
The Cost of the Path Not Taken

Max Schuchard

University of Tennessee

Email: mschucha@utk.edu

John Geddes

University of Minnesota

Email: geddes@cs.umn.edu

Mike Schliep

University of Minnesota

Email: schliep@cs.umn.edu

Nicholas Hopper

University of Minnesota

Email: hopper@cs.umn.edu

Abstract—We consider the problem of estimating the latency
of a feasible but unused Autonomous System-level path on the
Internet. This problem arises in evaluating the overhead incurred
by censorship and surveillance circumvention schemes that alter
the Internet routing infrastructure, and the cost of attacks against
such schemes. Since these paths are not advertised by the current
routing infrastructure, they cannot be directly measured by end
hosts, leading researchers to estimate the costs indirectly. Using
traceroute measurements of observed Internet paths, we measure
the accuracy of the two methods used in the literature to date,
finding that these methods have poor accuracy and correlation,
explaining as low as 3% of the variation in observed AS path
latencies, and at most 42%. We also describe an improved method
that can balance accuracy and path coverage. At the high end
our estimator can explain up to 83% of variation in observed
AS path latencies, while still being able to achieve 56% when
maximizing the number of paths able to be estimated.

I. INTRODUCTION

While the “end to end principle” dictates that transactions

between two Internet hosts should not depend on the under-

lying details of the path between them, in practice several

properties of these paths can be highly relevant. For example,

the list of Autonomous Systems (ASes) that appear on the

path can help measure the exposure of the hosts to censorship

and surveillance; and the latency of the path determines to

a large extent the performance of the application in terms

of responsiveness and throughput. Therefore measuring these

properties can be important for the evaluation of systems,

both proposed and deployed, which have an impact on the

construction of paths on the Internet.

In the case of AS path inference, algorithms can use routing

information and inferred AS relationships [7] to find the

likely paths used between an arbitrary pair of networks with

reasonably high accuracy, and can also be used to find alternate

paths that, while not preferred under the current routing

configurations of ASes, could be used without violating the

“valley-free” routing principle.

Similarly, many techniques have been developed to esti-

mate the latency between Internet hosts. These range from

deploying specific measurement nodes [11], to using existing

protocols [12], to inferring AS-level paths and using the

underlying topology to build more accurate estimates [19]. In

contrast to AS topology inferences, however, these methods

only estimate the paths currently utilized by the Internet

routing infrastructure.

Since ASes and ISPs represent a particularly relevant threat

model in the context of censorship and surveillance, several

recently proposed circumvention schemes [14], [15], [21], [22]

involve changes to the routing infrastructure so that either the

circumvention schemes or attacks against these schemes can

lead to the use of AS paths that exist but are not used by the

current routing infrastructure. In this case, current systems for

estimating the latency of these paths do not function since the

proposed paths are not actively in use.

In this paper, we examine techniques to estimate the latency

cost of these unused AS paths. Previous work has used AS hop

count [15], [21], or average inter-AS latency [14] to estimate

these costs; we use observations of currently used Internet

paths to assess the accuracy of these techniques, showing that

they are only weakly correlated to actual performance. We

also introduce a new technique to improve the accuracy of AS

path latency estimation, based on conditional average inter-AS

latencies. This technique can slightly reduce the coverage of

AS paths it can estimate given a data set, while significantly

improving the accuracy of the estimates it produces.

The rest of the paper is structured as follows. Section II

covers previous work in latency estimation and some related

research that has utilized such estimations; Section III goes

into further details on existing methods on estimating latencies

of new paths and introduces our new technique; Section IV

details how the data was collected and processed, along with

our experimental setup used in evaluating the various methods;

Section V compares and contrasts the methods, examining the

accuracy and coverage of the techniques discussed in Sec-

tion III; Section VI examines a case study demonstrating the

affects of method selection; and finally Section VII discusses

conclusions of the difference of the methods.

