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1 Introduction

Tor’s Hidden Services allow a server to offer a service anonymously through the Tor network.
Hidden Services are associated with an identity key and need to publish descriptors that allow
clients to locate introduction points to which the hidden service has already established
anonymous circuits. As Biryukov et al. show [2], in the current Hidden Service design,
a Tor Node that is in position to publish the descriptor for a hidden service can learn the
identity key of the service and launch further attacks that could allow it to de-anonymize the
service. This report analyzes the security of a new design proposed by Robert Ransom [3]
and specified in full as Tor Proposal 224 to eliminate these attacks.

2 Preliminaries

2.1 Ed25519

The design makes use of the Ed25519 signature scheme [1]. Ed25519 is defined over an
Edwards-form elliptic curve taken modulo the prime 2255− 19. We follow the notation of [1]
in our description: Points on the curve are represented by capital letters, scalars by lower
case letters; for any point P on the curve, we denote its compressed encoding as P ; B is the
base point on the curve specified by [1], ` ≈ 2252 is the order of B (the least integer such
that `B = 0) and b = blog2 `c + 3 = 255. The scheme also makes use two cryptographic
hash functions, modeled as random oracles: Hr : {0, 1}∗ → {0, 1}2b is the “randomizing”
hash and Hm : {0, 1}∗ → {0, 1}2b is the “compressing” hash. Key generation, signing and
verification are similar (but not identical) to Schnorr signatures:

Key generation. Choose a random element a ∈R Z`, and a random string k ∈R {0, 1}b.
The (public) verification key is A = aB and the (secret) signing key is the pair (a, k).

Signing. To sign the message m, we compute r = Hr(k,m), set R = rB, compute c =
Hm(R,A,m), and set s = r + ca mod `. The signature is the pair (R, s).
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Verification To verify the signature (R, s) on message M with verification key A, we com-
pute h = Hm(R,A,M) and check that hA+R = sB.

2.2 Hardness assumptions

Ed25519 Unforgeability We assume that Ed25519 signatures are (t, q, εsig)-secure against
existential forgery under chosen message attack: for every attack with complexity at most t,
that can query adaptively for signatures on up to q messages m1, . . . ,mq, the probability of
producing a new message m 6∈ {m1, . . . ,mq} and a correct signature (R, s) on m is bounded
by εsig. For an arbitrary algorithm A, we let SForgeA denote the outcome (0 for failure, 1
for success) of this chosen message attack against Ed25519.

AES-CTR indistinguishability We assume that AES-CTR mode encryption provides
(t, εpre)-pseudorandomness: for every attack A with complexity at most t that produces a
challenge plaintext m, for uniformly chosen K ∈ {0, 1}128, we have∣∣Pr[A(EK(m)) = 1]− Pr[A(U|m|+128) = 1]

∣∣ ≤ εpre ,

Where Uλ denotes a random variable that takes on a uniform random value in {0, 1}λ.

2.3 Random Oracles

The scheme will make use of several cryptographic hash functions Hr, Hm, He and Hd,
which we model as random oracles (i.e. “generic functions”). In practice they can be imple-
mented using a single cryptographic hash function H, for example SHA512 or Keccak, and
separating them with distinct prefixes, for example Hr(x) = H(“randomize”||x), Hm(x) =
H(“compress”||x), He(x) = H(“epoch”||x) and Hd(x) = H(“descriptor− key”||x).

3 Ransom’s scheme

Ransom’s scheme [3] seeks to prevent a Tor Hidden Service Directory node that does not
know the identity key of a hidden service from learning the identity key from a descriptor
or linking descriptors for the same identity key, while preventing forgery of descriptors. The
scheme works by breaking time into epochs across which descriptors should be unlinkable.
At each epoch, a hidden service generates an “epoch key” that can be derived from the
identity key but cannot be used to derive the identity key, and this epoch key is used to
encrypt and authenticate the signature. The entire scheme works as follows:

Identity Keys. Identity key pairs are chosen exactly as in Ed25519.

