I began with a quick development of basic Fourier series—in a nonstandard way, i.e., via E-M summation.

\[\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \,dx \]

On \([0,1]\) or any \([a_j, a_{j+1}]\):

\[\langle \varphi_m, \varphi_n \rangle = \begin{cases} 0 & m \neq n \\ 1 & m = n \end{cases} \]

For

\[\varphi_n(x) = e^{2\pi i nx}, \quad n \in \mathbb{Z}. \]

So, we have the usual idea of trying to write \(f\) "most of the time" as \(\sum_{n} c_n \varphi_n \), \(c_n = \langle f, \varphi_n \rangle \).

Lemma

\(f \in C[0,N] \). Assume \(f \) is only piecewise \(\leq 1 \) (not \(\equiv 1 \)).

Then we still have

\[
\frac{1}{2} f(0) + f(1) + \cdots + f(N-1) + \frac{1}{2} f(N) = \int_{0}^{N} f(x) \, dx + \int_{0}^{N} f(x) \beta(x) \, dx
\]

\[\beta(x) = x - \lfloor x \rfloor - \frac{1}{2}. \]
\[\text{Pr} \]

Begin as before

\[
f(1) + \cdots + f(N) = \int_0^N f(x) \, d\beta(x) \\
= \int_0^N f(x) \, d\left(x - \frac{1}{2} - \beta(x)\right) \quad (R-S) \\
= \int_0^N f(x) \, dx - \int_0^N f(x) \, d\beta(x).
\]

Split \(\int_0^N f(x) \, d\beta \) into chunks corresponding to corners of \(\mathcal{F}_0 \).

Then do the integration by parts and recombine. Ambiguous \(f' \) at a finite \(N \) of corners does not affect \(\int_0^N \beta \, f' \, dx \).

\[\Rightarrow \text{All is fine.} \]

Take \(N=1 \). Assume \(f \in C([0,1]) \), piecewise \(C^1 \).

Hence, by lemma,

\[
\frac{1}{2} f(0) + \frac{1}{2} f(1) = \int_0^1 f \, dx + \int_0^1 f' \left(-\sum_{n=1}^{\infty} \frac{\sin 2\pi nx}{2\pi n} \right) \, dx \\
= \int_0^1 f \, dx + \sum_{n=1}^{\infty} \int_0^1 f' \left(-\frac{\sin 2\pi nx}{2\pi n}\right) \, dx,
\]

the 2nd line by Lec 9, p. 14, Baby Fact.
Note that the error term after N is

$$
\pm \int_0^1 f'(\beta - sn) \, dx
$$

i.e.,

$$
\text{ABS VALUE} \leq MN \int_0^1 |\beta - sn| \, dx
$$

$$
MN = \sup_{[0,1]} |f'|
$$

The $|\beta - sn|$ integral is an absolute expression, say ω_N, and $\omega_N \to 0$ so \mathcal{O}

$$
|\text{Error}| \leq MN \omega_N
$$

Note too that

$$(n \geq 1)$$

$$
\int_0^1 f' \sin 2\pi nx \, dx = \frac{1}{2\pi in} \int_0^1 f'(e^{-2\pi i nx} - e^{2\pi i nx}) \, dx
$$

Write the last expr. as

$$
\frac{1}{2\pi in} \int_0^1 f' e^{-2\pi in x} \, dx + \frac{1}{2\pi in(-n)} \int_0^1 f' e^{2\pi i(-n)x} \, dx
$$
\[
\frac{1}{2\pi i} \int_{0}^{1} f(e^{-2\pi i n x}) \, dx
\]
\[
= \frac{1}{2\pi i} \int_{0}^{1} e^{-2\pi i n x} \, df \quad \text{(standard parts)}
\]
\[
= \frac{1}{2\pi i} \int_{0}^{1} e^{-2\pi i n x} f(x) \, dx
\]
\[
- \frac{1}{2\pi i} \int_{0}^{1} f(x) \, d(e^{-2\pi i n x})
\]
\[
= \frac{f(1) - f(0)}{2\pi i} + \int_{0}^{1} f(e^{-2\pi i n x}) \, dx.
\]

Similarly for \(-n\). Now add! Get:

\[
(\text{term } u) + (\text{term } -u) \equiv C_u + C_{-u}
\]

where

\[
C_k = \int_{0}^{1} f(e^{-2\pi i k x}) \, dx.
\]

So,

\[
\frac{1}{2} f(0) + \frac{1}{2} f(1) = C_0 + \sum_{n \to \infty} \sum_{n} C_n \left(\frac{\xi}{1} \right)^{n+2}.
\]
\[\frac{1}{2} F(0) + \frac{i}{2} F(1) = \lim_{N \to \infty} \sum_{n=-N}^{N} c_n \]

any \(f \in C[0,1] \), piecewise \(C^1 \).

