first selected option is compatible, the second is compatible, and the third
incompatible, and a different test case in which the first is compatible but the
second and third are incompatible, and so on, and each of these combina-
tions could be combined in several ways with other parameter characteris-
tics. The number of combinations quickly explodes, and moreover since the
number of slots is not actually fixed, we cannot even place an upper bound
on the number of combinations that must be considered. We will therefore
choose the flattening approach and select possible patterns for the collection
as a whole.

Should the representative values of the flattened collection of pairs be one
compatible selection, one incompatible selection, all compatible selections, all
incompatible selections, or should we also include mix of 2 or more compatible
and 2 or more incompatible selections? Certainly the latter is more thorough,
but whether there is sufficient value to justify the cost of this thoroughness is
a matter of judgment by the test designer.

We have oversimplified by considering only whether a selection is com-
patible with a slot. It might also happen that the selection does not appear in
the database. Moreover, the selection might be incompatible with the model,
or with a selected component of another slot, in addition to the possibility
that it is incompatible with the slot for which it has been selected. If we treat
each such possibility as a separate parameter characteristic, we will gener-
ate many combinations, and we will need semantic constraints to rule out
combinations like there are three options, at least two of which are compati-
ble with the model and two of which are not, and none of which appears in
the database. On the other hand, if we simply enumerate the combinations
that do make sense and are worth testing, then it becomes more difficult to
be sure that no important combinations have been omitted. Like all design
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decisions, the way in which collections and complex data are broken into pa-
rameter characteristics requires judgment based on a combination of analy-
sis and experience.

B. Identify Relevant Values This step consists of identifying a list of rele-
vant values (more precisely, a list of classes of relevant values) for each of the
parameter characteristics identified during step 
. Relevant values should
be identified for each category independently, ignoring possible interactions
among values for different categories, which are considered in the next step.

Relevant values may be identified by manually applying a set of rules known
as boundary value testing or erroneous condition testing. The boundary value
testing rule suggests selection of extreme values within a class (e.g., maxi-
mum and minimum values of the legal range), values outside but as close as
possible to the class, and “interior” (non-extreme) values of the class. Values
near the boundary of a class are often useful in detecting “off by one” errors
in programs. The erroneous condition rule suggests selecting values that are
outside the normal domain of the program, since experience suggests that
proper handling of error cases is often overlooked.

Table 13.1 summarizes the parameter characteristics and the correspond-
ing relevant values identified for feature Check-configuration.6 For numeric
characteristics, whose legal values have a lower bound of �, i.e., number of
models in database and number of components in database, we identify �, the
erroneous value, �, the boundary value, and����, the class of values greater
than �, as the relevant value classes. For numeric characteristics whose lower
bound is zero, i.e., number of required slots for selected model and number
of optional slots for selected model, we identify � as a boundary value, � and
many as other relevant classes of values. Negative values are impossible here,
so we do not add a negative error choice. For numeric characteristics whose
legal values have definite lower and upper-bounds, i.e., number of optional
components with selection 	� empty and number of optional components with
selection 	� empty, we identify boundary and (when possible) erroneous con-
ditions corresponding to both lower and upper bounds.

Identifying relevant values is an important but tedious task. Test design-
ers may improve manual selection of relevant values by using the catalog ap-
proach described in Section 13.8, which captures the informal approaches
used in this section with a systematic application of catalog entries.

C. Generate Test Case Specifications A test case specification for a feature
is given as a combination of values, one for each identified parameter char-
acteristic. Unfortunately, the simple combination of all possible relevant val-
ues for each parameter characteristic results in an unmanageable number of
test cases (many of which are impossible) even for simple specifications. For

6At this point, readers may ignore the items in square brackets, which indicate the constraints
as identified in step � of the category-partition method.
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Table 13.1: An example category-partition test specification for the the con-
figuration checking feature of the web site of a computer vendor.
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example, in the Table 13.1 we find 7 categories with 3 value classes, 2 cate-
gories with 6 value classes, and one with four value classes, potentially result-
ing in 
	 � �� � � � 
��� ��� test cases, which would be acceptable only if
the cost of executing and checking each individual test case were very small.
However, not all combinations of value classes correspond to reasonable test
case specifications. For example, it is not possible to create a test case from
a test case specification requiring a valid model (a model appearing in the
database) where the database contains zero models.

The category-partition method allows one to omit some combinations by
indicating value classes that need not be combined with all other values. The
label 
������ indicates a value class that need be tried only once, in combina-
tion with non-error values of other parameters. When 
������ constraints are
considered in the category-partition specification of Table 13.1, the number
of combinations to be considered is reduced to �� 
� 
� �� �� 
� �� ��
�� � � �� � �	��. Note that we have treated “component not in database” as
an error case, but have treated “incompatible with slot” as a normal case of
an invalid configuration; once again, some judgment is required.

Although the reduction from 314,928 to 2,711 is impressive, the number
of derived test cases may still exceed the budget for testing such a simple fea-
ture. Moreover, some values are not erroneous per se, but may only be useful
or even valid in particular combinations. For example, the number of op-
tional components with non-empty selection is relevant to choosing useful
test cases only when the number of optional slots is greater than 1. A num-
ber of non-empty choices of required component greater than zero does not
make sense if the number of required components is zero.

Erroneous combinations of valid values can be ruled out with the property
and if-property constraints. The property constraint groups values of a single
parameter characteristic to identify subsets of values with common proper-
ties. The property constraint is indicated with label property PropertyName,
where PropertyName identifies the property for later reference. For exam-
ple, property RSNE (required slots non-empty) in Table 13.1 groups values
that correspond to non-empty sets of required slots for the parameter char-
acteristic Number of Required Slots for Selected Model (#SMRS), i.e., values 1
and many. Similarly, property OSNE (optional slots non-empty) groups non-
empty values for the parameter characteristic Number of Optional Slots for
Selected Model (#SMOS).

The if-property constraint bounds the choices of values for a parameter
characteristic once a specific value for a different parameter characteristic
has been chosen. The if-property constraint is indicated with label if Proper-
tyName, where PropertyName identifies a property defined with the property
constraint. For example, the constraint if RSNE attached to values 0 and �
number of required slots of parameter characteristic Number of required com-
ponents with selection 	� empty limits the combination of these values with
the values of the parameter characteristics Number of Required Slots for Se-
lected Model (#SMRS), i.e., values 1 and many, thus ruling out the illegal com-
bination of values 0 or�number of required slots for Number of required com-
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ponents with selection 	� empty with value 0 for Number of Required Slots for
Selected Model (#SMRS). Similarly, the if OSNE constraint limits the combina-
tions of values of the parameter characteristics Number of optional compo-
nents with selection 	� empty and Number of Optional Slots for Selected Model
(#SMOS).

The property and if-property constraints introduced in Table 13.1 further
reduce the number of combinations to be considered to �� 
� � � � � �
 �
����� �� �� �� ���� � ����. (Exercise Ex13.4 discusses derivation of this
number.)

The number of combinations can be further reduced by iteratively adding
property and if-property constraints and by introducing the new single con-
straint, which is indicated with label single and acts like the error constraint,
i.e., it limits the number of occurrences of a given value in the selected com-
binations to 1.

Introducing new property, if-property, and single constraints further does
not rule out erroneous combinations, but reflects the judgment of the test de-
signer, who decides how to restrict the number of combinations to be consid-
ered by identifying single values (single constraint) or combinations (property
and if-property constraints) that are less likely to need thorough test accord-
ing to the test designer’s judgment.

The single constraints introduced in Table 13.1 reduces the number of
combinations to be considered to ����������
������������ �	,
which may be a reasonable tradeoff between costs and quality for the con-
sidered functionality. The number of combinations can also be reduced by
applying combinatorial techniques, as explained in the next section.

The set of combinations of values for the parameter characteristics can
be turned into test case specifications by simply instantiating the identified
combinations. Table 13.2 shows an excerpt of test case specifications. The
error tag in the last column indicates test cases specifications corresponding
to the error constraint. Corresponding test cases should produce an error
indication. A dash indicates no constraints on the choice of values for the
parameter or environment element.

Choosing meaningful names for parameter characteristics and value classes
allows (semi)automatic generation of test case specifications.

13.5 The Combinatorial Approach

However one obtains sets of value classes for each parameter characteristic,
the next step in producing test case specifications is selecting combinations
of classes for testing. A simple approach is to exhaustively enumerate all
possible combinations of classes, but the number of possible combinations
rapidly explodes.

Some methods, such as the category-partition method described in the
previous section, take exhaustive enumeration as a base approach to gener-
ating combinations, but allow the test designer to add constraints that limit
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Table 13.2: An excerpt of test case specifications derived from the value
classes given in Table 13.1

growth in the number of combinations. This can be a reasonable approach
when the constraints on test case generation reflect real constraints in the
application domain, and eliminate many redundant combinations (for ex-
ample, the “error” entries in category-partition testing). It is less satisfactory
when, lacking real constraints from the application domain, the test designer
is forced to add arbitrary constraints (e.g., “single” entries in the category-
partition method) whose sole purpose is to reduce the number of combina-
tions.

Consider the parameters that control the Chipmunk web-site display, shown
in Table 13.3. Exhaustive enumeration produces 432 combinations, which
is too many if the test results (e.g., judging readability) involve human judg-
ment. While the test designer might hypothesize some constraints, such as
observing that monochrome displays are limited mostly to hand-held de-
vices, radical reductions require adding several “single” and “property” con-
straints without any particular rationale.

Exhaustive enumeration of all �-way combinations of value classes for
� parameters, on the one hand, and coverage of individual classes, on the
other, are only the extreme ends of a spectrum of strategies for generating
combinations of classes. Between them lie strategies that generate all pairs of
classes for different parameters, all triples, and so on. When it is reasonable
to expect some potential interaction between parameters (so coverage of in-
dividual value classes is deemed insufficient), but covering all combinations
is impractical, an attractive alternative is to generate �-way combinations for
� � �, typically pairs or triples.

How much does generating possible pairs of classes save, compared to
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Table 13.3: Parameters and values controlling Chipmunk web-site display

generating all combinations? We have already observed that the number of
all combinations is the product of the number of classes for each parameter,
and that this product grows exponentially with the number of parameters.
It turns out that the number of combinations needed to cover all possible
pairs of values grows only logarithmically with the number of parameters —
an enormous saving.

A simple example may suffice to gain some intuition about the efficiency
of generating tuples that cover pairs of classes, rather than all combinations.
Suppose we have just the three parameters display mode, screen size, and
fonts from Table 13.3. If we consider only the first two, display mode and
screen size, the set of all pairs and the set of all combinations are identical,
and contain 
 � 
 � � pairs of classes. When we add the third parameter,
fonts, generating all combinations requires combining each value class from
fonts with every pair of display mode� screen size, a total of 27 tuples; extend-
ing from � to ��� parameters is multiplicative. However, if we are generating
pairs of values from display mode, screen size, and fonts, we can add value
classes of fonts to existing elements of display mode� screen size in a way that
covers all the pairs of fonts�screen size and all the pairs of fonts�display mode
without increasing the number of combinations at all (see Table 13.4). The
key is that each tuple of three elements contains three pairs, and by careful
selecting value classes of the tuples we can make each tuple cover up to three
different pairs.

Table 13.5 shows 17 tuples that cover all pairwise combinations of value
classes of the five parameters. The entries not specified in the table (“–”) cor-
respond to open choices. Each of them can be replaced by any legal value
for the corresponding parameter. Leaving them open gives more freedom for
selecting test cases.

Generating combinations that efficiently cover all pairs of classes (or triples,
or . . . ) is nearly impossible to perform manually for many parameters with
many value classes (which is, of course, exactly when one really needs to use
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Table 13.4: Covering all pairs of value classes for three parameters by extend-
ing the cross-product of two parameters

the approach). Fortunately, efficient heuristic algorithms exist for this task,
and they are simple enough to incorporate in tools.7

The tuples in Table 13.5 cover all pairwise combinations of value choices
for parameters. In many cases not all choices may be allowed. For exam-
ple, the specification of the Chipmunk web-site display may indicate that
monochrome displays are limited to hand-held devices. In this case, the tu-
ples covering the pairs �Monochrome�Laptop� and �Monochrome�Full-size�,
i.e., the fifth and ninth tuples of Table 13.5, would not correspond to legal in-
puts. We can restrict the set of legal combinations of value classes by adding
suitable constraints. Constraints can be expressed as tuples with wild-card
characters to indicate any possible value class. For example, the constraints

��� �� ��Monochrome�Laptop�
��� �� ��Monochrome�Full-size�

indicates that tuples that contain the pair �Monochrome�Hand-held� as
values for the fourth and fifth parameter are not allowed in the relation of Ta-
ble 13.3. Tuples that cover all pairwise combinations of value classes without
violating the constraints can be generated by simply removing the illegal tu-
ples and adding legal tuples that cover the removed pairwise combinations.
Open choices must be bound consistently in the remaining tuples, e.g., tuple

�Portuguese�Monochrome�Text-only� -� -�
must become

�Portuguese�Monochrome�Text-only� -�Hand-held�
Constraints can also be expressed with sets of tables to indicate only the

legal combinations, as illustrated in Table 13.6, where the first table indicates
7Exercise Ex13.12 discusses the problem of computing suitable combinations to cover all

pairs.
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Table 13.5: Covering all pairs of value classes for the five parameters

that the value class Hand-held for parameter Screen can be combined with
any value class of parameter Color, including Monochrome, while the sec-
ond table indicates that the value classes Laptop and Full-size for parameter
Screen size can be combined with all values classes but Monochrome for pa-
rameter Color.