Epoch Keys. Let A be a public identity key (and (a, k) the corresponding signing key); then
the epoch identity key for epoch t, At, is calculated by setting st = He(t||A) and At = stA.
The epoch signing key is (sta, k).

Descriptors. Let infot denote the plaintext information contained in the descriptor for
epoch t (introduction point keys and other details needed to establish a connection to the
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hidden service). The hidden service computes kt = Hd(t||A), ct = Ekt(infot), and σt as the
signature, under the epoch signing key for epoch t, on the message ct, with one modification
- when signing value m, the signer computes the randomness r as r = Hr(k, t,m) to prevent
reuse of r values across epochs. The full descriptor is At, ct, σt.

Descriptor Verification. Given identity key A, epoch t and a descriptor At, ct, σt, a
client of the hidden service can verify the descriptor by parsing σt = (R, s), computing
st = Hd(t||A), h = Hm(R,At, ct), and checking that At = stA and sthA+R = sB.

A Tor node that does not have the identity key A can still verify the descriptor against
the epoch key by parsing σt = (R, s), computing h = Hm(R,At, ct) and checking that
hAt +R = sB.

Number of epochs. To prevent “ambiguity attacks” and simplify the security proof, we
select a maximum number of epochs T and encode each epoch t using dlog2 T e bits. In
practice, T = 220 would allow over 100 years of 1-hour epochs, far outlasting the likely
security of Ed25519 in the face of Moore’s law.

4 Security Definitions

The primary properties we would like from our new scheme are unlinkability: given a list
of descriptors for the same service from several different epochs it should be infeasible to
tell whether a valid descriptor from a distinct epoch is linked to the same identity key or
another, without knowing the underlying identity key; and descriptor unforgeability: given
an identity key and many valid descriptors for the identity it should be infeasible to produce
a new, valid descriptor for the identity key and some epoch. Some remarks:

• Note that unlinkability also implies the weaker condition of “one-wayness:” an adver-
sary that can recover the common identity key from a set of descriptors can easily
recognize another valid descriptor for the same identity key.

• Furthermore, as will become clear below, unlinkability will also imply that without the
identity key, an adversary learns no information about the contents of the descriptor.

• If we were “real cryptographers” we would define security in terms of a single game in
which the adversary could choose among several identities to attack, and adaptively
choose which goal to compromise. We stipulate that these definitions are slightly
weaker, and forge ahead because, progress.

4.1 Unlinkability

We define the (t, qE, qH)-linkability experiment with adversary A, LinkA(t, qE, qH) as follows:

1. An identity key A = aB and secret k are generated according to the description in
section 3.
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2. A makes qE adaptive queries (τi, infoi) and for each query receives a valid descriptor
(Aτi , Ekτi (infoi), σi) for epoch τi and identity key A.

3. A may at any time make a single challenge query (τ ∗, info∗0, info
∗
1), as long as τ ∗ 6= τi

for any i ∈ {1, . . . , qE}. In response, a bit b is chosen uniformly at random. If b =
0, A receives as a response a valid descriptor (Aτ∗ , Ekτ∗ (info

∗
0), σ

∗) for epoch τ ∗ and
identity key A. Otherwise A receives as a response (A∗, c∗, σ∗), where A∗ is a randomly
generated identity key, c∗ = Ek∗(info

∗
1) for a randomly chosen AES key k∗, and σ∗ is a

valid signature on c∗ under identity key A∗.

4. After expending t computational resources and making at most qH hash oracle queries,
A halts with an output b∗.

5. If b∗ = b, the experiment has output 1, otherwise the experiment has output 0.

We say that a scheme is (t, qE, qH , εlink)-unlinkable if for every t-boundedA, Pr[LinkA(t, qE, qH) =
1]− 1

2
≤ εlink.