II. RELATED WORK

A. Estimating Latency

Previous work on latency estimation has had the goal of

estimating the latency between pairs of hosts based on the

current network conditions. The IDMaps algorithm [11] used

a deployed infrastructure of tracer nodes that perform latency

measurements. To estimate a latency between unknown end

points, the system uses triangulation in order to calculate an

upper bound on the latency as an estimate. Similarly, Meridian

[24] relied on a set of Meridian nodes and measurements from

the targets to estimate distance(latency) between endpoints.

The King tool [12] relied on recursive DNS queries to measure

latencies between servers. Network coordinate schemes, such

as GNP [20] and Vivaldi [5] attempt to assign coordinates

to hosts so that the distance between coordinates is a good

estimate of the latency between the hosts. Topology-aware



schemes such as iPlane [18], [19] compute the underlying AS

path used between a source and destination and attempt to

stitch together paths from the source through an intermediate

point, and from a separate “vantage point” through the inter-

mediate point to the final destination. However, none of these

systems is designed to estimate how inter-host latency would

change based on the use of a different path.

B. Applications for unused paths

Tor Relay Selection: Tor [8] is a system that provides

anonymity by forwarding data through multiple proxies, called

relays, to an end destination. The AS where each relay resides

has implications both for anonymity [9], [10], [16] and per-

formance [4], [23]. Work dealing with anonymity is generally

only concerned with what AS-level paths are traversed from

client to end destination through Tor. When evaluating perfor-

mance, latency measurements or estimates are needed in order

to determine how relay selection in Tor can affect performance.

Akhoondi et al. [4] used only measured latencies associated

with specific paths to perform their evaluation. Due to the

limitations of scalability, Wacek et al. developed methods of

performing larger scale simulations when using AS-aware path

selection strategies in Tor. Using CAIDA traceroutes, they

construct a network topology at the Point-of-Presence (PoP)

granularity, allowing them to avoid some of the large variances

seen in AS-to-AS latency measurements. However, due to the

incompleteness of the traceroute data, they were only able to

incorporate about 60% of relays into the model.

Decoy Routing and Censorship: To overcome some of the

limitations seen in systems such as Tor, a new type of system

called decoy routing [13], [17], [25] was proposed, seen in

systems such as Telex [25], Cirripede [13] and TapDance

[26]. These systems use ISPs to redirect traffic to a covert

destination a censor might be attempting to block, while still

appearing to travel to a benign overt destination.

Schuchard et al. [22] showed that a routing capable adver-

sary could choose alternate AS paths to avoid ISPs deploying

decoy routers. Houmansadr, Wong, and Shmatikov [14] looked

at the cost in terms of latency that such a censor would

face in attempting to circumvent ISPs using decoy routing. In

evaluating these attacks simulations need to be run to produce

an Internet-wide AS-topology to determine what actual paths

are available to a censor. For evaluating the performance cost

of the attack, Houmansadr et al. estimated the latency of the

path used before and after the attack. This can be difficult

because in order to induce a cost, the path used afterward

must be one that is not used in the global routing table before,

meaning measurements of the actual path will be limited. To

overcome this, estimates of inter-AS latencies are computed,

which are then simply summed to estimate the latency along

an entire path.

Anonymity in Future Internet Designs: While decoy routing

systems take advantage of the current state of the Internet,

systems such as LAP [15], ANDaNA [6], and Dovetail [21]

have proposed protocols for lower-latency anonymous commu-

nication under “future Internet designs” that retain autonomous

systems but change the protocols used to propagate and

select routes between ASes. Because these routing protocols

inherently use different AS paths than BGP, estimating the

latency of paths used with or without anonymity overlays

involves AS paths that are not currently used in the global

routing table. To circumvent this, both LAP and Dovetail

estimate the cost of all AS paths by the number of ASes on

the path, and evaluate the overhead in terms of this estimate.

III. METHODS

To build their respective models, all methods take in training

data of a list of traceroutes, where each traceroute is a

sequence of triplets containing router IP, ASN, and round trip

time (RTT) from the source to router.