If constraints are expressed as a set of tables that give only legal combi-
nations, tuples can be generated without changing the heuristic. Although
the two approaches express the same constraints, the number of generated
tuples can be different, since different tables may indicate overlapping pairs
and thus result in a larger set of tuples. Other ways of expressing constraints
may be chosen according to the characteristics of the specifications and the
preferences of the test designer.

So far we have illustrated the combinatorial approach with pairwise cov-
erage. As previously mentioned, the same approach can be applied for triples
or larger combinations. Pairwise combinations may be sufficient for some
subset of the parameters, but not enough to uncover potential interactions
among other parameters. For example, in the Chipmunk display example,
the fit of text fields to screen areas depends on the combination of language,
fonts, and screen size. Thus, we may prefer exhaustive coverage of combi-
nations of these three parameters, but be satisfied with pairwise coverage of
other parameters. In this case, we first generate tuples of classes from the
parameters to be most thoroughly covered, and then extend these with the
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Table 13.6: Pairs of tables that indicate valid value classes for the Chipmunk
web-site display controller
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parameters which require less coverage.8

13.6 Testing Decision Structures

The combinatorial approaches described above primarily select combina-
tions of orthogonal choices. They can accommodate constraints among choices,
but their strength is in generating combinations of (purportedly) indepen-
dent choices. Some specifications, formal and informal, have a structure that
emphasizes the way particular combinations of parameters or their proper-
ties determine which of several potential outcomes is chosen. Results of the
computation may be determined by boolean predicates on the inputs. In
some cases, choices are specified explicitly as boolean expressions. More of-
ten, choices are described either informally or with tables or graphs that can
assume various forms. When such a decision structure is present, it can play
a part in choosing combinations of values for testing.

For example, the informal specification of Figure 13.4 describes outputs
that depend on type of account (either educational, or business, or individ-
ual), amount of current and yearly purchases, and availability of special prices.
These can be considered as boolean conditions, e.g., the condition educa-
tional account is either true or false (even if the type of account is actually
represented in some other manner). Outputs can be described as boolean
expressions over the inputs, e.g., the output no discount can be associated
with the boolean expression

individual account
�
 current purchase � tier 1 individual threshold
�
 special offer price � individual scheduled price
� business account
�
 current purchase � tier 1 business threshold
�
 current purchase � tier 1 business yearly threshold
�
 special offer price � business scheduled price

When functional specifications can be given as boolean expressions, a
good test suite should exercise at least the effects of each elementary con-
dition occurring in the expression. (In ad hoc testing, it is common to miss a
bug in one elementary condition by choosing test cases in which it is “masked”
by other conditions.) For simple conditions, we might derive test case speci-
fications for all possible combinations of truth values of the elementary con-
ditions. For complex formulas, testing all �� combinations of � elementary
conditions is apt to be too expensive; we can select a much smaller subset of
combinations that checks the effect of each elementary condition. A good
way of exercising all elementary conditions with a limited number of test
cases is deriving a set of combinations such that each elementary condition
can be shown to independently affect the outcome.

8See exercise Ex13.14 for additional details.
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Pricing: The pricing function determines the adjusted price of a configuration for a
particular customer. The scheduled price of a configuration is the sum of the
scheduled price of the model and the scheduled price of each component in the
configuration. The adjusted price is either the scheduled price, if no discounts
are applicable, or the scheduled price less any applicable discounts.

There are three price schedules and three corresponding discount schedules,
Business, Educational, and Individual. The Business price and discount sched-
ules apply only if the order is to be charged to a business account in good stand-
ing. The Educational price and discount schedules apply to educational institu-
tions. The Individual price and discount schedules apply to all other customers.
Account classes and rules for establishing business and educational accounts
are described further in [. . . ].

A discount schedule includes up to three discount levels, in addition to the pos-
sibility of “no discount.” Each discount level is characterized by two threshold
values, a value for the current purchase (configuration schedule price) and a
cumulative value for purchases over the preceding 12 months (sum of adjusted
price).

Educational prices The adjusted price for a purchase charged to an educational ac-
count in good standing is the scheduled price from the educational price sched-
ule. No further discounts apply.

Business account discounts Business discounts depend on the size of the current
purchase as well as business in the preceding 12 months. A tier 1 discount is
applicable if the scheduled price of the current order exceeds the tier 1 current
order threshold, or if total paid invoices to the account over the preceding 12
months exceeds the tier 1 year cumulative value threshold. A tier 2 discount
is applicable if the current order exceeds the tier 2 current order threshold, or
if total paid invoices to the account over the preceding 12 months exceeds the
tier 2 cumulative value threshold. A tier 2 discount is also applicable if both the
current order and 12 month cumulative payments exceed the tier 1 thresholds.

Individual discounts Purchase by individuals and by others without an established
account in good standing are based on current value alone (not on cumula-
tive purchases). A tier 1 individual discount is applicable if the scheduled price
of the configuration in the current order exceeds the the tier 1 current order
threshold. A tier 2 individual discount is applicable if the scheduled price of the
configuration exceeds the tier 2 current order threshold.

Special-price non-discountable offers Sometimes a complete configuration is of-
fered at a special, non-discountable price. When a special, non-discountable
price is available for a configuration, the adjusted price is the non-discountable
price or the regular price after any applicable discounts, whichever is less.

Figure 13.4: The functional specification of feature pricing of the Chipmunk
web site.
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A predicate is a function with a boolean (True or False) value. When the input argu-
ment of the predicate is clear, particularly when it describes some property of the input of
a program, we often leave it implicit. For example, the actual representation of account
types in an information system might be as three-letter codes, but in a specification we
may not be concerned with that representation — we know only that there is some pred-
icate educational-account which is either True or False.

An elementary condition is a single predicate that cannot be decomposed further. A
complex condition is made up of elementary conditions, combined with boolean con-
nectives.

The boolean connectives include “and” (�), “or” (�), “not” (
), and several less com-
mon derived connectives such as “implies” and “exclusive or.”

A systematic approach to testing boolean specifications consists in first
constructing a model of the boolean specification and then applying test cri-
teria to derive test case specifications.

STEP 1: derive a model of the decision structure We can produce different
models of the decision structure of a specification, depending on the original
specification and on the technique we use for deriving test cases. For exam-
ple, if the original specification prescribes a sequence of decisions, either in
a program-like syntax or perhaps as a decision tree, we may decide not to de-
rive a different model but rather treat it as a conditional statement. Then we
can directly apply the methods described in Chapter 14 for structural testing,
i.e., basic condition, compound condition, or modified condition/decision
adequacy criteria. On the other hand, if the original specification is expressed
informally as in Figure 13.4, we can transform it into either a boolean expres-
sion or a graph or a tabular model before applying a test case generation tech-
nique.

Techniques for deriving test case specifications from decision structures
were originally developed for graph models, and in particular cause effect
graphs, which have been used since the early seventies. Cause-effect graphs
are tedious to derive and do not scale well to complex specifications. Tables,
on the other hand, are easy to work with and scale well.

A decision structure can be represented with a decision table where rows
correspond to elementary conditions and columns correspond to combina-
tions of elementary conditions. The last row of the table indicates the ex-
pected outputs. Cells of the table are labeled either true, false, or don’t care
(usually written –), to indicate the truth value of the elementary condition.
Thus, each column is equivalent to a logical expression joining the required
values (negated, in the case of false entries) and omitting the elementary con-
ditions with don’t care values.9

9The set of columns sharing a label is therefore equivalent to a logical expression in sum-of-
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Decision tables are completed with a set of constraints that limit the pos-
sible combinations of elementary conditions. A constraint language can be
based on boolean logic. Often it is useful to add some shorthand notations
for common conditions that are tedious to express with the standard connec-
tives, such as at-most-one(C1, . . . , Cn) and exactly-one(C1, . . . , Cn).

Figure 13.5 shows the decision table for the functional specification of fea-
ture pricing of the Chipmunk web site presented in Figure 13.4.

The informal specification of Figure 13.4 identifies three customer pro-
files: educational, business, and individual. Table 13.5 has only rows edu-
cational and business. The choice individual corresponds to the combina-
tion false, false for choices educational and business, and is thus redundant.
The informal specification of Figure 13.4 indicates different discount poli-
cies depending on the relation between the current purchase and two pro-
gressive thresholds for the current purchase and the yearly cumulative pur-
chase. These cases correspond to rows 3 through 6 of table 13.5. Conditions
on thresholds that do not correspond to individual rows in the table can be
defined by suitable combinations of values for these rows. Finally, the infor-
mal specification of Figure 13.4 distinguishes the cases in which special offer
prices do not exceed either the scheduled or the tier 1 or tier 2 prices. Rows 7
through 9 of the table, suitably combined, capture all possible cases of special
prices without redundancy.

Constraints formalize the compatibility relations among different elemen-
tary conditions listed in the table: Educational and Business accounts are
exclusive; A cumulative purchase exceeding threshold tier 2, also exceeds
threshold tier 1; a yearly purchase exceeding threshold tier 2, also exceeds
threshold tier 1; a cumulative purchase not exceeding threshold tier 1 does
not exceed threshold tier 2; a yearly purchase not exceeding threshold tier 1
does not exceed threshold tier 2; a special offer price not exceeding thresh-
old tier 1 does not exceed threshold tier 2; and finally, a special offer price
exceeding threshold tier 2 exceeds threshold tier 1.

STEP 2: derive test case specifications from a model of the decision struc-
ture Different criteria can be used to generate test suites of differing com-
plexity from decision tables.

The basic condition adequacy criterion requires generation of a test case
specification for each column in the table, and corresponds to the intuitive
principle of generating a test case to produce each possible result. Don’t care � �����  ��������  �"

��


entries of the table can be filled out arbitrarily, so long as constraints are not
violated.

The compound condition adequacy criterion requires a test case specifi-
cation for each combination of truth values of elementary conditions. The �  �������  ��������  �"

��


compound condition adequacy criterion generates a number of cases expo-
nential in the number of elementary conditions, and can thus be applied only
to small sets of elementary conditions.

products form.
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Education Individual Business
Edu. T T F F F F F F - - - - - - - - - - - -
Bus. - - F F F F F F T T T T T T T T T T T T
CP� CT1 - - F F T T - - F F T T F F T T - - - -
YP� YT1 - - - - - - - - F F F F T T T T - - - -
CP� CT2 - - - - F F T T - - F F - - - - T T - -
YP� YT2 - - - - - - - - - - - - F F - - - - T T
SP� Sc F T F T - - - - F T - - - - - - - - - -
SP� T1 - - - - F T - - - - F T F T - - - - - -
SP� T2 - - - - - - F T - - - - - - F T F T F T
Out Edu SP ND SP T1 SP T2 SP ND SP T1 SP T1 SP T2 SP T2 SP T2 SP

Constraints

at-most-one(Edu, Bus) at-most-one(YP � YT1, YP � YT2)
YP � YT2 � YP � YT1 at-most-one(CP � CT1, CP � CT2)
CP � CT2 � CP � CT1 at-most-one(SP � T1, SP � T2)
SP � T2 � SP � T1

Abbreviations

Edu. Educational account Edu Educational price
Bus. Business account ND No discount
CP � CT1 Current purchase greater than threshold 1 T1 Tier 1
YP � YT1 Year cumulative purchase greater than threshold 1 T2 Tier 2
CP � CT2 Current purchase greater than threshold 2 SP Special Price
YP � YT2 Year cumulative purchase greater than threshold 2
SP � Sc Special Price better than scheduled price
SP � T1 Special Price better than tier 1
SP � T2 Special Price better than tier 2

Figure 13.5: The decision table for the functional specification of feature pricing of the Chipmunk web site of Figure 13.4.
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For the modified condition/decision adequacy criterion (MC/DC), each col-
umn in the table represents a test case specification. In addition, for each of
the original columns, MC/DC generates new columns by modifying each of
the cells containing True or False. If modifying a truth value in one column � #����
�  ��������$	
������

 �"

��
results in a test case specification consistent with an existing column (agree-
ing in all places where neither is don’t care), the two test cases are represented
by one merged column, provided they can be merged without violating con-
straints.

