High-Level Structuring of Requirements Models

Topics for Today
- Structuring based on fundamental concepts
 - How do we structure a model?
 - A little bit about what we are doing in my group
- You will learn
 - How these fundamental concepts can be used
 - How the process of developing the specification and the structure of the specification is related to these concepts

Overview
- Where to start?
- 4-variable overview
- How do I get the monitored and controlled variables?
- Specifying REQ
- Now I want to build it, how to I get the monitored/controlled variable for _____?
- Refining REQ to SOFT
- ASW Examples

Where to Start?
- We would like a well organized requirements document, that captures fundamental facts about the system and is easy to use and maintain
 - "Coffee stain" test
 - Expected/likely changes should not cause "ripple effect"
- Requirements development must be iterative
 - Things change, it is impossible to know all details up front
 - See Parnas, "Rational Design Process: How and why to fake it"
- Requirements process and requirements structuring are interrelated
 - Requirements structuring = putting first things first

Process Control Model

ASW

The Altitude Switch
- The purpose of the ASW is to turn a device of interest (DOI) on when the plane descends below a threshold altitude
- The DOI could be, for example, a ground proximity radar
- Inputs:
 - Altitude
 - Reset and Inhibit Signals
 - DOI Status
- Outputs:
 - Command to turn the DOI on
 - Failure Indication
Classes of MON and CON

- Quantities to/from the Environment
 - Altitude
 - DOI Command
 - DOI Status
- Quantities to/from the Operator
 - Inhibit
 - Reset
 - Failure
- Quality indications
 - Altitude Bad
- Quantities to/from another subsystem or abstractions
 - Any of these in the ASW?

How to Select MON and CON?

- Basic Process:
 - What do you want the system to do?
 - What controlled variables do you need to accomplish it?
 - What monitored variables are needed to determine the values of the controlled variables?
- In practice:
 - Knowledge of sensors can affect MON
 - Knowledge of actuators can affect CON
 - Delicate balance between introducing (too much) implementation, and being realistic

What to Define About Each Variable?

- Name and purpose (intent)
- Type (numeric, Boolean, enumerated)
- Properties:
 - Expected range
 - Precision
 - Physical meaning
- How each variable takes on its values (for controlled variables)
 - End result of specifying this for each Controlled variable is a specification of REQ

Process Control Model

Sensors and Actuators

- You must be able to deal with sensor failures
 - To deal with sensor failures at the REQ level, you introduce quality indications like Altitude_Bad
- Sensors and actuators are noisy
 - Noise in sensors must allow you to construct an estimate of the monitored quantity within the designated precision
- You often must fuse the information from several sensors to get the information you need
 - Example: 3 Altimeters of the ASW
 - Example: Nuclear Power
- This seems complicated ?!
 - I thought REQ was the important/hard part?
Process Control Model

Structuring SOFT

Possible Changes to the System

- I've got a better sensor to measure altitude and I'd like to use it in the system because it will mean I will get into the failure modes of REQ less often
- We need the system to perform a new task with the existing sensors and actuators
- There is a new lifting machine on the assembly line that has a different control language than the old one, but it does the same task
- We have a new sensor that will allow us to get additional information about the environment, and we want to use that information when it's available

Structuring SOFT

Possible Changes to the System

- I've got a better sensor to measure altitude and I'd like to use it in the system because it will mean I will get into the failure modes of REQ less often
- We need the system to perform a new task with the existing sensors and actuators
- There is a new lifting machine on the assembly line that has a different control language than the old one, but it does the same task
- We have a new sensor that will allow us to get additional information about the environment, and we want to use that information when it's available

Specification Based Prototyping

- **Goal:** Combine the advantages of formal specifications with the advantages of prototyping while eliminating some of the drawbacks of both approaches.
 - Advantages of Formal Specifications
 - Clear, well understood semantics
 - Readable
 - Analyzable
 - Advantages of Prototyping
 - Risk management
 - Early customer involvement

ASW Details
High-Level RSML-e Model of the ASW

A Transition from an RSML-e Model

Visualization & Execution

Nimbus Goals

Nimbus Environment

ASW High-Level Prototyping
Refining the ASW

- The ASW actually has three altimeters. Thus, the REQ relation altitude should be split into three separate inputs in the IN relation.

Furthermore, the digital altimeters give the altitude as a fraction of 8,192 whereas the analog altimeters give only above or below (threshold altitude is hard-wired).

DigitalAlt = \frac{\text{Altitude}}{8,192}

AnalogAlt = \begin{cases} \text{Above} & \text{if Altitude > Threshold} \\ \text{Below} & \text{if Altitude \leq Threshold} \end{cases}

Model Extension

Macro from the Refined ASW

Macro: BelowThreshold()

BelowThreshold()

DigitalAlt_1

DigitalAlt_2

AnalogAlt

Refine to Include 3 Altimeters

Refined Model of the ASW

Specification-Based Prototyping Specification Refinement
Conclusion

- We have defined how to extend system requirements to software requirements
- *Specification-based prototyping* is a powerful combination of *formal modeling* with a *prototyping methodology*
- *Nimbus* allows for flexible execution and easy integration in system simulations so that the right tool can be used to accomplish the evaluation and modeling task

What Have we Learned?

- What effects your choices of monitored and controlled variables
 - What quantities are candidates
 - What process you use in selecting them
 - How sensors and actuators can affect those decisions
- How you can structure the requirements document, and the requirements effort, to isolate common changes
 - What changes are likely; which relations will be affected
 - How to refine REQ to SOFT
 - How to structure SOFT to isolate anticipated changes
- Next time
 - RSML* and Nimbus