Hop Counting: Many times the goal of estimating new path

latencies is to determine how much slower or faster a system

would be when using newly generated paths. To do so, one

of the simplest heuristics is to just use the raw number of

AS hops in the path as a proxy for actual path latency. This

naturally assumes a level of homogeneity in AS links that is

not truly reflected in the real-world Internet, but still can be

useful when the interest is to get a general sense of the impact

of using new paths.

Hop-to-Hop Average: Houmansadr et al. describe a method

in [14] using average latencies between ASes. Their method

originally used the direct point to point latencies from the

IPlane POP dataset, regardless of whether or not the path

between the points of presence contains intervening ASes.

We refine this method to only consider latencies between AS

when we can observe no intervening ASes on a traceroute.

Given two directly connected ASes in a traceroute, the latency

between each router in the AS is stored in a global list for

the ASes. For example, given a segment of a traceroute:

〈(IP1, A, t1), (IP2, A, t2), (IP3, B, t3), (IP4, B, t4)〉, which

crosses AS A and AS B, we store latencies (t3 − t1), (t3 −
t2), (t4 − t1), (t4 − t2) in the list of latencies “from A

to B”. Then when producing an estimate for an AS-level

path [A,B,C,D], it simply return the sum of latencies

between ASes, lat(A,B) + lat(B,C) + lat(C,D), where

lat(AS1, AS2) is the mean of all latencies stored from AS1

to AS2.

Composite Construction: Our composite construction

method has three main improvements. First, along with keep-

ing track of latencies for each hop-to-hop seen, we also keep

track of latencies for all partial AS paths contained in each

traceroute. Second, instead of using all latencies between the

first and last AS in the partial AS path, we only use the

difference of the RTT for the first router in the first AS, and

the first router in the last AS. Using the example traceroute

from the Hop-to-Hop method, instead of storing all 4 of the

times calculated, we would only store the time from IP1, the

first router in A, to IP3, the first router in B, in this case

t3 − t1. This gives a more accurate reflection of the time

it takes to go all the way through AS A and over the link

directly connecting A to B. Finally, since the ingress point to

an AS can also effect what the expected latency would be, we



iPlane CAIDA Combined

Coverage R
2 Coverage R

2 Coverage R
2

Path Length 100% 0.022 99.9% 0.025 100% 0.013
Hop Average 99.4% 0.564 92.9% 0.312 99.2% 0.419

2-hop Global 99.4% 0.488 92.9% 0.468 99.2% 0.459
3-hop Global 90.5% 0.593 78.6% 0.548 89.8% 0.586
4-hop Global 55.3% 0.698 37.5% 0.632 54.1% 0.700
5-hop Global 17.5% 0.790 8.2% 0.686 17.1% 0.780
6-hop Global 2.5% 0.804 0.9% 0.655 2.5% 0.807

2-hop Incoming 77.7% 0.649 50.0% 0.599 76.7% 0.635
3-hop Incoming 77.7% 0.677 50.0% 0.611 76.7% 0.659
4-hop Incoming 50.6% 0.730 29.8% 0.652 49.5% 0.724
5-hop Incoming 16.0% 0.803 7.3% 0.712 15.6% 0.800
6-hop Incoming 2.5% 0.822 0.8% 0.678 2.5% 0.828

Full CC 99.4% 0.618 92.9% 0.514 99.2% 0.560

TABLE I: Coverage and correlation scores of estimates for the different methods and across the different data sets

(a) (b) (c)

Fig. 1: (a) heatmap of path length verses measured latency (b) heatmap of estimates from the hop average method compared

to the measured latency (c) heatmap of estimates from the full composite construction method compared to measured latency

keep track of two databases of latencies. Along with a global

database of latencies seen for each subpath, we also have a

database where we index each latency seen for the subpath by

the incoming AS. In the rest of the paper we refer to these as

global and incoming databases respectively. When a database

is queried for the latency of a subpath, it returns the median

value of the list of latencies for the subpath.