The MC/DC criterion formalizes the intuitive idea that a thorough test
suite would not only test positive combinations of values, i.e., combinations
that lead to specified outputs, but also negative combinations of values, i.e.,
combinations that differ from the specified ones and thus should produce
different outputs, in some cases among the specified ones, in some other
cases leading to error conditions.

Applying MC/DC to column 1 of table 13.5 generates two additional columns:
one for Educational Account = false and Special Price better than scheduled
price = false, and the other for Educational Account = true and Special Price
better than scheduled price = true. Both columns are already in the table
(columns 3 and 2, respectively) and thus need not be added.

Similarly, from column 2, we generate two additional columns correspond-
ing to Educational Account = false and Special Price better than scheduled
price = true, and Educational Account = true and Special Price better than
scheduled price = false, also already in the table.

The generation of a new column for each possible variation of the boolean
values in the columns, varying exactly one value for each new column, pro-
duces 78 new columns, 21 of which can be merged with columns already in
the table. Figure 13.6 shows a table obtained by suitably joining the generated
columns with the existing ones. Many don’t care cells from the original table
are assigned either true or false values, to allow merging of different columns
or to obey constraints. The few don’t-care entries left can be set randomly to
obtain a complete test case specification.

There are many ways of merging columns that generate different tables.
The table in Figure 13.6 may not be the optimal one, i.e., the one with the
fewest columns. The objective in test design is not to find an optimal test
suite, but rather to produce a cost effective test suite with an acceptable trade-
off between the cost of generating and executing test cases and the effective-
ness of the tests.

The table in Figure 13.6 fixes the entries as required by the constraints,
while the initial table in Figure 13.5 does not. Keeping constraints separate
from the table corresponding to the initial specification increases the num-
ber of don’t care entries in the original table, which in turn increases the op-
portunity for merging columns when generating new cases with the MC/DC
criterion. For example, if business account = false, the constraint at-most-
one(Edu, Bus) can be satisfied by assigning either true or false to entry edu-
cational account. Fixing either choice prematurely may later make merging
with a newly generated column impossible.
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Edu. T T F F F F F F F F F F F F F F F F F F T T T T F -
Bus. F F F F F F F F T T T T T T T T T T T T F F F F F F
CP � CT1 T T F F T T T T F F T T F F T T T T F F F F T - - F
YP � YT1 F - F - - F T T F F F F T T T T F F T T T - - - T T
CP � CT2 F F F F F F T T F F F F F F F F T T F F F F T T F F
YP � YT2 - - - - - - - - - - - - F F F F - - T T F - - - T F
SP � Sc F T F T F T - - F T F - F T - T - T - T F T - - - -
SP � T1 F T F T F T F T F T F T F T F T F T F T F - - T T T
SP � T2 F - F - F - F T F - F - F - F T F T F T F F F T T -
Out Edu SP ND SP T1 SP T2 SP ND SP T1 SP T1 SP T2 SP T2 SP T2 SP Edu SP Edu SP SP SP

Abbreviations

Edu. Educational account Edu Educational price
Bus. Business account ND No discount
CP� CT1 Current purchase greater than threshold 1 T1 Tier 1
YP� YT1 Year cumulative purchase greater than threshold 1 T2 Tier 2
CP� CT2 Current purchase greater than threshold 2 SP Special Price
YP� YT2 Year cumulative purchase greater than threshold 2
SP� Sc Special Price better than scheduled price
SP� T1 Special Price better than tier 1
SP� T2 Special Price better than tier 2

Figure 13.6: The set of test cases generated for feature pricing of the Chipmunk web site applying the modified adequacy
criterion.
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13.7 Deriving Test Cases from Control and Data Flow
Graphs

Functional specifications are seldom given as flow graphs, but sometimes
they describe a set of mutually dependent steps to be executed in a given
(partial) order, and can thus be modeled with flow graphs.

For example the specification of Figure 13.7 describes the Chipmunk func-
tionality that processes shipping orders. The specification indicates a set of
steps to check for the validity of fields in the order form. Type and validity of
some of the values depend on other fields in the form. For example, shipping
methods are different for domestic and international customers, and allowed
methods of payment depend on the kind of customer.

The informal specification of Figure 13.7 can be modeled with a control
flow graph, where the nodes represent computations and branches model
flow of control consistently with the dependencies among computations, as
illustrated in Figure 13.8. Given a control or a data flow graph model, we
can generate test case specifications using the criteria originally proposed for
structural testing and described in Chapters ?? and ??.

Control flow testing criteria require test cases that exercise all the ele-
ments of a particular type in a graph. The node testing adequacy criterion
requires each node to be exercised at least once and corresponds to the state-
ment testing structural adequacy criterion. It is easy to verify that test T-node � %��
 &�
'����  
��

���

causes all nodes of the control flow graph of Figure 13.8 to be traversed and
thus satisfies the node adequacy criterion.

T-node

Case Too Ship Ship Cust Pay Same CC
small where method type method addr valid

TC-1 No Int Air Bus CC No Yes
TC-2 No Dom Air Ind CC – No (abort)

Abbreviations:
Too small CostOfGoods �MinOrder ?
Ship where Shipping address, Int = international, Dom = domestic
Ship how Air = air freight, Land = land freight
Cust type Bus = business, Edu = educational, Ind = individual
Pay method CC = credit card, Inv = invoice
Same addr Billing address = shipping address ?
CC Valid Credit card information passes validity check?

The branch testing adequacy criterion requires each branch to be exer-
cised at least once, i.e., each edge of the graph to be traversed for at least one
test case. Test T-branch covers all branches of the control flow graph of Fig- � �
���� &�
'����  
��

���

ure 13.8 and thus satisfies the branch adequacy criterion.
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Process shipping order: The Process shipping order function checks the validity of or-
ders and prepares the receipt.

A valid order contains the following data:

cost of goods If the cost of goods is less than the minimum processable order
(MinOrder) then the order is invalid.

shipping address The address includes name, address, city, postal code, and
country.

preferred shipping method If the address is domestic, the shipping method
must be either land freight, or expedited land freight, or overnight air.
If the address is international, the shipping method must be either air
freight or expedited air freight; a shipping cost is computed based on
address and shipping method.

type of customer which can be individual, business or educational

preferred method of payment Individual customers can use only credit cards,
while business and educational customers can choose between credit
card and invoice.

card information if the method of payment is credit card, fields credit card
number, name on card, expiration date, and billing address, if different
than shipping address, must be provided. If credit card information is not
valid the user can either provide new data or abort the order.

The outputs of Process shipping order are

validity Validity is a boolean output which indicates whether the order can be
processed.

total charge The total charge is the sum of the value of goods and the com-
puted shipping costs (only if validity = true).

payment status if all data are processed correctly and the credit card informa-
tion is valid or the payment is invoice, payment status is set to valid, the
order is entered and a receipt is prepared; otherwise validity = false.

Figure 13.7: The functional specification of feature process shipping order of
the Chipmunk web site.
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preferred shipping method = land freight,�
OR expedited land freight OR overnight air�

�����
Process shipping order�

CostOfGoods < MinOrder�

shipping address�

no�

yes�

domestic�

preferred shipping method  =  air�
freight OR expedited air freight�

international�

calculate domestic shipping charge�calculate international shipping charge�

total charge = goods + shipping�

individual customer� no�

yes�

obtain credit card data: number,�
name on card, expiration date�

method of payement�

credit card�

invoice�

billing address = shipping address�

obtain billing address�

no�

yes�

valid credit card�
information�

no�

yes�

payement status = valid�
enter order�

prepare receipt�

invalid order�

no�no�

abort order?�

no�

yes�

Figure 13.8: The control flow graph corresponding to functionality Process
shipping order of Figure 13.7

Draft version produced 20th March 2002



84 Functional Testing

T-branch

Case Too Ship Ship Cust Pay Same CC
small where method type method addr valid

TC-1 No Int Air Bus CC No Yes
TC-2 No Dom Land – – – –
TC-3 Yes – – – – – –
TC-4 No Dom Air – – – –
TC-5 No Int Land – – – –
TC-6 No – – Edu Inv – –
TC-7 No – – – CC Yes –
TC-8 No – – – CC – No (abort)
TC-9 No – – – CC – No (no abort)

Abbreviations:
(as above)

In principle, other test adequacy criteria described in Chapter 14 can be
applied to more control structures derived from specifications, but in practice
a good specification should rarely result in a complex control structure, since
a specification should abstract details of processing.

13.8 Catalog Based Testing

The test design techniques described above require judgment in deriving value
classes. Over time, an organization can build experience in making these
judgments well. Gathering this experience in a systematic collection can speed
up the process and routinize many decisions, reducing human error. Catalogs
capture the experience of test designers by listing all cases to be considered
for each possible type of variable that represents logical inputs, outputs, and
status of the computation. For example, if the computation uses a variable
whose value must belong to a range of integer values, a catalog might indi-
cate the following cases, each corresponding to a relevant test case:

1. The element immediately preceding the lower bound of the interval

2. The lower bound of the interval

3. A non-boundary element within the interval

4. The upper bound of the interval

5. The element immediately following the upper bound

The catalog would in this way cover the intuitive cases of erroneous con-
ditions (cases 1 and 5), boundary conditions (cases 2 and 4), and normal con-
ditions (case 3).

The catalog based approach consists in unfolding the specification, i.e.,
decomposing the specification into elementary items, deriving an initial set
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of test case specifications from pre-conditions, post-conditions, and defini-
tions, and completing the set of test case specifications using a suitable test
catalog.

STEP 1: identify elementary items of the specification The initial specifi-
cation is transformed into a set of elementary items that have to be tested.
Elementary items belong to a small set of basic types:

Pre-conditions represent the conditions on the inputs that must be satisfied
before invocation of the unit under test. Preconditions may be checked
either by the unit under test (validated preconditions) or by the caller
(assumed preconditions).

Post-conditions describe the result of executing the unit under test.

Variables indicate the elements on which the unit under test operates. They
can be input, output, or intermediate values.

Operations indicate the main operations performed on input or intermedi-
ate variables by the unit under test

Definitions are shorthand used in the specification

As in other approaches that begin with an informal description, it is not
possible to give a precise recipe for extracting the significant elements. The
result will depend on the capability and experience of the test designer.

Consider the informal specification of a function for converting URL-en-
coded form data into the original data entered through an html form. An
informal specification is given in Figure 13.7.10

The informal description of cgi decode uses the concept of hexadecimal
digit, hexadecimal escape sequence, and element of a cgi encoded sequence.
This leads to the identification of the following three definitions:

DEF 1 hexadecimal digits are: ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’A’, ’B’, ’C’, ’D’,
’E’, ’F’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’

DEF 2 a CGI-hexadecimal is a sequence of three characters: ’���’, where �

and � are hexadecimal digits

DEF 3 a CGI item is either an alphanumeric character, or character ’�’, or a
CGI-hexadecimal

In general, every concept introduced in the description as a support for
defining the problem can be represented as a definition.