\(\text{example} \)

Ah, ah! This is really a Fourier series!

\[\lim_{N \to \infty} \sum_{n=-N}^{N} c_n e^{2\pi in} = 0 \]

The proof was just basic Egorov version II.

and

\[x - \|x\| - \frac{1}{2} = -\sum_{n=1}^{\infty} \frac{\sin 2\pi nx}{\pi n} \]

\(x \in \mathbb{Z} \).

NOTE THAT error term for \(|x| > N \) is

\[\leq M N \|

\]
Initial Thm

Given \(f \in C([0,1]), \) piecewise \(C^1 \).

Let \(c_k = \int_0^1 f(x) e^{-2\pi i k x} dx = \langle f, q_k \rangle \).

Then:
\[
\frac{1}{2} f(0) + \frac{1}{2} f(1) = \lim_{N \to \infty} \left\{ \sum_{k=-N}^{N} c_k e^{2\pi i k 0} \right\}
\]

\[|\text{Error}| \leq MwN.\]

pf
As above.

Thm

Let \(f \in C(\mathbb{R}), \) periodic 1, piecewise \(C^1 \).

Then:
\[
\lim_{N \to \infty} \sum_{k=-N}^{N} c_k e^{2\pi i k x} \rightarrow f(x) \text{ on } \mathbb{R}.
\]

pf
Fix any \(x_0 \in \mathbb{R} \). Consider \(g(x) = f(x + x_0) \) on \([0,1]\) in previous Thm. Note
\[
c_k(g) = \int_0^1 g(x) e^{-2\pi i k x} dx = \int_0^1 f(x + x_0) e^{-2\pi i k x} dx
\]
\[
\{ y = x + x_0 \}
\]
\[
= \int_{x_0}^{x_0+1} f(y) e^{-2\pi i k y} e^{2\pi i k x_0} dy
\]

\[e^{2\pi ikx_0} \int_{x_0}^{x_0 + 1} f(y) e^{-2\pi iky} \, dy = e^{2\pi ikx_0} \int_{0}^{1} f(y) e^{-2\pi iky} \, dy \]

\[\{ \text{by periodicity of } f \} \]

\[\{ \text{integrand} \} \]

\[= e^{2\pi ikx_0} \mathcal{F}(f) \]

So \(f(x_0) = \lim_{N \to \infty} \frac{1}{N} \sum_{-N}^{N} \mathcal{F}(f) e^{2\pi ikx_0} \)

\[\text{|Error|} \leq M \max_{N} \, , \quad M = \sup_{\mathbb{R}} |f'| \]

Qed. \[\square \]

The next theorem is a commonly used augmentation of Theorem 6 on [6] bottom.

Theorem

Let \(f \) belong to \(C^2(\mathbb{R}) \) and be periodic 1. We then have

\[|c_k| \leq \frac{1}{(2\pi k)^2} \int_{0}^{1} |f''(x)| \, dx \quad k \neq 0 \]

This ensures that, on [6] bottom, \(\sum_{k \neq 0} c_k e^{2\pi ikx} \)

conv both uniformly and absolutely to \(f(x) \) on \(\mathbb{R} \).
Simply integrate by parts twice:

$$c_k = \frac{1}{(2\pi ik)^2} \int_0^1 f(x) e^{-2\pi i k x} \, dx, \quad k \neq 0.$$

The following is our main assertion in this approach to FS based on e^{-M}.

Theorem (Standard Fourier series that in undergrad)

Let f be given on $[a, b]$ and be periodic $2L$.

Assume f is piecewise C^1. (See picture.)

Let $c_k = \int_0^1 f(x) e^{-2\pi i k x} \, dx$ and

$$FS(f) \equiv \sum_{-\infty}^{\infty} c_k e^{2\pi i k x}$$

as a formal sum.

We then have $\Sigma_{-N}^{N} c_k e^{2\pi i k x} \rightarrow f(x)$ as $N \rightarrow \infty$

away from the discontinuities of f. At the points of discontinuity, we have

$$\sum_{-N}^{N} c_k e^{2\pi i k x} \rightarrow \frac{1}{2} \left[f(x+0) + f(x-0)\right].$$

Here $f(x+0)$, $f(x-0)$ are the one-sided limits.

(cont'd)
In addition, the partial sums \(\sum_{-N}^{N} a_k e^{2\pi i k x} \) will be uniformly bounded on \(\mathbb{R} \).

Proof

The thm is certainly correct if \(f \) has no discontinuities on \(\mathbb{R} \). See (6) bottom.