4.2 Unforgeability

We define the (t, qD, qH)-descriptor forgery experiment with adversary A, DForgeA(t, qD, qH)
as follows:

1. An identity key A = aB and secret k are generated according to the description in
section 3. A is given to the adversary A.

2. A makes qD adaptive “descriptor” queries (τi, ci) and for each query receives a valid
descriptor (Aτi , ci, σi) for epoch τi and identity key A.

3. After expending at most t computational resources and making at most qH hash oracle
queries, A halts with an output (A∗, c∗, σ∗).

4. If there exists a τ such that A∗ = Aτ , (τ, c∗) was not a query of A, and σ∗ is a valid
signature on c∗ under epoch identity A∗, the output of the experiment is 1, otherwise
it is 0.

We say that a scheme is (t, qD, qH , εforge)-descriptor unforgeable if for every t-bounded
A,Pr[DForgeA(t, qD, qH)] ≤ εforge.

5 Security Proofs

5.1 Unlinkability

The proof of unlinkability is fairly straightforward: if an adversary never queries the hash
oracles with the identity key A, then all of the epoch identities will look independent of A,
and thus the probability of querying at A will be negligible.
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Theorem 1. If all hash functions are implemented as random oracles, and AES is (t, εpre)-
secure, then Ransom’s scheme is (t, qE, qH , εlink)-unlinkable, where εlink ≤ qH

`−qH
+ εpre.

Proof. We construct a pair of hybrid experiments, Game0,A and Game1,A, such that for any
attacker A, we will have:

|Pr[LinkA = 1]− Pr[Game0,A = 1]| ≤ qH
`−qH

(1)

|Pr[Game0,A = 1]− Pr[Game1,A = 1]| ≤ εpre (2)

Pr[Game1,A = 1] = 1
2

(3)

By the triangle inequality, this will imply the theorem.

Experiment Game0,A. We define Game0,A as follows:

1. An identity key A = aB and secret k are generated according to the description in
section 3.

2. A makes qE adaptive queries (τi, infoi) and for each query a uniform identity key Aτi
and secret key ki are chosen (independently of A and k ) and used to generate a valid
descriptor (Aτi , Eki(infoi), σi).

3. A may at any time make a single challenge query (τ ∗, info∗0, info
∗
1), as long as τ ∗ 6= τi

for any i ∈ {1, . . . , qE}. In response, a bit b, identity key A∗ and symmetric key k∗ are
chosen uniformly at random. A receives in response (A∗, c∗, σ∗), where c∗ = Ek∗(info

∗
b)

and σ∗ is a valid signature on c∗ under identity key A∗.

4. If at any time A makes a hash oracle query of the form He(t||A) or Hd(t||A), the
experiment immediately halts with output 0. Otherwise the game continues until A
outputs a bit b∗.

5. If b∗ = b, the experiment has output 1, otherwise the experiment has output 0.

To prove inequality (1) we define a series of events over all three experiments. We let
Qi denote the event that the i-th hash oracle query has the form He(t||A) or Hd(t||A). We
define Fi =

∨
j≤iQj, and F = FqH . The inequality then follows from two observations.

First, conditioned on ¬Fi, the view of A up through the i-th hash oracle query is iden-
tically distributed in both experiments: if the view of A does not include sτj then sτjA (in
LinkA) and Aτj (in Game0,A) are both identically and independently distributed, and likewise
for kτj and kj. So

Pr[LinkA = 1|¬F] = Pr[Game0,A = 1|¬F] .

Second, in either experiment we therefore have Pr[Qi|¬Fi−1] ≤ 1
`−i , since conditioned on

¬Fi−1 the view of A is independent of A. Thus Pr[Fi] ≤
∑

j≤i
1
`−j , and

Pr[F] ≤ qH
`− qH

.
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Experiment Game1,A. The experiment Game1,A is defined identically to the experiment
Game0,A, with the exception that the ciphertext c∗ returned for the challenge query is replaced
by |info| + 128 uniform random bits. In this experiment it is clear that the view of A is
independent of b, and therefore Pr[b∗ = b] = 1

2
. But distiguishing between these experiments

is exactly the task of distinguishing AES encryptions from uniform random bits, so for any
A we have

|Pr[Game0,A = 1]− Pr[Game1,A = 1]| ≤ εpre .