The description of cgi decode mentions some elements that are inputs
and outputs of the computation. These are identified as the following vari-
ables:

10The informal specification is ambiguous and inconsistent, i.e., it is the kind of spec one is
most likely to encounter in practice.
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cgi decode: 9����	
� ��	 ���
�� ���������� � ��	����
��� ���	�� �
 � ���	� � &00
���	��� ��
���	�� ��� ���
�	�� ����	�� �� ��� �
��
� ������� 	�������� )&=0+

� �
�� ��� ���
����

&=0 ���������� ������ �
 #>#� ��� ���������� �
�� 
���� �
������������	�
���������� �
 ��,����	��� ������ ��!������� ���� !�� ! ���� #># �
 # #�
$?,�% )����� , ��� � ��� ��,����	��� �	�	��+ �
 �
 ��� �
�����
��	�� � &00
���������� ��� 
���� ����������	� ���������� �
 �������
���

INPUT: encoded � ���	�� 
� ����������� ���������	�� ��� 	���� &=0 ��!������ 0�
��� �
���	��

� ����������	� ����������

� ��� ��������� #>#

� ��� ������	�� #?,�#� ����� , ��� � ��� ��,����	��� �	�	���

������� 	� ����	����� �� � ���� ����������

OUTPUT: decoded � ���	�� �
���	�	�� ��� ���	� � &00 ���������� �
�����
��	��
�
 ��� 	���� &=0 ��!������

� ����������	� ���������� ��� �
�	�� 	��
 ��� 
����� 	� ��� �
�����
��	��
�
�	�	
�

� � ����� 	� �����	����� �
� ���� #># ��������� 	� ��� 	�����

� � �	���� � &00 ��������� �	�� ��,����	��� 
���� ���� 	� �����	����� �
�
���� ������	�� #?,�# 	� ��� 	�����

OUTPUT: return value ���� !�� ! �������

� ( �
� �������

� 5 	� ��� 	���� 	� ����
����

����� 52�@� �� 	��
���� )��� 	��������+ ����	����	
� 
� �����	
� ��	����
��
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VAR 1 Encoded: string of ASCII characters

VAR 2 Decoded: string of ASCII characters

VAR 3 return value: Boolean

Note the distinction between a variable and a definition. Encoded and de-
coded are actually used or computed, while hexadecimal digits, CGI-hexadecimal,
and CGI item are used to describe the elements but are not objects in their
own right. Although not strictly necessary for the problem specification, ex-
plicit identification of definitions can help in deriving a richer set of test cases.

The description of cgi decode indicates some conditions that must be sat-
isfied upon invocation, represented by the following preconditions:

PRE 1 (Assumed) the input string Encoded is a null-terminated string of char-
acters.

PRE 2 (Validated) the input string Encoded is a sequence of CGI items.

In general, preconditions represent all the conditions that should be true
for the intended functioning of a module. A condition is labeled as validated
if it is checked by the module (in which case a violation has a specified effect,
e.g., raising an exception or returning an error code). Assumed preconditions
must be guaranteed by the caller, and the module does not guarantee a par-
ticular behavior in case they are violated.

The description of cgi decode indicates several possible results. These can
be represented as a set of postconditions:

POST 1 if the input string Encoded contains alphanumeric characters, they
are copied to the corresponding position in the output string.

POST 2 if the input string Encoded contains characters ’+’, they are replaced
by ASCII SPACE characters in the corresponding positions in the output
string.

POST 3 if the input string Encoded contains CGI-hexadecimals, they are re-
placed by the corresponding ASCII characters.

POST 4 if the input string Encoded is a valid sequence, cgi decode returns 0.

POST 5 if the input string Encoded contains a malformed CGI-hexadecimal,
i.e., a substring ’%xy’, where either x or y is absent or are not hexadeci-
mal digits, cgi decode returns 1

POST 6 if the input string Encoded contains any illegal character, cgi decode
returns a positive value.

The postconditions should, together, capture all the expected outcomes of
the module under test. When there are several possible outcomes, it is pos-
sible to capture them all in one complex postcondition or in several simple
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PRE 1 (Assumed) the input string 6��
��� is a null-terminated string of
characters

PRE 2 (Validated) the input string 6��
��� is a sequence of CGI items
POST 1 if the input string6��
��� contains alphanumeric characters, they

are copied to the output string in the corresponding positions.
POST 2 if the input string 6��
��� contains characters ’+’, they are re-

placed in the output string by ASCII SPACE characters in the cor-
responding positions

POST 3 if the input string 6��
��� contains CGI-hexadecimals, they are
replaced by the corresponding ASCII characters.

POST 4 if the input string 6��
��� is well-formed, cgi-decode returns 0
POST 5 if the input string 6��
��� contains a malformed CGI hexadeci-

mal, i.e., a substring ’%xy’, where either x or y are absent or are
not hexadecimal digits, cgi decode returns 1

POST 6 if the input string 6��
��� contains any illegal character,
cgi decode returns a positive value

VAR 1 6��
���: a string of ASCII characters
VAR 2 -��
���: a string of ASCII characters
VAR 3 "����� 
����: a boolean
DEF 1 ��,����	��� �	�	�� are ASCII characters in range [’0’ .. ’9’, ’A’ .. ’F’,

’a’ .. ’f’]
DEF 2 &=0���,����	���� are sequences “%xy”, where x and y are hexadec-

imal digits
DEF 3 A &=0 	��� is an alphanumeric character, or ’+’, or a CGI-

hexadecimal
OP 1 Scan 6��
���

Table 13.8: Elementary items of specification cgi-decode

postconditions; here we have chosen a set of simple contingent postcondi-
tions, each of which captures one case.

Although the description of cgi decode does not mention explicitly how
the results are obtained, we can easily deduce that it will be necessary to scan
the input sequence. This is made explicit in the following operation:

OP 1 Scan the input string Encoded.

In general, a description may refer either explicitly or implicitly to elemen-
tary operations which help to clearly describe the overall behavior, like defini-
tions help to clearly describe variables. As with variables, they are not strictly
necessary for describing the relation between pre- and postconditions, but
they serve as additional information for deriving test cases.

The result of step 1 for cgi decode is summarized in Table 13.8.
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STEP 2 Derive a first set of test case specifications from preconditions, post-
conditions and definitions The aim of this step is to explicitly describe the
partition of the input domain:

Validated Preconditions: A simple precondition, i.e., a precondition that is
expressed as a simple boolean expression without and or or, identifies
two classes of input: values that satisfy the precondition and values that
do not. We thus derive two test case specifications.

A compound precondition, given as a boolean expression with and or
or, identifies several classes of inputs. Although in general one could
derive a different test case specification for each possible combination
of truth values of the elementary conditions, usually we derive only a
subset of test case specifications using the modified condition decision
coverage (MC/DC) approach, which is illustrated in Section 13.6 and in
Chapter ??. In short, we derive a set of combinations of elementary con-
ditions such that each elementary condition can be shown to indepen-
dently affect the outcome of each decision. For each elementary condi-
tion �, there are two test case specifications in which the truth values
of all conditions except � are the same, and the compound condition
as a whole evaluates to True for one of those test cases and False for the
other.

Assumed Preconditions: We do not derive test case specifications for cases
that violate assumed preconditions, since there is no defined behavior
and thus no way to judge the success of such a test case. We also do not
derive test cases when the whole input domain satisfies the condition,
since test cases for these would be redundant. We generate test cases
from assumed preconditions only when the MC/DC criterion generates
more than one class of valid combinations (i.e., when the condition is a
logical disjunction of more elementary conditions).

Postconditions: In all cases in which postconditions are given in a condi-
tional form, the condition is treated like a validated precondition, i.e.,
we generate a test case specification for cases that satisfy and cases that
do not satisfy the condition.

Definition: Definitions that refer to input or output variables are treated like
postconditions, i.e., we generate a set of test cases for each definition
given in conditional form with the same criteria used for validated pre-
conditions. The test cases are generated for each variable that refers to
the definition.

The elementary items of the specification identified in step 1 are scanned
sequentially and a set of test cases is derived applying these rules. While
scanning the specifications, we generate test case specifications incremen-
tally. When new test case specifications introduce a finer partition than an
existing case, or vice versa, the test case specification that creates the coarser
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partition becomes redundant and can be eliminated. For example, if an ex-
isting test case specification requires a non-empty set, and we have to add
two test case specifications that require a size that is a power of two and one
which is not, the existing test case specification can be deleted.

Scanning the elementary items of the cgi decode specification given in
Table 13.7, we proceed as follows:

PRE 1: The first precondition is a simple assumed precondition, thus, ac-
cording to the rules, we do not generate any test case specification. The
only condition would be ���
���� � ���� ����	����� ���	�� 
� ����������, but
this matches every test case and thus it does not identify a useful parti-
tion.

PRE 2: The second precondition is a simple validated precondition, thus we
generate two test case specifications, one that satisfies the condition
and one that does not:

TC-PRE2-1 6��
���: a sequence of CGI items

TC-PRE2-2 6��
���: not a sequence of CGI items

postconditions: all postconditions in the cgi decode specification are given
in a conditional form with a simple condition. Thus, we generate two
test case specifications for each of them. The generated test case speci-
fications correspond to a case that satisfies the condition and a case that
violates it.

POST 1:

TC-POST1-1 6��
���: contains one or more alphanumeric char-
acters

TC-POST1-2 6��
���: does not contain any alphanumeric char-
acters

POST 2:

TC-POST2-1 6��
���: contains one or more character ’+’
Tc-POST2-2 6��
���: does not any contain character ’+’

POST 3:

TC-POST3-1 6��
���: contains one or more CGI-hexadecimals
TC-POST3-2 6��
���: does not contain any CGI-hexadecimal

POST 4: we do not generate any new useful test case specifications, be-
cause the two specifications are already covered by the specifica-
tions generated from POST 2.
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POST 5: we generate only the test case specification that satisfies the
condition; the test case specification that violates the specification
is redundant with respect to the test case specifications generated
from POST 3

TC-POST5-1 : 6��
��� contains one or more malformed CGI-hexadecimals

POST 6: as for POST 5, we generate only the test case specification that
satisfies the condition; the test case specification that violates the
specification is redundant with respect to most of the test case spec-
ifications generated so far.

TC-POST6-1 6��
���: contains one or more illegal characters

definitions none of the definitions in the specification of cgi decode is given
in conditional terms, and thus no test case specifications are generated
at this step.

The test case specifications generated from postconditions refine test case
specification TC-PRE2-1, which can thus be eliminated from the checklist.
The result of step 2 for cgi decode is summarized in Table 13.9.

STEP 3 Complete the test case specifications using catalogs The aim of this
step is to generate additional test case specifications from variables and op-
erations used or defined in the computation. The catalog is scanned sequen-
tially. For each entry of the catalog we examine the elementary components
of the specification and we add test case specifications as required by the cat-
alog. As when scanning the test case specifications during step 2, redundant
test case specifications are eliminated.

Table 13.10 shows a simple catalog that we will use for the cgi decoder ex-
ample. A catalog is structured as a list of kinds of elements that can occur in
a specification. Each catalog entry is associated with a list of generic test case
specifications appropriate for that kind of element. We scan the specification
for elements whose type is compatible with the catalog entry, then generate
the test cases defined in the catalog for that entry. For example, the catalog of
Table 13.10 contains an entry for boolean variables. When we find a boolean
variable in the specification, we instantiate the catalog entry by generating
two test case specifications, one that requires a True value and one that re-
quires a False value.

Each generic test case in the catalog is labeled in, out, or in/out, meaning
that a test case specification is appropriate if applied to either an input vari-
able, or to an output variable, or in both cases. In general, erroneous values
should be used when testing the behavior of the system with respect to input
variables, but are usually impossible to produce when testing the behavior of
the system with respect to output variables. For example, when the value of
an input variable can be chosen from a set of values, it is important to test
the behavior of the system for all enumerated values and some values out-
side the enumerated set, as required by entry ENUMERATION of the catalog.
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PRE 2 ���������/ �!� 
��"� ���
�� �� ���� 
� � ��#"�� � �� )01 
����
[+)%'��2%2] �� ����: not a sequence of CGI items

POST 1 
� �!� 
��"� ���
�� �� ����  ����
�� ���!��"���
  !��� ����� �!�� ���
 ��
�� �� �!� �"��"� ���
�� 
� �!�  ���������
�� ���
�
���

[+)%'��+�%�] �� ����: contains alphanumeric characters
[+)%'��+�%2] �� ����: does not contain alphanumeric characters

POST 2 
� �!� 
��"� ���
�� �� ����  ����
�� 345  !��� ����� �!�� ��� ����� ��

� �!� �"��"� ���
�� �� 3 5 
� �!�  ���������
�� ���
�
���

[+)%'��+2%�] �� ����: contains ’+’
[+)%'��+2%2] �� ����: does not contain ’+’

POST 3 
� �!� 
��"� ���
�� �� ����  ����
�� )01%!����� 
����� �!�� ��� ����� ��
�� �!�  ���������
�� ��)11  !��� ����6

[+)%'��+7%�] �� ����: contains CGI-hexadecimals
[+)%'��+7%2] �� ����: does not contain a CGI-hexadecimal

POST 4 
� �!� 
��"� ���
�� �� ���� 
� $���%�������  �
 �� ��� ���"��� �

POST 5 
� �!� 
��"� ���
�� �� ����  ����
�� � ��������� )01%!����� 
���� 
6�6�
� �"����
�� 89��:� $!��� �
�!�� � �� � ��� ������ �� ��� !����� 
���
�
�
���  �
 �� ��� ���"��� �

[+)%'��+;%�] �� ����: contains malformed CGI-hexadecimals

POST 6 
� �!� 
��"� ���
�� �� ����  ����
�� ��� 
������  !��� ����  �
 �� ���
���"��� � ���
�
�� ���"�

[+)%'��+*%�] �� ����: contains illegal characters

VAR 1 �� ����< � ���
�� �� ��)11  !��� ����

VAR 2 (� ����< � ���
�� �� ��)11  !��� ����

VAR 3 ���"�� ���"�< � �������

DEF 1 !����� 
��� �
�
�� ��� 
� ����� 	5�5 66 5=5� 5�5 66 5&5� 5�5 66 5�5


DEF 2 )01%!����� 
���� ��� ��#"�� �� 59��5� $!��� � ��� � ��� !����� 
���
�
�
��

DEF 3 )01 
���� ��� �
�!�� ���!��"���
  !��� ����� �� 545� �� )01%
!����� 
����

OP 1 � �� �� ����

Table 13.9: Test case specifications for cgi-decode generated after step 2
.