We now do a trick. (using \(\beta \))

Baby Lemma

Let \(H(x) \equiv \lim_{N \to \infty} \sum_{-N}^{N} a_k e^{2\pi i k x} \), where the limit exists pointwise on all of \(\mathbb{R} \). Assume that the partial sums \(\sum_{-N}^{N} \) are uniformly bounded on \(\mathbb{R} \). Finally, assume that the partial sums \(\sum_{-N}^{N} \) converge uniformly away from \(\{c_1, \ldots, c_m \} \mod \mathbb{Z} \) (in finite). Then:

(A) \(H(x) \) is Riemann integrable on \([0,1] \);

(B) \(a_k \approx \int_0^1 H(x) e^{-2\pi i k x} \, dx \), each \(k \in \mathbb{Z} \).

No! (B) is not a tautology!
Pf of Lemma

The discontinuities of \(H \) are contained in \(\{ c_1, \ldots, c_m \} \mod \mathbb{Z} \) by the uniform convergence of \(H(x) \) is also bounded by the uniform boundedness of

\[
S_N(x) = \sum_{N}^{\infty} a_k e^{2\pi i k x}.
\]

By baby calculus, \(H \) is Riemann integrable on any finite \([a, b] \). Hence \([0, 1] \).

As we saw earlier, baby analysis \(\Rightarrow \)

\[
\int_0^1 |H(x) - S_N(x)| \, dx \to 0 \quad \text{as} \quad N \to \infty.
\]

See Lec 9 p. 9.

By that same idea, we have:

\[
\int_0^1 e^{-2\pi i m x} S_N(x) \, dx \to \int_0^1 e^{-2\pi i m x} H(x) \, dx
\]

for each \(m \in \mathbb{Z} \). But LHS = \(am + O(1) \) for large \(N \).

Hence,

\[
am = \int_0^1 H(x) e^{-2\pi i m x} \, dx.
\]
Before continuing, observe that: \(l \in \mathbb{N} \)
\[
\frac{e^{x + \pi i l}}{-2\pi i l} + \frac{e^{-x - \pi i l}}{-2\pi i l} = -\frac{1}{2\pi i l} (e^{x + \pi i l} - e^{-x - \pi i l})
\]
\[= \frac{\sin(2\pi l x)}{\pi l}.
\]

Also write
\[
\tilde{\beta}(y) = \begin{cases} 0, & y \in \mathbb{Z} \\ \beta(y), & y \notin \mathbb{Z} \end{cases}.
\]

We already know that
\[
\tilde{\beta}(x) = \sum_{m=1}^{\infty} \frac{\sin 2\pi mx}{\pi m} = \sum_{n=0}^{\infty} -\frac{1}{2\pi i n} e^{2\pi i n x}
\]
all \(x \in \mathbb{R} \). Unit conv away from \(\mathbb{Z} \)'s partial sums unit bounded. Similarly
\[
\tilde{\beta}(x-c) = \sum_{n=0}^{\infty} -\frac{e^{-2\pi i n c}}{2\pi i n} e^{2\pi i n x}
\]
all \(x \in \mathbb{R} \). By Baby Lemma on \(\theta \)'s automatically
\[
\int \tilde{\beta}(x)e^{-2\pi i k x} \, dx = \begin{cases} 0, & k = 0 \\ -\frac{1}{2\pi i n}, & k \neq 0 \end{cases}
\]
\[\int_0^1 \beta(x-c) e^{-2\pi inx} dx = \begin{cases} 0, & n = 0 \\ \frac{-e^{-2\pi inc}}{2\pi in}, & n \neq 0 \end{cases}. \]

Thus:

\[\mathcal{F} \left[\beta(x) \right] = \sum_{n \neq 0} -\frac{1}{2\pi in} e^{2\pi inx}. \]

\[\mathcal{F} \left[\tilde{\beta}(x-c) \right] = \sum_{n \neq 0} \frac{e^{-2\pi inc} e^{2\pi inx}}{2\pi in}. \]

Obviously, the "\(n \)" can be removed from \(\beta \).

These Fourier series can of course be checked directly, but we prefer the slick approach.

We now return to the proof of p. 8 THM.

Let \(f(x) \) have nontrivial discontinuities at points \(c_1, \ldots, c_m \mod \mathbb{Z} \). Let the "right-left" jump be \(J_{i^*} \). Saying \(J_{i^*} = 0 \) means \(f(c_{i^*} + 0) = f(c_{i^*} - 0) \)

but \(f(c_{i^*}) \neq f(c_{i^*} + 0) \).