5.2 Unforgeability

The proof of descriptor unforgeability is a mostly straightforward reduction to forging Ed25519
signatures, with a factor of T security loss. The reduction works by guessing which epoch t∗

the descriptor forgery will cover, “planting” the Ed25519 public key A as At∗ by choosing a
uniform st∗ mod `, and setting the identity key to A′ = s−1t∗ A. From there we exploit oracle
separation to respond to Hm queries on values (A†, s) where A† 6= A with values that allow
us to forge signatures for these identity keys.

Theorem 2. If all hash functions are implemented as random oracles, and Ed25519 signa-
tures are (t, qS, εsig)-secure against existential forgery, then Ransom’s scheme is (t, qD, qH , εforge)-
secure against descriptor forgery, where qD ≤ qS and

εforge ≤ Tεsig +
qDqH
`

+ qH2−b .

Proof. For any attacker A, we define two hybrid experiments Game0,A and Game1,A, and an
algorithm FA with the same complexity as A so that:

|Pr[DForgeA = 1]− Pr[Game0,A = 1]| ≤ qH2−b (4)

|Pr[Game0,A = 1]− Pr[Game1,A = 1]| ≤ qDqH
`

(5)

Pr[SForgeFA = 1] ≥ 1
T

Pr[Game1,A = 1] (6)

The theorem follows from the conjunction of these inequalities.

Experiment Game0,A. In this experiment, we run the descriptor forgery experiment, with
three modifications:

• A is modified so that it never makes the same query (τ, c) twice. Instead, it checks
before queries and reuses the earlier result if a duplicate is detected.

• All Ed25519 signatures replace the step r = Hr(k, t,m) by choosing r ∈R {0, . . . , `−1}.

• If there is ever a hash oracle query of the form Hr(k, t,m) using the k value in the
signing key, the output of the experiment is set to 0, regardless of the outcome of the
forgery attempt.
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Note that similarly to the previous proof, until A queries Hr at one of the points used in some
signature, its view is identical in either world, and indpendent of k. Thus the probability, in
qH queries of finding the b-bit value k is at most qH2−b.

Experiment Game1,A. This experiment further modifies Game0,A as follows: when A makes
a descriptor query (τ, c), the descriptor (Aτ , c, σ) is computed as in Game0,A. The signature
σ is then parsed as a pair (R, s), and if A has previously queried Hm(R,Aτ , c), the outcome
of the experiment is set to 0, regardless of the outcome of the forgery event.

Let Pi denote the event that the i-th descriptor query results in an outcome of 0, and
P =

∨
i≤qD Pi. Then since nothing in the view of A changes between the experiments,

we have |Pr[Game1,A = 1]− Pr[Game0,A = 1]| ≤ Pr[P]. Since the value R = rB is chosen
uniformly at random in each descriptor query and A makes at most qH queries to Hm, we
have Pr[Pi] ≤ qH

`
, and thus by the union bound Pr[P] ≤ qHqD

`
.

Algorithm FA. We can now construct an Ed25519 forger from A as follows. FA is given
as input an Ed25519 key verification key A, has oracle access to the hash functions Hm, and
will simulate the hash functions He, Hd for A. (It will also simulate some of the queries to
Hm) FA runs as follows:

• Given verification key A, choose a “target epoch” t ∈R {0, . . . , T}, choose a random
value st ∈R {0, 1}2b, and set s = s−1t mod `. Set A∗ = sA and record He(t||A∗) = st.
Run A with A∗ as the target identity key.