Draft version produced 20th March 2002



Catalog Based Testing 93

>������
[
�?�"�] True
[
�?�"�] False

��"�����
��
[
�?�"�] Each enumerated value
[
�] Some value outside the enumerated set

����� � � � � �
[
�] �� � (the element immediately preceding the lower bound)
[
�?�"�] � (the lower bound)
[
�?�"�] A value between � and �

[
�?�"�] � (the upper bound)
[
�] � � � (the element immediately following the upper bound)

�"���
 )������� �
[
�?�"�] � (the constant value)
[
�] � � � (the element immediately preceding the constant value)
[
�] � � � (the element immediately following the constant value)
[
�] Any other constant compatible with �

���%�"���
 )������� �
[
�?�"�] � (the constant value)
[
�] Any other constant compatible with �

[
�] Some other compatible value

��#"�� �
[
�?�"�] Empty
[
�?�"�] A single element
[
�?�"�] More than one element
[
�?�"�] Maximum length (if bounded) or very long
[
�] Longer than maximum length (if bounded)
[
�] Incorrectly terminated

� �� $
�! � �
�� �� �������� �
[
�] � occurs at beginning of sequence
[
�] � occurs in interior of sequence
[
�] � occurs at end of sequence
[
�] �� occurs contiguously
[
�] � does not occur in sequence
[
�] �� where � is a proper prefix of �
[
�] Proper prefix � occurs at end of sequence

Table 13.10: Part of a simple test catalog.
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However, when the value of an output variable belongs to a finite set of values,
we should derive a test case for each possible outcome, but we cannot derive
a test case for an impossible outcome, so entry ENUMERATION of the cata-
log specifies that the choice of values outside the enumerated set is limited
to input variables. Intermediate variables, if present, are treated like output
variables.

Entry Boolean of the catalog applies to "����� 
���� (VAR 3). The catalog
requires a test case that produces the value True and one that produces the
value False. Both cases are already covered by test cases TC-PRE2-1 and TC-
PRE2-2 generated for precondition PRE 2, so no test case specification is ac-
tually added.

Entry Enumeration of the catalog applies to any variable whose values are
chosen from an explicitly enumerated set of values. In the example, the values
of &=0 	��� (DEF 3) and of improper &=0 ��,����	���� in POST 5 are defined by
enumeration. Thus, we can derive new test case specifications by applying
entry enumeration to POST 5 and to any variable that can contain &=0 	����.

The catalog requires creation of a test case specification for each enumer-
ated value and for some excluded values. For ���
���, which uses DEF 3, we
generate a test case specification where a CGI-item is an alphanumeric char-
acter, one where it is the character ’+’, one where it is a CGI-hexadecimal,
and some where it is an illegal value. We can easily ascertain that all the re-
quired cases are already covered by test case specifications for TC-POST1-
1, TC-POST1-2, TC-POST2-1, TC-POST2-2, TC-POST3-1, and TC-POST3-2, so
any additional test case specifications would be redundant.

From the enumeration of malformed CGI-hexadecimals in POST 5, we de-
rive the following test cases: %y, %x, %ky, %xk, %xy (where x and y are hex-
adecimal digits and k is not). Note that the first two cases, %x (the second
hexadecimal digit is missing) and %y (the first hexadecimal digit is missing)
are identical, and %x is distinct from %xk only if %x are the last two characters
in the string. A test case specification requiring a correct pair of hexadecimal
digits (%xy) is a value out of the range of the enumerated set, as required by
the catalog.

The added test case specifications are:

TC-POST5-2 ���
���: terminated with %x, where x is a hexadecimal digit

TC-POST5-3 ���
���: contains %ky, where k is not a hexadecimal digit and y
is a hexadecimal digit.

TC-POST5-4 ���
���: contains %xk, where x is a hexadecimal digit and k is
not.

The test case specification corresponding to the correct pair of hexadec-
imal digits is redundant, having already been covered by TC-POST3-1. The
test case TC-POST5-1 can now be eliminated because it is more general than
the combination of TC-POST5-2, TC-POST5-3, and TC-POST5-4.
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Entry Range applies to any variable whose values are chosen from a finite
range. In the example, ranges appear three times in the definition of hexadec-
imal digit. Ranges also appear implicitly in the reference to alphanumeric
characters (the alphabetic and numeric ranges from the ASCII character set)
in DEF 3. For hexadecimal digits we will try the special values ’/’ and ’:’ (the
characters that appear before ’0’ and after ’9’ in the ASCII encoding), the val-
ues ’0’ and ’9’ (upper and lower bounds of the first interval), some value be-
tween ’0’ and ’9’, and similarly ’@’, ’G’, ’A’, ’F’, and some value between ’A’ and
’F’ for the second interval and ’"’, ’g’, ’a’, ’f’, and some value between ’a’ and ’f’
for the third interval.

These values will be instantiated for variable ���
���, and result in 30 ad-
ditional test case specifications (5 values for each subrange, giving 15 values
for each hexadecimal digit and thus 30 for the two digits of CGI-hexadecimal).
The full set of test case specifications is shown in Table ??. These test case
specifications are more specific than (and therefore replace) test case specifi-
cations TC-POST3-1, TC-POST5-3, and TC-POST5-4.

For alphanumeric characters we will similarly derive boundary, interior
and excluded values, which result in 15 additional test case specifications,
also given in Table ??. These test cases are more specific than (and therefore
replace) TC-POST1-1, TC-POST1-2, TC-POST6-1.

Entry Numeric Constant does not apply to any element of this specifica-
tion.

Entry Non-Numeric Constant applies to ’+’ and ’%’, occurring in DEF 3 and
DEF 2 respectively. Six test case specifications result, but all are redundant.

Entry Sequence applies to ���
��� (VAR 1), ���
��� (VAR 2), and ��	�	���
(DEF 2). Six test case specifications result for each, of which only five are mu-
tually non-redundant and not already in the list. From VAR 1 (���
���) we
generate test case specifications requiring an empty sequence, a sequence
containing a single element, and a very long sequence. The catalog entry re-
quiring more than one element generates a redundant test case specification,
which is discarded. We cannot produce reasonable test cases for incorrectly
terminated strings (the behavior would vary depending on the contents of
memory outside the string), so we omit that test case specification.

All test case specifications that would be derived for ���
��� (VAR 2) would
be redundant with respect to test case specifications derived for ���
��� (VAR
1).

From &=0���,����	��� (DEF 2) we generate two additional test case spec-
ifications for variable ���
���: a sequence that terminates with ’%’ (the only
way to produce a one-character subsequence beginning with ’%’) and a se-
quence containing ’%xyz’, where x, y, and z are hexadecimal digits.

Entry Scan applies to  ��� 6��
��� (OP 1) and generates 17 test case spec-
ifications. Three test case specifications (alphanumeric, ’+’, and &=0 	���) are
generated for each of the first 5 items of the catalog entry. One test case spec-
ification is generated for each of the last two items of the catalog entry when
Scan is applied to CGI item. The last two items of the catalog entry do not
apply to alphanumeric characters and ’+’, since they have no non-trivial pre-
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fixes. Seven of the 17 are redundant. The ten generated test case specifica-
tions are summarized in Table 13.11.

Test catalogs, like other check-lists used in test and analysis (e.g., inspec-
tion check-lists), are an organizational asset that can be maintained and en-
hanced over time. A good test catalog will be written precisely and suitably
annotated to resolve ambiguity (unlike the sample catalog used in this chap-
ter). Catalogs should also be specialized to an organization and application
domain, typically using a process such as defect causal analysis or root cause
analysis. Entries are added to detect particular classes of faults that have been
encountered frequently or have been particularly costly to remedy in previ-
ous projects. Refining check-lists is a typical activity carried out as part of
process improvement. When a test reveals a program fault, it is useful to
make a note of which catalog entries the test case originated from, as an aid
to measuring the effectiveness of catalog entries. Catalog entries that are not
effective should be removed.

13.9 Deriving Test Cases from Finite State Machines

Finite state machines are often used to specify sequences of interactions be-
tween a system and its environment. State machine specifications in one
form or another are common for control and interactive systems, such as em-
bedded systems, communication protocols, menu driven applications, threads
of control in a system with multiple threads or processes.

In several application domains, specifications may be expressed directly
as some form of finite-state machine. For example, embedded control sys-
tems are frequently specified with Statecharts, communication protocols are
commonly described with SDL diagrams, and menu driven applications are
sometimes modeled with simple diagrams representing states and transitions.
In other domains, the finite state essence of the systems are left implicit in
informal specifications. For instance, the informal specification of feature
Maintenance of the Chipmuk web site given in Figure 13.9 describes a set of
interactions between the maintenance system and its environment that can
be modeled as transitions through a finite set of process states. The finite
state nature of the interaction is made explicit by the finite state machine
shown in Figure 13.10. Note that some transitions appear to be labeled by
conditions rather than events, but they can be interpreted as shorthand for
an event in which the condition becomes true or is discovered (e.g., “lack
component” is shorthand for “discover that a required component is not in
stock.”

Many control or interactive systems are characterized by an infinite set of
states. Fortunately, the non-finite-state parts of the specification are often
simple enough that finite state machines remain a useful model for testing as
well as specification. For example, communication protocols are frequently
specified using finite state machines, often with some extensions that make
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TC-POST2-1 �� ���� contains charac-
ter ’+’

TC-POST2-2 �� ���� does not contain
character ’+’

TC-POST3-2 �� ���� does not contain
a CGI-hexadecimal

TC-POST5-2 �� ���� terminates with
%x

TC-VAR1-1 �� ���� is the empty se-
quence

TC-VAR1-2 �� ���� is a sequence
containing a single char-
acter

TC-VAR1-3 �� ���� is a very long se-
quence

TC-DEF2-1 �� ���� contains ’%/y’
TC-DEF2-2 �� ���� contains ’%0y’
TC-DEF2-3 �� ���� contains ’%xy’,

with x in [1..8]
TC-DEF2-4 �� ���� contains ’%9y’
TC-DEF2-5 �� ���� contains ’%:y’
TC-DEF2-6 �� ���� contains ’%@y’
TC-DEF2-7 �� ���� contains ’%Ay’
TC-DEF2-8 �� ���� contains ’%xy’,

with x in [B..E]
TC-DEF2-9 �� ���� contains ’%Fy’
TC-DEF2-10 �� ���� contains ’%Gy’
TC-DEF2-11 �� ���� contains ’%‘y’
TC-DEF2-12 �� ���� contains ’%ay’
TC-DEF2-13 �� ���� contains ’%xy’,

with x in [b..e]
TC-DEF2-14 �� ���� contains ’%fy’
TC-DEF2-15 �� ���� contains ’%gy’
TC-DEF2-16 �� ���� contains ’%x/’
TC-DEF2-17 �� ���� contains ’%x0’
TC-DEF2-18 �� ���� contains ’%xy’,

with y in [1..8]
TC-DEF2-19 �� ���� contains ’%x9’
TC-DEF2-20 �� ���� contains ’%x:’
TC-DEF2-21 �� ���� contains ’%x@’
TC-DEF2-22 �� ���� contains ’%xA’

TC-DEF2-23 �� ���� contains ’%xy’,
with y in [B..E]

TC-DEF2-24 �� ���� contains ’%xF’
TC-DEF2-25 �� ���� contains ’%xG’
TC-DEF2-26 �� ���� contains ’%x‘’
TC-DEF2-27 �� ���� contains ’%xa’
TC-DEF2-28 �� ���� contains ’%xy’,

with y in [b..e]
TC-DEF2-29 �� ���� contains ’%xf’
TC-DEF2-30 �� ���� contains ’%xg’
TC-DEF2-31 �� ���� contains ’%$’
TC-DEF2-32 �� ���� contains ’%xyz’
TC-DEF3-1 �� ���� contains 5/’
TC-DEF3-2 �� ���� contains 50’
TC-DEF3-3 �� ���� contains  , with c

in [’1’..’8’]
TC-DEF3-4 �� ���� contains 59’
TC-DEF3-5 �� ���� contains 5:’
TC-DEF3-6 �� ���� contains 5@’
TC-DEF3-7 �� ���� contains 5A’
TC-DEF3-8 �� ���� contains  , with c

in [’B’..’Y’]
TC-DEF3-9 �� ���� contains 5Z’
TC-DEF3-10 �� ���� contains 5[’
TC-DEF3-11 �� ���� contains 5‘’
TC-DEF3-12 �� ���� contains 5a’
TC-DEF3-13 �� ���� contains  , with c

in [’b’..’y’]
TC-DEF3-14 �� ���� contains 5z’
TC-DEF3-15 �� ���� contains 5�’
TC-OP1-1 �� ���� contains ’�	’
TC-OP1-2 �� ���� contains ’�+’
TC-OP1-3 �� ���� contains �%xy’
TC-OP1-4 �� ���� contains ’	$’
TC-OP1-5 �� ���� contains ’+$’
TC-OP1-6 �� ���� contains ’%xy$’
TC-OP1-7 �� ���� contains ’		’
TC-OP1-8 �� ���� contains ’++’
TC-OP1-9 �� ���� contains

’%xy%zw’
TC-OP1-10 �� ���� contains

’%x%yz’
where 
� �� 
� � are hexadecimal digits, 	 is an alphanumeric character, � represents
the beginning of the string, and $ represents the end of the string.