The process for computing an estimate for an unknown path

is we first compute a set of all composite constructions of the

path. A composite construction is a partitioning of the path

edge list

[(A1, A2), (A2, A3), . . . , (An−1, An)]

into sublists. For example, a composite construction of the

path [(A1, A2), (A2, A3), . . . , (A5, A6)] might look like

〈[(A1, A2)(A2, A3)(A3, A4)], [(A4, A5), (A5, A6)]〉

Given the full set of composite constructions, to produce an

estimate we:

1) Filter out any constructions where the first subpath is not

found in the global database.

2) Filter out any constructions where the remaining subpaths

are not found indexed by the previous AS in the incoming

database.

3) Compute the maximal subpath length across all construc-

tions.

4) Filter out all constructions without a maximal subpath.

5) For each construction, compute the latency as the sum of

latencies of each subpath.

6) Return the estimate for the unknown path as the median

of the latencies of all constructions.

If after step 2 there are no remaining constructions, rerun the

filter using the global database instead and continue with the

remaining steps if possible.

IV. EXPERIMENTAL SETUP

In this section we discuss the details on how the raw

traceroute data was processed to give us a reliable set of AS

level traceroutes, then cover the experimental setup.

A. Data Processing

The data set consisted of traceroutes from March 10, 2015

gathered from both iPlane [1] and CAIDA [3]. The iPlane

data set consisted of 23,805,830 traceroutes and CAIDA had

5,600,176 traceroutes. We converted the IP addresses to their

appropriate AS to give us AS-level traceroutes. Initially we

used the origin to AS mapping provided by iPlane on March

10, 2015, but this resulted in many AS-level traceroutes

containing cycles, where an AS would be shown to handle

the traffic after already handing it off to a different AS.

To fix this issue, we built IP address to AS mappings

based on observations of BGP routing tables from the same



date as the traceroutes were collected. We gathered dumps,

taken in two hour intervals, of routing tables from RouteViews

hosts [2]. Each dump consists of multiple global routing tables

advertised by a diverse collection of ASes who volunteer to

peer with RouteViews. For each observed path, we extracted

both the advertised IP block along with the ASN of the AS that

originated the path. Mappings of IP block to owning AS were

built using these observations. Since we combined multiple

observations which occurred at disparate times, in some cases

multiple ASes were observed simultaneously asserting owner-

ship over the same IP block. We resolved such situations by

rejecting ownership mappings for IP blocks that did not have a

single AS which appeared in a super majority, in our case 90%,

of the observed routing tables. We also filtered out paths from

several ASes which attempted to originate IP blocks which

fell inside either reserved or internal portions of the IP space.

We then resolved each IP address observed in our traceroute

data set to the most specific IP block which both contained

the IP address and had a valid ownership mapping.

Using our IP to AS mapping, when converting the iPlane

traceroutes to their respective AS-level traceroutes, we saw a

reduction in cycles from 1.5 million down to around 180,000,

along with a reduction in raw IPs that were able to be resolved,

from 407,948 down to 397,247. The CAIDA traceroutes data

actually saw an increase in the number of IPs that were able

to be resolved, from 5,911,880 up to 6,138,008.

In the case that we had an IP address that either could not

be resolved, or belonged to a reserved block, if the directly

preceding and succeeding AS were the same, we assumed

it belonged to the same AS and mark it as so; otherwise

the traceroute would be dropped from the dataset since we

could not tell which AS it actually belonged too. After these

traceroutes were filtered out we were left with 7,833,818

iPlane and 3,454,513 CAIDA AS-level traceroutes.

B. Evaluation Metrics

To analyze the accuracy of an estimator, we used a modified

leave-one out cross validation technique. All the traceroutes

were processed and added to training data set for each method.