Recall that

\[\beta(0^+) - \beta(0^-) = -\frac{1}{2} - \frac{1}{2} = -1. \]
Define:

\[g(x) = f(x) + \sum_{i=1}^{m} J_i \beta(x - c_i), \quad x \in \mathbb{R}. \]

For \(g \) is very interesting! It is obviously periodic 1. Also, it is obviously piecewise \(C^1 \). It may have discontinuities, but these lie in \(\{ c_1, \ldots, c_m \} \mod \mathbb{Z} \).

Note however that

\[g(c_i + 0) - g(c_i - 0) = J_i^+ - J_i^- + 0 = 0 \quad \text{each} \quad 1 \leq i \leq m. \]

The points \(c_i \) are thus "removable discontinuities" if \(g \) is redefined correctly at these points.

Apply p. 6 bottom THM to this modified \(g \).

We conclude that \(FS(g) \) converges uniformly over \(\mathbb{R} \) to \[\frac{1}{2} \left[g(x + 0) + g(x - 0) \right]. \] The partial sums are automatically uniformly bounded on \(\mathbb{R} \).

By linearity, however, as series,

\[FS(f) = FS(g) - \sum_{i=1}^{m} J_i \cdot FS[\beta(x - c_i)]. \]
At once, the partial sums of $FS(f)$ are uniformly bounded on R (by the corresponding fact for β).

Also, $FS(f)$ converges uniformly away from the $\{c_0, \ldots, c_m \mod Z \}$ (by the corresponding fact for β).

At points $x \neq c_1, \ldots, c_m \mod Z$, clearly $FS(f)$ converges to

$$g(x) = \sum_{i=1}^{m} \beta_i (x - c_i^*) = F(x).$$

(Big surprise!!)

At c_i^*, $FS(f)$ converges to

$$\frac{1}{2} \left[g(c_i^*+0) + g(c_i^*-0) \right] - 0 = \sum_{l \neq i} J_l \beta(c_i^* - c_l).$$

But:

$$g(c_i^* + 0) = f(c_i^* + 0) + \int_{-\frac{1}{2}}^{0} \beta(c_i^* - c_l) \ dx + \sum_{l \neq i} J_l \beta(c_i^* - c_l),$$

$$g(c_i^* - 0) = f(c_i^* - 0) + \int_{\frac{1}{2}}^{0} \beta(c_i^* - c_l) \ dx + \sum_{l \neq i} J_l \beta(c_i^* - c_l).$$

$$\frac{g(c_i^* + 0) + g(c_i^* - 0)}{2} = \frac{f(c_i^* + 0) + f(c_i^* - 0)}{2} + \sum_{l \neq i} J_l \beta(c_i^* - c_l).$$
\[\text{FS}(f) \text{ conv to} \quad \frac{f(c_i^+ + 0) + f(c_i^+ - 0)}{2} \]

at each \(c_i \). (Again, big surprise!!)

Thus, all is now proved.

Famous Formula

THM (Parseval's formula)

Let \(f \) be periodic 1, piecewise \(C^1 \) as in p.8 THM.

We then have:

\[
\int_0^1 |f(x)|^2 \, dx = \sum_{k=-\infty}^{\infty} |c_k|^2 .
\]

PF

\(f \) is uniformly bounded on \(\mathbb{R} \). We know \(S_N(x) \) is uniformly bounded on \(\mathbb{R} \) too. We also have \(S_N(x) \to f(x) \) away from \(\{c_1, \ldots, c_m\} \mod \mathbb{Z} \). Apply the idea of Lec 9 p.6 again! (See p.10 above.)
We get:
\[
\int_0^1 f(x) \overline{S_N(x)} \, dx \to \int_0^1 f(x) f(x) \, dx \quad (N \to \infty)
\]

but
\[
LHS = \int_0^1 f(x) \left(\sum_{-N}^{N} c_k e^{2\pi i k x} \right) \, dx
\]
\[
= \sum_{-N}^{N} c_k \overline{c_k} = \sum_{-N}^{N} |c_k|^2
\]

The Fourier theory so far has been a kind of $L_0 \times L_1$ theory. In traditional real analysis courses, one investigates to see if an $L_2 \times L_2$ theory might be better (or more natural).

We will not bother to pursue the latter beyond a few remarks.

Use of completing the square on integrals like
\[
\int_0^1 |f(x) - S_N(x)|^2 \, dx \quad \int_0^1 |f(x) - \sum_{-N}^{N} a_k e^{2\pi i k x}|^2 \, dx
\]

for a general piecewise continuous, periodic $f(x)$ leads to
\[\sum_{-N}^{N} |c_k|^2 \leq \int_{-\infty}^{\infty} |f(x)|^2 \, dx \] (each \(N \))

\[\sum_{-\infty}^{\infty} |c_k|^2 \leq \int_{-\infty}^{\infty} |f(x)|^2 \, dx \]

(\text{i.e., Bessel's inequality})

Here \(c_k = \int_{0}^{1} e^{-2\pi i k x} \, dx \).