Table 13.11: Summary table: Test case specifications for cgi-decode gener-
ated with a catalog.
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Figure 13.9: The functional specification of feature Maintenace of the Chip-
muk web site.
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Figure 13.10: The finite state machine corresponding to functionality Main-
tenance specified in Figure 13.9
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T-Cover
TC-1 0 – 2 – 4 – 1 – 0
TC-2 0 – 5 – 2 – 4 – 5 – 6 – 0
TC-3 0 – 3 – 5 – 9 – 6 – 0
TC-4 0 – 3 – 5 – 7 – 5 – 8 – 7 – 8 – 9 – 7 – 9 – 6 – 0

Table 13.12: A set of test specifications in the form of paths in a finite-state
machine specification. States are indicated referring to the numbers given in
Figure 13.10. For example, TC-1 is a test specification requiring transitions
(0,2), (2,4), (4,1), and (1,0) be traversed, in that order.

them not truly finite-state. A state machine that simply receives a message
on one port and then sends the same message on another port is not really
finite-state unless the set of possible messages is finite, but is often rendered
as a finite state machine, ignoring the contents of the exchanged messages.

State-machine specifications can be used both to guide test selection and
in construction of an oracle that judges whether each observed behavior is
correct. There are many approaches for generating test cases from finite state
machines, but most are variations on a basic strategy of checking each state
transition. One way to understand this basic strategy is to consider that each
transition is essentially a specification of a precondition and postcondition,
e.g., a transition from state � to state � on stimulus � means “if the system
is in state � and receives stimulus �, then after reacting it will be in state � .”
For instance, the transition labeled accept estimate from state Wait for accep-
tance to state Repair (maintenance station) of Figure 13.10 indicates that if an
item is on hold waiting for the customer to accept an estimate of repair costs,
and the customer accepts the estimate, then the maintenance station begins
repairing the item.

A faulty system could violate any of these precondition, postcondition
pairs, so each should be tested. For instance, the state Repair (maintenance
station) can be arrived through three different transitions, and each should
be checked.

Details of the approach taken depend on several factors, including whether
system states are directly observable or must be inferred from stimulus/response
sequences, whether the state machine specification is complete as given or
includes additional, implicit transitions, and whether the size of the (possibly
augmented) state machine is modest or very large.

A basic criterion for generating test cases from finite state machines is
transition coverage, which requires each transition to be traversed at least
once. Test case specifications for transition coverage are often given as sets of� �
��������  �"

��


state sequences or transition sequences. For example, T-Cover in Table 13.12
is a set of four paths, each beginning at the initial state, which together cover
all transitions of the finite state machine of Figure 13.10. T-Cover thus satisfies
the transition coverage criterion.

The transition coverage criterion depends on the assumption that the finite-
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state machine model is a sufficient representation of all the “important” state,
e.g., that transitions out of a state do not depend on how one reached that
state. Although it can be considered a logical flaw, in practice one often finds
state machines that exhibit “history sensitivity,” i.e., the transitions from a
state depend on the path by which one reached that state. For example, in
Figure 13.10, the transition taken from state Wait for component when the
component becomes available depends on how the state was entered. This is
a flaw in the model — there really should be three distinct Wait for component
states, each with a well-defined action when the component becomes avail-
able. However, sometimes it is more expedient to work with a flawed state-
machine model than to repair it, and in that case test suites may be based on
more than the simple transition coverage criterion.

Coverage criteria designed to cope with history sensitivity include sin-
gle state path coverage, single transition path coverage, and boundary interior
loop coverage.The single state path coverage criterion requires each path that
traverses states at most once to be exercised. The single transition path cover- � �����
 ����
 ����  �"

��


age criterion requires each path that traverses transitions at most once to be
exercised. The boundary interior loop coverage criterion requires each dis- � �����
 �
�������� ����  �"

��


� ������
� (��

��
 )���  �"

�
��


tinct loop of the state machine to be exercised the minimum, an intermedi-
ate, and the maximum number of times11. These criteria may be practical for
very small and simple finite-state machine specifications, but since the num-
ber of even simple paths (without repeating states) can grow exponentially
with the number of states, they are often impractical.

Specifications given as finite-state machines are typically incomplete, i.e.,
they do not include a transition for every possible (state, stimulus) pair. Often
the missing transitions are implicitly error cases. Depending on the system,
the appropriate interpretation may be that these are don’t care transitions
(since no transition is specified, the system may do anything or nothing), self
transitions (since no transition is specified, the system should remain in the
same state), or (most commonly) error transitions that enter a distinguished
state and possibly trigger some error handling procedure. In at least the latter
two cases, thorough testing includes the implicit as well as the explicit state
transitions. No special techniques are required; the implicit transitions are
simply added to the representation before test cases are selected.

The presence of implicit transitions with a don’t care interpretation is typ-
ically an implicit or explicit statement that those transitions are impossible,
e.g., because of physical constraints. For example, in the specification of the
maintenance procedure of Figure 13.10, the effect of event lack of compo-
nent is specified only for the states that represent repairs in progress. Some-
times it is possible to test such sequences anyway, because the system does
not prevent such events from occurring Where possible, it may be best to
treat don’t care transitions as self transitions (allowing the possibility of im-
perfect translation from physical to logical events, or of future physical layers

11The boundary interior path coverage was originally proposed for structural coverage of pro-
gram control flow, and is described in Chapter 14
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Advanced search: The Advanced search function allows for searching elements in the
website database.

The key for searching can be:

a simple string , i.e., a simple sequence of characters,

a compound string , i.e.,

� a string terminated with character *, used as wild character, or

� a string composed of substrings included in braces and separated
with commas, used to indicate alternatives.

a combination of strings , i.e., a set of strings combined with the boolean op-
erators NOT, AND, OR, and grouped within parenthesis to change the pri-
ority of operators.

Examples:

laptop The routine searches for string “laptop”

�DVD*,CD*� The routine searches for strings that start with substring “DVD”
or “CD” followed by any number of characters

NOT (C2021*) AND C20* The routine searches for strings that start with sub-
string “C20” followed by any number of characters, except substring “21”

Figure 13.11: The functional specification of feature advanced search of the
Chipmunk web site.

with different properties), or as error transitions (requiring that unanticipated
sequences be recognized and handled). If it is not possible to produce test
cases for the don’t care transitions, then it may be appropriate to pass them
to other validation or verification activities, for example, by including explicit
assumptions in a requirements or specification document that will undergo
inspection.

13.10 Deriving Test Cases from Grammars

Sometimes, functional specifications are given in the form of grammars or
regular expressions. This is often the case in description of languages, such
as specifications of compilers or interpreters. More often syntactic struc-
tures are described with natural or domain specific languages, such as simple
scripting rules and complex document structures.

The informal specification of the advanced search functionality of the Chip-
muk website shown in Figure 13.11 defines the syntax of the search pattern.
Not surprisingly, this specification can easily be expressed as a grammar. Fig-
ure 13.12 expresses the specification as a grammar in Bachus Naur Form (BNF).
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�search� ��� �search� �binop� �term� � ��� �search� � �term�
�binop� ��� �� � ��

�term� ��� �regexp� � 
 �search� �

�regexp� ��� Char �regexp� � Char � � �choices� � � #

�choices� ��� �regexp� � �regexp� � �choices�

Figure 13.12: The BNF description of functionality Advanced search.

A second example is given in Figure 13.13, which specifies a product con-
figuration of the Chipmuk website. In this case, the syntactic structure of
product configuration is described by an XML schema, which defines an ele-
ment Model of type ProductConfigurationType. XML schemata are essentially
a variant of BNF, so it is not difficult to render the schema in the same BNF
notation, as shown in Figure 13.13.

In general, grammars are well suited to represent inputs of varying and un-
bounded size, boundary conditions, and recursive structures. None of which
can be easily captured with fixed lists of parameters, as required by most
methods presented in this chapter. � #������ �
����
����
� �
��
�


���Generating test cases from grammar specifications is straightforward and
can easily be automated. To produce a string, we start from a non-terminal
symbol and we progressively substitute non-terminals occurring in the cur-
rent string with substrings, as indicated by the applied productions, until we
obtain a string composed only of terminal symbols. In general at each step,
several rules can be applied. A minimal set of test cases can be generated
by requiring each production to be exercised at least once. Test cases can
be generated by starting from the start symbol and applying all productions.
The number and complexity of the generated test cases depend on the or-
der of application of the productions. If we first apply productions with non-
terminals on the right hand side, we generate a smaller set of test cases, each
one tending to be a large test case. On the contrary, first applying productions
with only terminals on the right hand side, we generate larger sets of smaller
test cases. An algorithm that favors non-terminals applied to the BNF for Ad-
vanced Search of Figure 13.11, generates the test case

not Char �*, Char� and (Char or Char)
that exercise all productions. The derivation tree for this test case is given

in Figure 13.15. It shows that all productions of the BNF are exercised at least
once. � ������
� ��������� �
����
�

���
� �
��

��The minimal set of test cases can be enriched by considering boundary
conditions. Boundary conditions apply to recursive productions. To gener-
ate test cases for boundary conditions we need to identify the minimum and
maximum number of recursive applications of a production and then gener-
ate a test case for the minimum, maximum, one greater than minimum and
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XML is a parenthetical language: descriptions of items are either enclosed in
angular parenthesis (��) or terminated with “/item” clauses. Schema and

annotation (�xsd:schema ...� and �xsd:annotation� ...�/xsd:annotation�) give
information about the XML version and the authors. The first clause

(�xsd:element ...� describes a Model as an instance of type
ProductConfigurationType. The clause �xsd:complexType� ...

�/xsd:complexType� describes type ProductConfigurationType as composed
of

� a field modelNumber of type String. Field modelNumber is required.

� a possibly empty set of Components, each characterized by fields Com-
ponentType and ComponentValue, both of type string.

� a possibly empty set of OptionalComponents, each characterized by a
ComponentType of type string

Figure 13.13: The XML Schema that describes a Product configuration of the
Chipmuk website
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�Model� ��� �modelNumber� �compSequence� �optCompSequence�
�compSequence� ��� �Component� �compSequence� � !�'��

�optCompSequence� ��� �OptionalComponent� �optCompSequence� � !�'��

�Component� ��� �ComponentType� �ComponentValue�
�OptionalComponent� ��� �ComponentType�
�modelNumber� ��� 
�����

�ComponentType� ��� 
�����

�ComponentValue� ��� 
�����

Figure 13.14: The BNF description of Product Configuration.