Then we iterated through the traceroutes using each one as

test path. However, instead of just removing the single test

path from the training data, we removed all traceroutes in

the training data that contained the test path traceroute as a

subpath. This was done to mimic the conditions we would

normally be under, where we need to estimate the latency of

a path that does not exist in the current Internet, meaning no

latency information would be directly available for the entire

path.

The main metrics we were interested in are coverage and

accuracy. Coverage refers to the percent of traceroutes we

were able to produce an estimate for after removing all

the necessary training data. For accuracy we looked at two

separate metrics, how well the estimates fit the data, and the

error rates on the estimates. For determining fit we simply

calculated the R2 value when running a linear regression along

the estimated verses measured latencies. Since the R2 metric

simply measures how well we fit the data and not necessarily

how close we were to estimating the actual latency, we also

examine how accurate the estimates the various methods pro-

duce, which is defined of the difference between measured and

estimated latency. In order to prevent any potential selection

bias, when directly comparing accuracy in terms of error

between different methods we only included test path that all

methods being compared could produce an estimate for.

V. RESULTS

The high level results of the experiments can be seen in

Table I. Here we broke down the results of using the iPlane

and CAIDA data separately, and when combined into one data

source. Also, instead of only reporting the results using the

full composition construction method, we report results under

more constrained parameters. We produced an estimate using

only composite constructions with a maximal subpath length

of n ∈ {2, 3, 4, 5, 6}, and only using either the incoming

database or the global database. This allows us to see the

trade off in coverage and accuracy as we tighten or loosen the

restrictions on these parameters. Note that the full composite

construction method has the same coverage as the hop average

method since we will always have an estimate with maximal

subpath of length 2 in the global database, just different latency

estimates of the subpaths. When tightening the parameters in

the composite construction method, we see that we tend to give

up coverage for more accurate results. Not too surprisingly the

path length method produces correlation scores around 2%,

as it is unable to accommodate the wide range of latencies

that can be produced within paths of the same length. Our

composite construction method produces a fit almost twice as

precise than the hop average estimator, but at the expense of

a large reduction in coverage. However, when maintaining the

same coverage we are still able to increase the fit by 14%

compared to hop average.

Figure 1a shows a heatmap of path length verses measured

latency for all the paths. When path lengths rise, we see a slight

correlation in the rise in density of latencies, but it does so

slowly with a large tail end of the distribution. The averages

of the latencies range from 150 to 250 ms, but we can see

plenty of latencies reaching as high as 1000 ms. Results for

the hop average method can be seen in Figure 1b. Here we

see a much cleaner correlation of the measured and estimated

latencies, with darker areas above the y = x line indicating

that the method is more likely to produce overestimates.

Figure 1c looks at the estimates for the full composite

construction method. We see a much stronger density of

estimates around the line y = x indicating more accurate

results, with much less overestimating as was seen when

using the hop average method. We also broke down the

results for composite construction when using the global

database in Figure 2 and in Figure 3 when using the incoming

database. We generally see more accurate results when using

the incoming database, and as the maximal subpath length

of the composite constructions increases, we see less noise

and increasingly accurate estimates. One potential issue with



(a) Max Subpath Len 2 (b) Max Subpath Len 3 (c) Max Subpath Len 4 (d) Max Subpath Len 5

Fig. 2: Results from combined composite construction method, using global latencies

(a) Max Subpath Len 2 (b) Max Subpath Len 3 (c) Max Subpath Len 4 (d) Max Subpath Len 5

Fig. 3: Results from composite construction method, using latencies indexed by incoming hop

(a) Max Subpath Len 2 (b) Max Subpath Len 3 (c) Max Subpath Len 4 (d) Max Subpath Len 5

Fig. 4: Errors of composite construction compared to hop average and path length methods, across different maximual subpath

lengths

just looking at the heatmaps is that they only show the

potential accuracy of what can be estimated by each individual

method. Perhaps the measurements that can be estimated by

the composite construction method just happen to have less

noise, leading to a selection bias. To check if this might be

an issue, we compared the results across different methods

including only measurements that each method could produce

a result for, eliminating any potential selection bias. The results

are shown in Figure 4, with each experiment split up into

different maximal subpath lengths, including either only the

global or incoming database. We see that after using maximum

subpath length of 4 or longer, we gain little to no accuracy

by considering the incoming hop. In all cases we are however

seeing a substantial increase in accuracy compared to using

the hop average and path length methods.