(Actually, equality holds — but this is a harder theorem. One uses Thm and "approximates" \(f \) by piecewise \(\mathcal{C}^1 \) functions. \text{ SEE ANY STANDARD BOOK ON F.S.})

Our 2\text{nd} remark is a theorem.

\textbf{THM} (slight strengthening of p. 6 bottom)

Let \(f \in \mathcal{C}(\mathbb{R}) \), periodic 1, and be piecewise \(\mathcal{C}^1 \).

Let \(c_k = \int_{0}^{1} e^{-2\pi i k x} \, dx \). The Fourier series

\[\sum_{-\infty}^{\infty} c_k e^{2\pi i k x} \]

then converges \underline{uniformly} to \(f(x) \) on \(\mathbb{R} \)

AND we also have

\[\sum_{-\infty}^{\infty} |c_k|^2 < \infty \].
pf
Take $k \neq 0$. By standard integ by parts,

$$c_k = \frac{1}{2\pi i k} \int_0^1 f'(x)e^{-2\pi i k x} \, dx.$$ \hspace{1cm} (4)

Again, NOTE THAT RHS is not affected by a few ambiguities in f'. Write the foregoing as

$$c_k = \frac{1}{2\pi i k} c_k(f')$$

and recall \boxed{(Bessel's ineq)}. By Cauchy-Schwarz inequality,

$$\sum_{k=1}^{N} |c_k| = \frac{1}{2\pi} \sum_{k=1}^{N} \frac{1}{k} |c_k(f')|$$

$$\leq \frac{1}{2\pi} \sqrt{\sum_{k=1}^{N} \frac{1}{k^2}} \sqrt{\sum_{k=1}^{N} |c_k(f')|^2} < + \infty.$$

Similarly for $k < 0$. \boxed{\ }
Next topic: Poisson summation formula.

\[\text{THM} \]

Given \(\varphi \in C^2(\mathbb{R}) \) such that, say, \(|\varphi(x)|, |\varphi'(x)|, |\varphi''(x)| \) all = \(O\left[(1+|x|)^{-2} \right] \).

Let
\[\hat{\varphi}(p) = \int_{-\infty}^{\infty} \varphi(x) e^{-2\pi i px} \, dx \quad \text{for } p \in \mathbb{R}. \]

Let
\[F(x) = \sum_{n=-\infty}^{\infty} \varphi(x+n) \quad x \in \mathbb{R}. \]

We then have
\[F(x) = \sum_{k=-\infty}^{\infty} \hat{\varphi}(k) e^{2\pi i kx} \quad \text{Poisson summation formula} \]

for \(x \in \mathbb{R} \), with absolute and uniform conv on both sides over every interval \([-A,A]\).

\[\text{Proof} \]

The series \(\sum_{n=-\infty}^{\infty} \varphi^{(j)}(x+n), 0 \leq j \leq 2 \) are clearly conv both abs and uniformly on every \([-A,A]\).

As such, we immediately get \(F \in C^2(\mathbb{R}) \). It is also apparent that \(F(x+1) = F(x) \).

Apply Thm \(\text{7} \) bottom. Get :
\[F(x) = \sum_{n=-\infty}^{\infty} A_k e^{2\pi i k x} \quad \text{nicely,} \]

\[A_k = \int_{0}^{1} F(x) e^{-2\pi i k x} \, dx \]

But:

\[A_k = \int_{0}^{1} \left(\sum_{n=-\infty}^{\infty} \varphi(x+n) \right) e^{-2\pi i k x} \, dx \]

\[= \sum_{n=-\infty}^{\infty} \int_{0}^{1} \varphi(x+n) e^{-2\pi i k x} \, dx \quad \text{by unif. conv} \]

\[= \sum_{n=-\infty}^{\infty} \int_{n}^{n+1} \varphi(y) e^{-2\pi i k y} \, dy = \int_{\mathbb{R}} \varphi(y) e^{-\varphi i k y} \, dy \]

\[= \varphi(k) . \]

Example

\[\varphi(x) = e^{-ax^2} \quad a > 0 \]

\[\int_{-\infty}^{\infty} e^{-ax^2} \, dx = \sqrt{\frac{\pi}{a}} \quad \Rightarrow \]

\[\int_{-\infty}^{\infty} e^{-ax^2} e^{-2\varphi i k x} \, dx = \sqrt{\frac{\pi}{a}} e^{-\frac{\pi k^2}{a}} \]

(by elementary contour shift).