<search>�

<search> <binop> <term>�

not �<search>� and� (�<search>�)�

<term>�

<regexp>�

Char �<regexp>�

<regexp> �, �<choices>�

*�

Char�

or�

{�<choices>�}�

<regexp>�

<term>�

<search> <binop> <term>�

<regexp>�

Char�

<regexp>�

Char�

Figure 13.15: The derivation tree of a test case for functionality Advanced
Search derived from the BNF specification of Figure 13.12.
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Model �Model� ��� �modelNumber� �compSequence� �optCompSequenc

compSeq1 limit=16 �compSequence� ��� �Component� �compSequence�
compSeq2 �compSequence� ��� !�'��

optCompSeq1 limit=16 �optCompSequence� ��� �OptionalComponent� �optCompSequence�
optCompSeq2 �optCompSequence� ��� !�'��

Comp �Component� ��� �ComponentType� �ComponentValue�
OptComp �OptionalComponent� ��� �ComponentType�
modNum �modelNumber� ��� 
�����

CompTyp �ComponentType� ��� 
�����

CompVal �ComponentValue� ��� 
�����

Figure 13.16: The BNF description of Product Configuration extended with
production names and limits.

one smaller than maximum number of application of each production.
To apply boundary condition grammar based criteria, we need to add lim-

its to the recursive productions. Names and limits are shown in Figure 13.16,
which extends the grammar of Figure 13.14. Compound productions are de-
composed into their elementary components. Production names are used
for references purpose. Limits are added only to recursive productions. In
the example of Figure 13.16, the limit of both productions compSeq1 and opt-
CompSeq1 is set to 16, i.e., we assume that each model can have at most 16
required and 16 optional components.

The boundary condition grammar based criteria would extend the mini-
mal set by adding test cases that cover the following choices:

� zero required components (compSeq1 applied 0 times)

� one required component (compSeq1 applied 1 time)

� fifteen required components (compSeq1 applied �� � times)

� sixteen required components (compSeq1 applied � times)

� zero optional components (optCompSeq1 applied 0 times)

� one optional component (optCompSeq1 applied 1 time)

� fifteen optional components (optCompSeq1 applied �� � times)

� sixteen optional components (optCompSeq1 applied � times)
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weight Model 1
weight compSeq1 10
weight compSeq2 0
weight optCompSeq1 10
weight optCompSeq2 0
weight Comp 1
weight OptComp 1
weight modNum 1
weight CompTyp 1
weight CompVal 1

Figure 13.17: A sample seed that assigns probabilities to productions of the
BNF specification of the BNF of Product Configuration.

Additional boundary condition grammar based criteria can be defined by
also requiring specific combinations of applications of productions, e.g., re-
quiring all productions to be simultaneously applied the minimum or the
maximum number of times. This additional requirement applied to the ex-
ample of Figure 13.16 would require additional test cases corresponding to
the cases of (1) both no required and no optional components (both compSeq1
and optCompSeq1 applied 0 times), and (2) 16 required and 16 additional
components (both compSeq1 and optCompSeq1 applied � times). � �
����������� �
����
����
� �
��

�

��Probabilistic grammar based criteria assign probabilities to productions,
thus indicating which production to select at each step to generate test cases.
Unlike names and limits, probabilities are attached to grammar productions
as a separate set of annotations, called seed. In this way, we can generate
several sets of test cases from the same grammar with different seeds. Fig-
ure 13.17 shows a sample seed for the grammar that specify the product con-
figuration functionality of the Chipmuk web site presented in Figure 13.16.

Probabilities are indicated as weights that determine the relative occur-
rences of the production in a sequence of applications that generate a test
case. The same weight for compSeq1 and optCompSeq1 indicates that test
cases are generated by balancing the applications of these two productions,
i.e., they contain the same number of required and optional components.
Weight � disables the productions, which are then applied only when the ap-
plication of competing productions reaches the limit indicated in the gram-
mar.

13.11 Choosing a Suitable Approach

We have seen several approaches to functional testing, each applying to dif-
ferent kinds of specifications. Given a specification, there may be one or more
techniques well suited for deriving functional test cases, while some other
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techniques may be hard or even impossible to apply, or may lead to unsat-
isfactory results. Some techniques can be interchanged, i.e., they can be ap-
plied to the same specification and lead to similar results. Other techuiques
are complementary, i.e., they apply to different aspects of the same specifica-
tion or at different stages of test case generation. In some cases, approaches
apply directly to the form in which the specification is given, in some other
cases, the specification must be transformed into a suitable form.

The choice of approach for deriving functional testing depends on several
factors: the nature of the specification, the form of the specification, exper-
tieses and experience of test designers, the structure of the organization, the
availability of tools, the budget and quality constraints, and the costs of de-
signing and implementing the scaffolding.

Nature and form of the specification Different approaches exploit differ-
ent characteristics of the specification. For example, the presence of several
constraints on the input domain may suggest the category partition method,
while lack of constraints may indicate a combinatorial approach. The pres-
ence of a finite set of states could suggest a finite state machine approach,
while inputs of varying and unbounded size may be tackled with grammar
based approaches. Specifications given in a specific format, e.g., as finite state
machines, or decision structures suggest the corresponding techniques. For
example, functional test cases for SDL specifications of protocols are often
derived with finite state machine based criteria.

Experience of test designers and organization Experience of testers and
company procedures may drive the choice of the testing technique. For ex-
ample, test designers expert in category partition may prefer this technique
over a catalog based approach when both are applicable, while a company
that works in a specific domain may require the use of catalogs suitably pro-
duced for the domain of interest.

Tools Some techniques may require the use of tools, whose availability and
cost should be taken into account when choosing a specific testing technique.
For example, several tools are available for deriving test cases from SDL spec-
ifications. The availability of one of these tools may suggest the use of SDL for
capturing a subset of the requirements expressed in the specification.

Budget and quality constraints Different quality and budget constraints
may lead to different choices. For example, the need of quickly check a soft-
ware product without stringent reliability requirements may lead to chose a
random test generation approach, while a thorough check of a safety criti-
cal application may require the use of sophisticated methods for functional
test case generation. When choosing a specific approach, it is important to
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evaluate all cost related aspects. For example, the generation of a large num-
ber of random tests may require the design of sophisticated oracles, which
may raise the costs of testing over an acceptable threshold; the cost of a spe-
cific tool and the related training may go beyond the advantages of adopting
a specific approach, even if the nature and the form of the specification may
suggest the suitability of that approach.

Many engineering activities require careful trading off different aspects.
Functional testing is not an exception: successfully balancing the many as-
pects is a difficult and often underestimated problem that requires highly
skilled designers. Functional testing is not an exercise of choosing the opti-
mal approach, but a complex set of activities for finding a suitable combina-
tion of models and techniques that can lead to a set of test cases that satisfy
cost and quality constraints. This balancing extends beyond test design to
software design for test. Appropriate design not only improves the software
development process, but can greatly facilitate the job of test designers, and
thus lead to substantial savings.

Too often test designers make the same mistake as non-expert program-
mers, that is to start generating code in one case, test cases in the other,
without prior analysis of the problem domain. Expert test designers care-
fully examine the available specifications, their form, domain and company
constraints for identifying a suitable framework for designing test case speci-
fications before even starting to consider the problem of test case generation.

Open research issues

Functional testing is by far the most popular way of deriving test cases in in-
dustry, but both industrial practice and research are still far from general and
satisfactory methodologies. Key reasons for the relative shortage of results
are the intrinsic difficulty of the problem and the difficulty of working with
informal specifications. Research in functional testing is increasingly active
and progresses in many directions.

A hot research area concerns the use of formal methods for deriving test
cases. In the past three decades, formal methods have been mainly studied as
a means for formally proving software properties. Recently, a lot of attention
has been moved towards the use of formal methods for deriving test cases.
There are three main open research topics in this area:

� definition of techniques for automatically deriving test cases from par-
ticular formal methods. Formal methods present new challenges and
opportunities for deriving test cases. We can both adapt existing tech-
niques borrowed from other disciplines or research areas and define
new techniques for test case generation. The formal nature can sup-
port fully automatic generation of test cases, thus opening additional
problems and research challenges.
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� adaptation of formal methods to be more suitable for test case gener-
ation. As illustrated in this chapter, test cases can be derived in two
broad ways, either by identifying representative values or by deriving a
model of the unit under test. The possibility of automatically generat-
ing test cases from different formal methods offers the opportunities of
a large set of models to be used in testing. The research challenge relies
in the capability of identifying a tradeoff between costs of generating
formal models and savings in automatically generating test cases. The
possibility of deriving simple formal models capturing only the aspects
of interests for testing has been already studied in some specific areas,
like concurrency, where test cases can be derived from models of the
concurrency structure ignoring other details of the system under test,
but the topic presents many new challenges if applied to wider classes
of systems and models.

� identification of a general framework for deriving test cases from any
particular formal specification. Currently research is moving towards
the study of techniques for generating test cases for specific formal meth-
ods. The unification of methods into a general framework will consti-
tute an additional important result that will allow the interchange of
formal methods and testing techniques.

Another hot research area is fed by the increasing interest in different spec-
ification and design paradigms. New software development paradigms, such
as the object oriented paradigm, as well as techniques for addressing increas-
ingly important topics, such as software architectures and design patterns,
are often based on new notations. Semi-formal and diagrammatic notations
offer several opportunities for systematically generating test cases. Resarch is
active in investigating different possibilities of (semi) automatically deriving
test cases from these new forms of specifications and studying the effective-
ness of existing test case generation techniques12.

Most functional testing techniques do not satisfactory address the prob-
lem of testing increasingly large artifacts. Existing functional testing tech-
niques do not take advantages of test cases available for parts of the artifact
under test. Compositional approaches for deriving test cases for a given sys-
tem taking advantage of test cases available for its subsystems is an important
open research problem.

Further Reading

Functional testing techniques, sometimes called “black-box testing” or “specification-
based testing,” are presented and discussed by several authors. Ntafos [DN81]
makes the case for random, rather than systematic testing; Frankl, Hamlet,

12Problems and state-of-art techniques for testing object oriented software and software ar-
chitectures are discussed in Chapters ?? and ??
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Littlewood and Strigini [FHLS98] is a good starting point to the more recent
literature considering the relative merits of systematic and statistical approaches.

Category partition testing is described by Ostrand and Balcer [OB88]. The
combinatorial approach described in this chapter is due to Cohen, Dalal,
Fredman, and Patton [CDFP97]; the algorithm described by Cohen et al. is
patented by Bellcore. Myers’ classic text [Mye79] describes a number of tech-
niques for testing decision structures. Richardson, O’Malley, and Tittle [ROT89]
and Stocks and Carrington [SC96] are among more recent attempts to gener-
ate test cases based on the structure of (formal) specifications. Beizer’s Black
Box Testing [Bei95] is a popular presentation of techniques for testing based
on control and data flow structure of (informal) specifications.

Catalog-based testing of subsystems is described in depth by Marick’s The
Craft of Software Testing [Mar97].

Test design based on finite state machines has been important in the do-
main of communication protocol development and conformance testing; Fu-
jiwara, von Bochmann, Amalou, and Ghedamsi [FvBK�91] is a good introduc-
tion. Gargantini and Heitmeyer [GH99] describe a related approach applica-
ble to software systems in which the finite-state machine is not explicit but
can be derived from a requirements specification.

Test generation from context-free grammars is described by Celentano et
al. [CCD�80] and apparently goes back at least to Hanford’s test generator
for an IBM PL/I compiler [Han70]. The probabilistic approach to grammar-
based testing is described by Sirer and Bershad [SB99], who use annotated
grammars to systematically generate tests for Java virtual machine imple-
mentations.

Related topics

Readers interested in the complementarites between functional and struc-
tural testing as well as readers interested in the testing decision structures and
control and data flow graphs may continue with the next Chapters that de-
scribe structural and data flow testing. Readers interested in finite state ma-
chine based testing may go to Chapters 17 and ?? that discuss testing of object
oriented and distributed system, respectively. Readers interested in the qual-
ity of specifications may goto Chapters 25 and ??, that describe inspection
techniques and methods for testing and analysis of specifications, respec-
tively. Readers interested in other aspect of functional testing may move to
Chapters 16 and ??, that discuss technuqes for testing complex data struc-
tures and GUIs, respectively.
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Exercises

Ex13.1. In the “Extreme Programming” (XP) methodology [?], a written descrip-
tion of a desired feature may be a single sentence, and the first step to design-
ing the implementation of that feature is designing and implementing a set
of test cases. Does this aspect of the XP methodology contradict our assertion
that test cases are a formalization of specifications?

Ex13.2. Compute the probability of selecting a test case that reveals the fault in-
serted in line 25 of program Root of Figure 13.1 by randomly sampling the
input domain, assuming that type double has range ���� 
 
 
 ��� � �. Com-
pute the probability of selecting a test case that reveals a fault, asuming that
both lines 18 and 25 of program Root contains the same fault, i.e., missing
condition � 	� �. Compare the two probabilities.

Ex13.3. Identify independently testable units in the following specification.