VI. CASE STUDY

In this section we revisit the results of Houmansadr, Wong

and Shmatikov [14], examining how latencies will be changed

if a censor chooses routers to avoid a particular decoy routing

deployment. The strategies used in our experiments differ

slightly from [14]; as they are more expansive our before and

after paths should contain a subset of the ones produced in

[14]. In addition to path length, hop average, and composite

construction methods, we also compared a hop average method

that used the inter-PoP links data and the original IP to AS

mapping provided by iPlane for parsing the training data,

closely mimicking the methods directly used in [14]. Out

of 58,953,866 total paths in the simulation, 9,378,666 paths

changed. Of the paths that changed, the path length estimator

was able to estimate 99.8% of paths, the hop average using

the inter-PoP links data set could estimate 6.8% of paths, and

the hop average and composite construction methods using the

traceroute data produced estimates for 4.9% of paths. The main

reason the inter-PoP estimator had a slightly larger coverage is

it was less conservative in resolving IPs to ASes, resulting in a

larger training data set to pull from. While coverage might be

higher, this also has the downside of producing less accurate

results.

Figure 5a shows the estimates using the composite construc-

tion method over top a heatmap of the latencies produced

by the hop average method for the same path. While the



(a) (b)

Fig. 5: (a) Estimates from composite construction method

verses hop average (b) Percent change in path latencies across

the different estimate methods

trajectories for both methods overlap, there is a large range

where the estimates fall, within 20% of the estimates produced

by the composite construction method. However, even with

the large variation in estimates produced, when we look at the

percent change in latencies in the new path compared to the

old path, the results look very similar in aggregate. Figure 5b

shows the CDF in percent change in latencies, and even using

the path length method produces almost identical results as the

hop average and composite construction methods. The reason

for the similar results is that if the methods are consistently

biasing the estimated latencies, looking at the difference will

still produce similar results. Interestingly, we still get results

an order of magnitude less than those seen in [14], with our

changes being ±200% compared to changes being in the 200-

2000% range.

VII. CONCLUSION

In this paper we analyze some of the difficulties of es-

timating AS-level latencies across paths that are not used

in the current internet topology. We discuss two previous

methods, using raw path lengths and single hop averages, and

introduce a new technique named composite construction. Our

new technique is able to balance both coverage and accuracy,

improving on the existing methods while maintaining high

coverage. We finally look at a case study of newly generated

paths, examine the range of estimates produced compared to

our more accurate estimator, and analyze the methods in terms

of change in latency in the newly generated path compared to

the old existing path.

Acknowledgments: This research was funded by NSF grants

1314637, 1223421, and the University of Minnesota Doctoral

Dissertation Fellowship.

REFERENCES

[1] iPlane: Datasets. http://iplane.cs.washington.edu/data/iplane logs/2015/
03/10/.

[2] Route Views RIBS, March 2015. http://archive.routeviews.org/bgpdata/
2015.03/RIBS/.

[3] The CAIDA UCSD IPv4 Routed /24 Topology Dataset - March 10, 2015.
http://www.caida.org/data/active/ipv4 routed 24 topology dataset.xml.

[4] M. Akhoondi, C. Yu, and H. V. Madhyastha. LASTor: A low-latency AS-
aware Tor client. In Security and Privacy (SP), 2012 IEEE Symposium

on, pages 476–490. IEEE, 2012.

[5] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized
network coordinate system. In ACM SIGCOMM Computer Communi-

cation Review, volume 34, pages 15–26. ACM, 2004.