Hence, by Poisson summation formula,

\[\sum_{n=-\infty}^{\infty} e^{-a(x+n)^2} = \sqrt{\frac{\pi}{a}} \sum_{k=-\infty}^{\infty} e^{-\frac{\pi^2 k^2}{a}} e^{2\pi ikx} . \] \hspace{1cm} (21)

Special Case:
\[\sum_{n=-\infty}^{\infty} e^{-\pi\beta n^2} = \sqrt{\frac{1}{\beta}} \sum_{n=-\infty}^{\infty} e^{-\frac{\pi n^2}{\beta}} \quad (\beta > 0) . \]

The famous "\(\Theta \)" relation of Jacobi:
\[\Theta(\beta) = \frac{1}{\sqrt{\beta}} \Theta(\frac{1}{\beta}) . \]

We are now ready to derive (following Riemann) a slick formula for \(\pi^{-s/2} \Gamma(\frac{s}{2}) \zeta(s) \).

Easily check:
\[\Gamma(\frac{s}{2}) = \int_{0}^{\infty} x^{\frac{s}{2}-1} e^{-x} \frac{dx}{x} \quad \text{Re}(s) > 1 \quad \text{say} \]

\[\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s) = \int_{0}^{\infty} y^{\frac{s}{2}-1} e^{-\pi \gamma y} \frac{dy}{y} . \]

\[\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s) = \int_{0}^{\infty} y^{\frac{s}{2}} \left[\sum_{n=1}^{\infty} e^{-\pi \gamma y} \right] \frac{dy}{y} . \]

A nice positive \(\zeta \) for \(y \to 0^+ \) clearly \(O(\sqrt{y}) \) for \(y \to 0^+ \) by \(\Theta \)-relation.
Note: the foregoing integral is nicely convergent near \(y = 0 \) because

\[
\int_0^1 y^{\alpha \over 2} \frac{1}{\sqrt{y}} \frac{dy}{y} < \infty \quad \text{for} \quad \sigma > 1
\]

Write

\[
\Psi(y) = \sum_{n=1}^{\infty} e^{-\pi n^2 y} \quad \text{and} \quad \Theta(y) = 2\Psi(y) + 1
\]

So:

\[
\Psi(y) + \frac{1}{\alpha} = \frac{1}{\sqrt{y}} \left[\Psi(y) + \frac{1}{\alpha} \right] \quad \text{for} \quad y > 0
\]

\[
\Psi(y) = -\frac{1}{\alpha} + \frac{1}{\alpha} \sqrt{y} + y^{-\alpha / 2} \Psi(1 / y)
\]

Get:

\[
\pi^{-\alpha \over 2} \Gamma(\frac{\alpha}{2}) \Gamma(\frac{\sigma}{2}) = \int_0^1 y^{\alpha \over 2} \Psi(y) dy + \int_1^\infty y^{\alpha \over 2} \Psi(y) dy
\]

put \(y = \frac{1}{\sqrt{y}} \)
here

\(\$ \) now grind! \(\$ \)
\[= \int_1^{\infty} \frac{v^{-\frac{s}{2}}}{\sqrt{2}} \left[-\frac{1}{2} + \frac{1}{2} v^{\frac{1}{2}} + v^{\frac{1}{2}} \psi(v) \right] \frac{dv}{v} \]

\[+ \int_1^{\infty} y^{\frac{s}{2}} \psi(y) \frac{dy}{y} \]

\[= -\frac{1}{s} - \frac{1}{1-s} + \int_1^{\infty} \frac{1-s}{2} \psi(v) \frac{dv}{v} \]

\[+ \int_1^{\infty} y^{\frac{s}{2}} \psi(y) \frac{dy}{y} \]

\[= - \left[\frac{1}{s} + \frac{1}{1-s} \right] + \int_1^{\infty} \left(y^{\frac{1-s}{2}} + y^{\frac{s}{2}} \right) \psi(y) \frac{dy}{y} \]

\[= -\frac{1}{s(1-s)} + \int_1^{\infty} \left(y^{\frac{1-s}{2}} + y^{\frac{s}{2}} \right) \psi(y) \frac{dy}{y} \]

So, for \(\Re(s) > 1 \),

\[\pi^{\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s) = \frac{1}{s(s-1)} + \int_1^{\infty} \left(y^{\frac{1-s}{2}} + y^{\frac{s}{2}} \right) \psi(y) \frac{dy}{y} \]

\[O(e^{-\pi y}) \quad \text{as} \quad y \to +\infty \]

\[\text{The integral is analytic for all} \quad s \in \mathbb{C}. \]

\[\frac{1}{s(s-1)} \quad \text{is trivially analytic on} \quad \mathbb{C} \setminus \{0, 1\}. \]
Theorem (Functional Equation)

\[\Xi(s) \equiv \pi^{-s/2} \Gamma(s) \zeta(s) \] is analytic on
\(\Re(s) > 0 \) and satisfies

\[\Xi(s) = \Xi(1-s). \]