Desk calculator Desk calculator performs the following algebraic opera-
tions: sum, subtraction, product, division, and percentage on integers and
real numbers. Operands must be of the same type, except for percentage,
which allows the first operator to be either integer or real, but requires the
second to be an integer that indicates the percentage to be computed. Oper-
ations on integers produce integer results. Program Calculator can be used
with a textual interface that provides the following commands:

Mx=N where Mx is a memory location,i.e., M0,.. M9 and N is a number. In-
tegers are given as non-empty sequences of digits, with or without sign.
Real numbers are given as non-empty sequences of digits that include a
dot “.”, with or without sign. Real numbers can be terminated with an
optional exponent, i.e., character “E” followed by an integer. The com-
mand displays the stored number.

Mx=display , where Mx is a memory location and display indicates the value
shown on the last line.

operand1 operation operand2 , where operand1 and operand2 are num-
bers or memory locations or display and operation is one of the follow-
ing symbols: “+”, “-”, “*”, “/”, “%”, where each symbol indicates a partic-
ular operation. Operands must follow the type conventions. The com-
mand displays the result or the string Error.

or with a graphical interface that provides a display with 12 characters and
the following keys:

� , � , + , * , > , ? , @ , A , , , B , the 10 digits

� , 4 , # , ( , � , the operations

� to display the result of a sequence of operations
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2 , to clear display

. , .� , .0 , .C , .2 , where . is pressed before a digit to indicate
the target memory, 0. . . 9, keys .� , .0 , .C , .2 pressed after .

and a digit indicate the operation to be performed on the target mem-
ory: add display to memory, store display in memory, restore memory,
i.e., move the value in memory to the display and clear memory.
Example: ? � � � . * .0 , � 4 . * .C � prints 65 (the
value 15 is stored in memory cell 3 and then retrieved to compute 80 -
15).

Ex13.4. Assume we have a set of parameter caracteristics (categories) and value
classes (choices) obtained by applying the category partition method to an
informal specification. Write an algorithm for computing the number of
combinations of value classes for each of the following restricted cases:

� (Case 1) Parameter characteristics and value classes are given without
constraints

� (Case 2) Only constraints error and single are used (without constraints
property and if-property)

� (Case 3) Constraints are used, but constraints property and if-property
are not used for value classes of the same paramter characteristics, i.e.,
only one of these two types of contrain can be used for value classes of
the same parameter characteristic. Moreover, constraints are not nested,
i.e., if a value class of a given parameter characteristic 
 is constrained
with if-property with repect to a set of different parameter characteris-
tics �, then � cannot be further constrained with if-property.

Ex13.5. Given a set of parameter characteristics (categories) and value classes (choices)
obtained by applying the category partition method to an informal specifi-
cation, explain either with a deduction or with examples why unrestricted
use of constraints property and if-property makes it difficult to compute the
number of derivable combinations of value classes.
Write heuristics to compute a reasonable upper bound for the number of
derivable combinations of value classes when constraints can be used with-
out limits.

Ex13.6. Consider the following specification, which extends the specification of
the feature Check-configuration of the Chipmuk web site given in Figure
13.3. Derive a test case specification using the category partition method
and compare the test specification you obtain with the specification of Ta-
ble 13.1. Try to identify a procedure for deriving the test specifications of the
new version of the functional specification from the former version. Discuss
the suitability of category-partition test design for incremental development
with evolving specifications.
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Check-Configuration: the Check-configuration function checks the va-
lidity of a computer configuration. The parameters of check-configuration
are:

Product line: A product line identifies a set of products sharing several
components and accessories. Different product lines have distinct
components and accessories.
Example: Product lines include desktops, servers, notebooks, digi-
tal cameras, printers.

Model: A model identifies a specific product and determines a set of
constraints on available components. Models are characterized by
logical slots for components, which may or may not be implemented
by physical slots on a bus. Slots may be required or optional. Re-
quired slots must be assigned a suitable component to obtain a le-
gal configuration, while optional slots may be left empty or filled
depending on the customer’s needs.
Example: The required “slots” of the Chipmunk C20 laptop com-
puter include a screen, a processor, a hard disk, memory, and an
operating system. (Of these, only the hard disk and memory are
implemented using actual hardware slots on a bus.) The optional
slots include external storage devices such as a CD/DVD writer.

Set of Components: A set of ������ 	���������pairs, which must corre-
spond to the required and optional slots associated with the model.
A component is a choice that can be varied within a model, and
which is not designed to be replaced by the end user. Available com-
ponents and a default for each slot is determined by the model. The
special value “empty” is allowed (and may be the default selection)
for optional slots.
In addition to being compatible or incompatible with a particular
model and slot, individual components may be compatible or in-
compatible with each other.
Example: The default configuration of the Chipmunk C20 includes
20 gigabytes of hard disk; 30 and 40 gigabyte disks are also avail-
able. (Since the hard disk is a required slot, “empty” is not an al-
lowed choice.) The default operating system is RodentOS 3.2, per-
sonal edition, but RodentOS 3.2 mobile server edition may also be
selected. The mobile server edition requires at least 30 gigabytes of
hard disk.

Set of Accessories: An accessory is a choice that can be varied within a
model, and which is designed to be replaced by the end user. Avail-
able choices are determined by a model and its line. Unlike compo-
nents, an unlimited number of accessories may be ordered, and the
default value for accessories is always “empty.” The compatibility of
some accessories may be determined by the set of components, but
accessories are always considered compatible with each other.
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Example: Models of the notebook family may allow accessories in-
cluding removable drives (zip, cd, etc.), PC card devices (modem,
lan, etc.), additional batteries, port replicators, carrying case, etc.

Ex13.7. Update the specification of feature Check-configuration of the Chipmuk
web site given in Figure 13.3 by using information from the test specification
provided in Table 13.1.

Ex13.8. Derive test specifications using the category partition method for the fol-
lowing Airport connection check function:

Airport connection check: The airport connection check is part of an
(imaginary) travel reservation system. It is intended to check the va-
lidity of a single connection between two flights in an itinerary. It is
described here at a fairly abstract level, as it might be described in a
preliminary design before concrete interfaces have been worked out.

Specification Signature: Valid Connection (Arriving Flight: flight, De-
parting Flight: flight) returns Validity Code
Validity Code 0 (OK) is returned if Arriving Flight and Departing Flight
make a valid connection (the arriving airport of the first is the de-
parting airport of the second) and there is sufficient time between
arrival and departure according to the information in the airport
database described below.
Otherwise, a validity code other than 0 is returned, indicating why
the connection is not valid.
Data types
Flight: A ”flight” is a structure consisting of
� A unique identifying flight code, three alphabetic characters fol-

lowed by up to four digits. (The flight code is not used by the
valid connection function.)

� The originating airport code (3 characters, alphabetic)
� The scheduled departure time of the flight (in universal time)
� The destination airport code (3 characters, alphabetic)
� The scheduled arrival time at the destination airport.

Validity Code: The validity code is one of a set of integer values with
the following interpretations
0: The connection is valid.
10: Invalid airport code (airport code not found in database)
15: Invalid connection, too short: There is insufficient time between

arrival of first flight and departure of second flight.
16: Invalid connection, flights do not connect. The destination air-

port of Arriving Flight is not the same as the originating airport
of Departing Flight.

20: Another error has been recognized (e.g., the input arguments
may be invalid, or an unanticipated error was encountered).

Draft version produced 20th March 2002



116 Functional Testing

Airport Database
The Valid Connection function uses an internal, in-memory table
of airports which is read from a configuration file at system initial-
ization. Each record in the table contains the following informa-
tion:

� Three-letter airport code. This is the key of the table and can be
used for lookups.

� Airport zone. In most cases the airport zone is a two-letter coun-
try code, e.g., ”us” for the United States. However, where passage
from one country to another is possible without a passport, the
airport zone represents the complete zone in which passport-
free travel is allowed. For example, the code ”eu” represents the
European countries which are treated as if they were a single
country for purposes of travel.

� Domestic connect time. This is an integer representing the min-
imum number of minutes that must be allowed for a domestic
connection at the airport. A connection is ”domestic” if the orig-
inating and destination airports of both flights are in the same
airport zone.

� International connect time. This is an integer representing the
minimum number of minutes that must be allowed for an in-
ternational connection at the airport. The number -1 indicates
that international connections are not permitted at the airport.
A connection is ”international” if any of the originating or des-
tination airports are in different zones.

Ex13.9. Derive test specifications using the category partition method for the func-
tion SUM of Excel�� from the following description taken from the Excel
manual:

SUM: Adds all the numbers in a range of cells.

Syntax
SUM(number1,number2, ...)
Number1, number2, ...are 1 to 30 arguments for which you want
the total value or sum.

� Numbers, logical values, and text representations of numbers
that you type directly into the list of arguments are counted. See
the first and second examples following.

� If an argument is an array or reference, only numbers in that ar-
ray or reference are counted. Empty cells, logical values, text, or
error values in the array or reference are ignored. See the third
example following.

� Arguments that are error values or text that cannot be trans-
lated into numbers cause errors.
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Examples

SUM(3, 2) equals 5

SUM(”3”, 2, TRUE) equals 6 because the text values are translated
into numbers, and the logical value TRUE is translated into the
number 1.
Unlike the previous example, if A1 contains ”3” and B1 contains
TRUE, then:

SUM(A1, B1, 2) equals 2 because references to nonnumeric values
in references are not translated.
If cells A2:E2 contain 5, 15, 30, 40, and 50:

SUM(A2:C2) equals 50

SUM(B2:E2, 15) equals 150

Ex13.10. Eliminate from the test specifications of the feature check configuration
given in Table 13.1 all constraints that do not correspond to infeasible tuples,
but have been added for the sake of reducing the number of test cases.
Compute the number of test cases corresponding to the new specifications.
Apply the combinatorial approach to derive test cases covering all pairwise
combinations.
Compute the number of derived test cases.

Ex13.11. Consider the value classes obtained by applying the category partition
approach to the Airport Connection Check example of Exercise Ex13.8. Elim-
inate from the test specifications all constraints that do not correspond to
infeasible tuples and compute the number of derivable test cases. Apply the
combinatorial approach to derive test cases covering all pairwise combina-
tions, and compare the number of derived test cases.

Ex13.12. Given a set of parameter characteristics and value classes, write a heuris-
tic algorithm that selects a small set of tuples that cover all possible pairs of
the value classes using the combinatorial approach. Assume that parameter
characteristics and value classes are given without constraints.

Ex13.13. Given a set of parameter characteristics and value classes, compute a
lower bound on the number of tuples required for covering all pairs of values
according to the combinatorial approach.

Ex13.14. Generate a set of tuples that cover all triples of language, screen-size, and
font and all pairs of other parameters for the specification given in Table
13.3.

Ex13.15. Consider the following columns that correspond to educational and in-
dividual accounts of feature pricing of Figure 13.4:
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Education Individual
Edu. T T F F F F F F
CP � CT1 - - F F T T - -
CP � CT2 - - - - F F T T
SP � Sc F T F T - - - -
SP � T1 - - - - F T - -
SP � T2 - - - - - - F T
Out Edu SP ND SP T1 SP T2 SP

write a set of boolean expressions for the outputs and apply the modified
condition/decision adequacy criterion (MC/DC) presented in Chapter 14
to derive a set of test cases for the derived boolean expressions. Compare the
result with the test case specifications given in Figure 13.6.

Ex13.16. Derive a set of test cases for the Airport Connection Check example of
Exercise Ex13.8 using the catalog based approach.
Extend the catalog of Table 13.10 as needed to deal with specification con-
structs.

Ex13.17. Derive sets of test cases for functionality Maintenance applying Transi-
tion Coverage, Single State Path Coverage, Single Tranistion Path Coverage,
and Boundary Interior Loop Coverage to the FSM specification of Figure
13.9

Ex13.18. Derive test cases for functionality Maintenance applying Transition Cov-
erage to the FSM specification of Figure 13.9, assuming that implicit transi-
tions are (1) error conditions or (2) self transitions.

Ex13.19. We have stated that the transitions in a state-machine specification can
be considered as precondition, postcondition pairs. Often the finite-state
machine is an abstraction of a more complex system which is not truly finite-
state. Additional “state” information is associated with each of the states, in-
cluding fields and variables that may be changed by an action attached to a
state transition, and a predicate that should always be true in that state. The
same system can often be described by a machine with a few states and com-
plicated predicates, or a machine with more states and simpler predicates.
Given this observation, how would you combine test selection methods for
finite-state machine specifications with decision structure testing methods?
Can you devise a method that selects the same test cases regardless of the
specification style (more or fewer states)? Is it wise to do so?
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