[6] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun. Andana: Anonymous
named data networking application. In 19th Annual Network and Dis-

tributed System Security Symposium, NDSS 2012, San Diego, California,

USA, February 5-8, 2012, 2012.
[7] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun,

k. claffy, and G. Riley. AS relationships: Inference and validation.
SIGCOMM Comput. Commun. Rev., 37(1):29–40, Jan. 2007.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In USENIX Security Symposium, 2004.

[9] M. Edman and P. Syverson. AS-awareness in Tor path selection. In
Proceedings of the 16th ACM Conference on Computer and Communi-

cations Security, pages 380–389. ACM, 2009.
[10] N. Feamster and R. Dingledine. Location diversity in anonymity

networks. In Proceedings of the 2004 ACM Workshop on Privacy in

the Electronic Society, pages 66–76. ACM, 2004.
[11] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang.

Idmaps: A global internet host distance estimation service. Networking,

IEEE/ACM Transactions on, 9(5):525–540, 2001.
[12] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency

between arbitrary internet end hosts. In Proceedings of the 2nd ACM

SIGCOMM Workshop on Internet measurment, pages 5–18. ACM, 2002.
[13] A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov. Cirripede:

circumvention infrastructure using router redirection with plausible
deniability. In Proceedings of the 18th ACM conference on Computer

and communications security, pages 187–200. ACM, 2011.
[14] A. Houmansadr, E. L. Wong, and V. Shmatikov. No Direction Home:

The True Cost of Routing Around Decoys. In Network and Distributed

System Security Symposium, 2014.
[15] H.-C. Hsiao, T. H.-J. Kim, A. Perrig, A. Yamada, S. Nelson, M. Gruteser,

and W. Ming. LAP: Lightweight anonymity and privacy. In Proceedings

of the 2012 IEEE Symposium on Security and Privacy, May 2012.
[16] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson. Users get

routed: Traffic correlation on Tor by realistic adversaries. In Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications

security, pages 337–348. ACM, 2013.
[17] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer, D. P.

Mankins, and W. T. Strayer. Decoy routing: Toward unblockable
internet communication. In USENIX Workshop on Free and Open

Communications on the Internet, 2011.
[18] H. V. Madhyastha, T. Anderson, A. Krishnamurthy, N. Spring, and

A. Venkataramani. A structural approach to latency prediction. In
Proceedings of the 6th ACM SIGCOMM conference on Internet mea-

surement, pages 99–104. ACM, 2006.
[19] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-

ishnamurthy, and A. Venkataramani. iPlane: An information plane
for distributed services. In Proceedings of the 7th symposium on

Operating systems design and implementation, pages 367–380. USENIX
Association, 2006.

[20] T. S. E. Ng and H. Zhang. Global network positioning: a new approach
to network distance prediction. Computer Communication Review,
32(1):73, 2002.

[21] J. Sankey and M. Wright. Dovetail: Stronger Anonymity in Next-
Generation Internet Routing. In Privacy Enhancing Technologies Sym-

posium, 2014.
[22] M. Schuchard, J. Geddes, C. Thompson, and N. Hopper. Routing around

decoys. In Proceedings of the 2012 ACM conference on Computer and

communications security, pages 85–96. ACM, 2012.
[23] C. Wacek, H. Tan, K. S. Bauer, and M. Sherr. An Empirical Evaluation

of Relay Selection in Tor. In Network and Distributed System Security

Symposium, 2013.
[24] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A lightweight net-

work location service without virtual coordinates. SIGCOMM Comput.

Commun. Rev., 35(4):85–96, Aug. 2005.
[25] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman. Telex:

Anticensorship in the Network Infrastructure. In USENIX Security

Symposium, 2011.
[26] Wustrow, Eric and Swanson, Colleen M and Halderman, J Alex.

TapDance: End-to-Middle Anticensorship without Flow Blocking. In
USENIX Security Symposium, 2014.