We also have for \(\Xi : \)

- \(s = 1 \) simple poles, residue 1
- \(s = 0 \) simple poles, residue \(-1\)

Pf

The first part is just \(\Theta \) bottom. \(\Theta \)

By \(\Theta \) bottom, with \(s = 1 + h \), we get

\[\Xi(1+h) = \frac{1}{(1+h)h} + O(1) \]

\[= \frac{1}{h} + O(1) \]

And, similarly, with \(s = h \)

\[\Xi(h) = \frac{1}{h(h-1)} + O(1) = -\frac{1}{h} + O(1) \]
Cor 1

\[\xi_0(s) = s(s-1) \xi_0(s) = s(s-1) \pi^{-3/2} \Gamma(\frac{3}{4}) \xi(s) \] is an entire fcn which satisfies

\[\xi_0(s) = \xi_0(1-s), \quad \xi_0(1) = 1. \]

PF

\[\xi_0(s) = 1 + s(s-1) \int_1^\infty \left(\frac{1-s}{y^2} + \frac{s}{y^2} \right) \Psi(y) \frac{dy}{y} \] by (23).

Cor 2

\[\gamma(-ak) = 0 \text{ for } k \geq 1 \text{ (simple zero).} \]

PF

\[\xi(x) = \pi^{-x/2} \Gamma(\frac{x}{2}) I(x) > 0 \text{ for } x > 1. \] But \(\xi(x) = \xi(1-x) \).

Hence \(\xi(x) > 0 \text{ for } x < 0 \).

Let \(x \to -2k \).

Since \(\Gamma(\frac{x}{2}) \to \Gamma(-k) \) simple poles get \(I(x) \to 0 \) à la simple zero."
Lemma

\[(1 - 2^{1-s}) J(s) = \sum_{k=1}^{\infty} \left((2k+1)^{-s} - (2k)^{-s} \right) \]

For \(\text{Re}(s) > 1\) and the RHS is actually analytic for \(\{\text{Re}(s) > 0\}\).

PF

\(\text{Re}(s) > 1 \Rightarrow \)

\[J(s) = \sum_{k=1}^{\infty} \left((2k-1)^{-s} \right) + \sum_{k=1}^{\infty} \left((2k)^{-s} \right) \text{ trivially} \]

\[Q^{1-s} J(s) = 2 \sum_{m=1}^{\infty} \left((2m)^{-s} \right) \]

Difference = \(\sum_{k=1}^{\infty} \left((2k-1)^{-s} - (2k)^{-s} \right) \) \(\{\text{nice abs conv}\}\).

Keep \(s \in K\) where \(K\) is a compact subset of \(\{\text{Re}(s) > 0\}\). Observe that:

\[(2k-1)^{-s} - (2k)^{-s} = (2k)^{-s} \left[\left(1 - \frac{1}{2k} \right)^{-s} - (2k)^{-s} \right] \]

\[
\left\{ \begin{array}{l}
(1+u)^{-s} = 1 + (-s) u + O_K(1) u^2 \quad \text{for } |u| \leq \frac{3}{4} \\
(2k)^{-s} \left(\frac{s}{2k} + O(1) \frac{1}{k^2} \right) \\
(2k-1)^{-s} - (2k)^{-s} = O(1) k^{-s-1} \text{ for } s \in K.
\end{array} \right.
\]
Corollary

In the sense of analytic continuation,

\[\xi(x) \neq 0 \quad \text{for} \quad x \in \mathbb{R} \]
\[\xi_0(x) \neq 0 \quad \text{for} \quad x \in \mathbb{R} \]
\[I(x) < 0 \quad \text{for} \quad 0 < x < 1 \]

Proof
That \(I(x) < 0 \) on \(0 < x < 1 \) is obvious from \(\mathcal{A} \).

Hence \(\xi(x) \neq 0 \) on \(0 < x < 1 \). The points \(x = 0, 1 \)
are poles and take care of themselves.

For \(x > 1 \) and \(x < 0 \), we have \(\xi(x) > 0 \) \(\text{à la} \)
\(\mathcal{A} \). Since \(\xi_0(x) = x(x-1)\xi(x) \), the assertions
for \(\xi_0 \) are immediate.
We wish to bound the size of

\[F(z) = z(z-1) e^{-\frac{z}{2}} H(z) J(z) \]

(roughly) using Stirling \(F(z) = F(1-z) \), and basic properties of \(J(z) \).

Because of \(F(z) = F(1-z) \), we can clearly restrict to \(\text{Re}(z) \geq \frac{1}{2} \).

