APPENDIX B

Derivation of the Wave Egquation. In this section we will derive the wave

. equation in one space dimension as it applies to the transverse vib.raﬂo,ns _Dl' an

clastic 5tring, or cable; the elastic string may be thought of as a violin string, 2

guy wire, or possibly an electric power line. The same £quation, however, .wuh the

variables properly interpreted, occurs in many .other wave problems ‘haw‘ng only

one significant space variable. The iwave equation Tor an elastic; string was first
dérived in 1746 by D’Alembert.

Consider 2 perfectly flexible clastic'string stretched tightly between supparts’
fixed at the same horizontal level; see. Figure 10.164. Let the = axis lie along the-

string with the énd, poih,ts located atz =0 anc;l =z =.I I the string is set ;in motion
at some Initial time ¢ = 0 (by plucking, for example) and is thereafter left undis:

turbed, it will vibrate frecly in a vertical plane providcd damiping effects, such as air
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FIGURE 10.16

resistance, are neglected. To determine the differential equation gaverning this -
motion we will consider the forces acting on a small element of the string of length

Az lying between the pgi_:xlns « and = + Az; see Figure 10,16b.." We assume that
each point on'the slring moves solely on a vertical line, and will denote bj'u(:c, 19}
the vertical displacement of the pgint = akthe'time £, Let the tension in the string,
which. always-acts' in the’ tangential direction, be denoted by T(z, 1), and let p
denote the mass per unit length of the string. : ’

Newton's law, as it applies to the element Az of the sfring, states tl}at the net
external force, due Lo the tension at the ends of the clement, must be equal to ‘the

product of the mass of the element -and the acceleration of its mass cepter. Since
there is no horizontal acceleration, the horizonial components must satisly

" Tiw + A, tyicos (@ 4 A0) L Tz, 1)cos 0 = 0. m

Denotirig the horizontal component of th,g‘.. tension “(see Figure 10.16¢c) b'y H,
Eq. (1) states that H is independent of . On the other hand, the vertical components
satisfy B . :

T(z + Az, l)’sin gB + Af) — T(=, sinf =p Bz uy(Z, 1), 2

where @ is the coordinate of the center of gravity of the eloment of the string under

consideration. Clearly Z lies in the interyal = <& <z + Az, The weight of the.

string,- which acts vertically downward,"is assumed to be negligible, and has been
neglected in Eq. (2). . . . -
1f the vertical component of T is denoted by ¥, then Eq. (2) can be written as

V(:U + 4z, ') - V(xl t)‘
Az

= Pu'l(il ')'
Pasgjng to the limit as Az — 0 gives

Vole, 1) = prule, 1. [€)
To express Efq, (3) entirely in terms of u we note-that

Viz, 1) = H(t)tan 0 = H(u:(, 1.
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Hence Eg. (3) becomes .
(H“:')z = plyy,
or, since A is independent of =,

Hu::r: = phy. (4) )

1t is customary to write Eq. (4) in the farm

‘ﬂz“u: =y ' . . &)
Lo where
. H . .
: : a == ®
p

_=zand f; in this event a® would bg a function of both « and 1. We will assume,
however, that a® is a constant. Equation (5) is called the wave equation for one
space dimension. Since A has the diménsion of force, and p that of massflength,
it follows that the constant a has the dimension of velocity. It is possible to.identify

* a as the velocity with which a small disturbance (wave) moves alang the string.

i According 10 Eq. (6) the wave velocity a varies directly with the tension in the string,

‘but inversely with the density, of the string material, These facts are in agreement

© Suwith éxﬁricnce.

in this derivation it is possible for H to del n ¢, and for p 10 depend on both m
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