• When A makes hash query of the form He(τ ||A∗), FA checks whether it has recorded
a value sτ for the query; if not, it chooses a value sτ ∈R {0, 1}2b and records this value.
sτ is returned.

• WhenAmakes a hash query of the form Hm(R,A′,m), FA first checks whether A′ = A,
and if so queries its Hm oracle for the correct value. Otherwise, FA checks whether it
has previously recorded a value h for (R,A′,m); if not, a value h ∈R {0, 1}2b is chosen
and recorded. The recorded value h is returned.

• When A makes a descriptor query (τ, c), FA checks whether τ = t; if so, FA queries
its signing oracle for a signature on the message c and returns this value. Otherwise,
FA simulates a query to He(τ ||A∗) to get sτ and Aτ = sτA

∗. Next, FA chooses
h ∈R {0, 1}2b, σ ∈R {0, . . . , `− 1}, and computes R = sB − hAτ . If A has previously
made a hash query of the form Hm(R,Aτ , c), FA halts with output Fail. Otherwise,
FA records Hm(R,Aτ , c) = h and returns the descriptor (Aτ , c, σ), where σ = (R, s).

• When A outputs a descriptor forgery (A′, c, σ), check if A′ = A. If A′ = A then output
(c, σ) as the signature forgery, otherwise stop with output Fail.

Let us denote by SF the event that A’s output (A′, c, σ) is a valid descriptor for some
Aτ . Then, since A’s view in this simulation is identically distributed to the experiment
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Game1,A, we have Pr[SF] ≥ Pr[Game1,A = 1]. 1 Furthermore, we see that Pr[SForgeFA =
1] = Pr[SF ∧ A′ = A]. Since the view of A is independent of the target epoch t, due to the
uniform choice of A ∈R 〈B〉 and the independence of the Aτ , we have Pr[A′ = A] = 1

T
and

thus

Pr[SForgeFA = 1] =
1

T
Pr[Game1,A = 1] .

6 Modifications to Ransom’s scheme in Proposal 224

Proposal 224 modifies the scheme as described here in several ways; we summarize each
modification and its effect (if any) on the security bounds above:

• Ephemeral Signing Keys: in Proposal 224, rather than using the epoch signing
key to sign the descriptor directly, an ephemeral (independent, uniformly random)
Ed25519 key pair is chosen for each epoch. The ephemeral verification key is signed
by the epoch signing key, and then the ephemeral signing key is used to sign the
(encrypted) descriptor plus the certification:

This change allows the identity key to be stored offline, and has no effect on the security
levels for either the unlinkability or descriptor forgery game, since in the unlinkability
game, the ephemeral keys are independent of the epoch keys and in the descriptor
forgery game, the adversary is allowed to submit arbitrary info strings for signing
under epoch keys, which could be ephemeral verification keys.

• The hash function Hd In proposal 224, the hash function Hd is implemented roughly
asHd(t||A) = H(At||H(”subcredential”||A||At)||”hsdir− encrypted− data”). Since
this still involves querying H at the identity key A in a parseable location, this does
not alter the security bound in any way.

• Epoch Length and He Proposal 224 specifies epochs of length 25 hours but encodes
the epoch number as a 64-bit integer. If we interpret the value T literally this leads to a
factor of 264 security loss. However, since there is no advantage to forging a descriptor
for a time period after we’re all dead, we can restrict the security game to consider a
maximum time period T � 264, for example T = 216 leads to a 16-bit security loss
and is realistic as long as the deployment of the present scheme is expected to last less
than 144 years.

• Hashing prefixes Proposal 224 also adapts a different set of unique prefixes to sep-
arate the remaining hash functions. This has no effect whatsoever on the security of
the resulting scheme, since the only important characteristic of these prefixes is their
distinctness.

1The simulation may fail if A manages to query Hk at some point related to the secret k chosen by the
Ed25519 challenger; until such a query the simulation is identical to Game1,A, and conditioned on the query,
we know that Game1,A = 0, while the event SF may still occur
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