We had

\[|S(x+iy)| \leq \frac{C}{\delta(1-\delta)} |y|^{1-\delta} \left\{ \begin{array}{l} x \geq \delta \\ |y| \geq 2 \end{array} \right\} \]

any \(0 < \delta < 1 \) \(\text{Lec 6 page 9} \) \(\text{EG } \delta = \frac{1}{2} \).

Also, we had

\[|J(z)-1| < \frac{3}{4} \text{ for } \text{Re}(z) > 2 \]

by Lec 5 page 10.
\[F(z) = z(z-1)^{\pi - \frac{x}{2}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{z}{2}\right) \]

\[|F(z)| = |z||z-1| \pi^{-\frac{x}{2}} |\Gamma\left(\frac{x}{2}\right)| |\Gamma\left(\frac{z}{2}\right)| \]

\[|F(z)| \approx |z|^3 \left[1 + O\left(\frac{1}{x}\right) \right] \pi^{-\frac{x}{2}} \Gamma\left(\frac{z}{2}\right) |\Gamma\left(\frac{z}{2}\right)| \]

Know:

\[|\Gamma(z) - 1| < \frac{3}{4} \quad \text{for} \quad x > 2 \]

\[|\Gamma(x+iy)| \approx O(1/y^{1/2}) \quad x \approx \frac{y}{2}, \quad y \approx 2. \]

Also:

\[\ln |\Gamma\left(\frac{z}{2}\right)| = \Re \left\{ \log \Gamma\left(\frac{z}{2}\right) \right\} \]

\[\text{Stirling's} \quad \text{Lec 10} \quad \text{p. 16} \]
\[
\log \frac{\pi}{\alpha} = \left(\frac{\pi}{2} - \frac{1}{2}\right) \log \left(\frac{\pi}{2}\right) - \frac{\pi}{2} + \frac{1}{2} \ln(\alpha r)
\]
\[
+ O\left(\frac{1}{\pi r}\right)
\]

\{ For, say, \(|z| = r \), \(r \) large, \(|\text{Arg } z| \leq \frac{3}{4} \pi \) \}

As in Ingham 56-57, we get

\[
\ln \Gamma\left(\frac{z}{\alpha}\right) \approx \frac{r}{2} \ln r + A_1 r
\]

\{ For, say, \(|z| = r \), \(|\text{Arg } z| \leq \frac{3}{4} \pi \) \}

\[
\ln |F(re^{i\theta})| \approx \frac{r}{2} \ln r + A_2 r
\]

for \(|z| = r \), \(\text{Re}(z) \geq \frac{1}{\alpha} \)

then, using \(F(z) = F(1 - z) \), similarly for \(\text{Re}(z) \leq \frac{1}{2} \).
Also, looking at $\Theta = 0$,

$$F(R) = R^2 \left[1 + O \left(\frac{1}{R} \right) \right] \pi^{-\frac{R}{2}} \Gamma \left(\frac{R}{2} \right) \mathcal{I}(R)$$

$$\geq \text{(constant)} \ R^2 \pi^{-\frac{R}{2}} \Gamma \left(\frac{R}{2} \right)$$

\[\begin{align*}
\left\{ \begin{array}{l}
\text{but} \\
\ln \Gamma \left(\frac{R}{2} \right) \sim \left(\frac{R}{2} - \frac{1}{2} \right) \ln \left(\frac{R}{2} \right) - \frac{R}{2}
\end{array} \right\}
\end{align*} \]

\[\Downarrow \]

$$\ln F(r) \geq \frac{r}{2} \ln r - A_2 r \quad (r \text{ large}).$$

THM

Let $F(z) = z(z-1) \pi^{-z/2} \Gamma \left(\frac{z}{2} \right) \mathcal{I}(z)$. Let

$$M(r) = \max_{|z|=r} |F(z)| \quad (r \text{ large}).$$

Then:

$$\ln M(r) \sim \frac{r}{2} \ln r.$$
Proof

As above.

For any entire function $g(z)$, $g \not\equiv 0$, we write

$$M(r) = \max_{|z| = r} |g(z)|.$$

Then put:

$$\rho = \inf \left\{ \omega \mid \ln M(r) \leq r^\omega, \text{ all large } r \right\},$$

$$\tau = \inf \left\{ \beta \mid \ln M(r) \leq \beta r^\rho, \text{ all large } r \right\}.$$

Herein $\omega \geq 0$ and $\beta \geq 0$. Empty braces mean $\inf = +\infty$. We call:

$$\rho = \text{ORDER of } g(z),$$

$$\tau = \text{TYPE of } g(z).$$

For our $F(z)$, clearly $\rho = 1$ and $\tau = +\infty$.