
End-to-End Secure Mobile Group Messaging with Conversation
Integrity and Deniability

Michael Schliep

schli116@umn.edu

University of Minnesota

Nicholas Hopper

hoppernj@umn.edu

University of Minnesota

ABSTRACT
In this paper, we describe Mobile CoWPI, a deployable, end-to-end

secure mobile group messaging application with proofs of security.

Mobile CoWPI allows dynamic groups of users to participate in,

join, and leave private, authenticated conversations without requir-

ing the participants to be simultaneously online or maintain reliable

network connectivity. We identify the limitations of mobile mes-

saging and how they affect conversational integrity and deniability.

We define strong models of these security properties, prove that

Mobile CoWPI satisfies these properties, and argue that no protocol

that satisfies these properties can be more scalable than Mobile

CoWPI. We also describe an implementation of Mobile CoWPI and

show through experiments that it is suitable for use in real-world

messaging conditions.

CCS CONCEPTS
• Security and privacy→ Security protocols.

KEYWORDS
end-to-end encryption, secure messaging

ACM Reference Format:
Michael Schliep and Nicholas Hopper. 2019. End-to-End Secure Mobile

Group Messaging with Conversation Integrity and Deniability. In 18th
Workshop on Privacy in the Electronic Society (WPES’19), November 11, 2019,
London, United Kingdom. ACM, New York, NY, USA, 19 pages. https://doi.

org/10.1145/3338498.3358644

1 INTRODUCTION
Texting and social media-based messaging applications have be-

come nearly as common as face-to-face communications for con-

versation between individuals and groups. The popularity of these

messaging applications stems in part from their convenience, al-

lowing users to communicate even in a mobile and asynchronous

setting, where their network availability may be unreliable and

they may come online and go offline at different times. In response

to increasing privacy concerns, some of the most widely deployed

messaging applications, includingWhatsApp [29], Google Allo [19],

Facebook [18], and Signal [27], have been deploying end-to-end

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WPES’19, November 11, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6830-8/19/11. . . $15.00

https://doi.org/10.1145/3338498.3358644

encryption to protect the confidentiality and integrity of messages

in users’ conversations.

However, message confidentiality and integrity are not sufficient

to protect a conversation. While current applications protect the

integrity of individual messages — an adversary cannot modify a

message while in transit from Alice to Bob — they do not protect

the integrity of the conversation. Consider the following conversa-
tion between Alice and Bob, in which the order that messages are

displayed can drastically affect the meaning of the conversation,

even if the individual messages cannot be modified:

Alice’s View:

Alice: Are you going to the protests?

Alice: Have you had lunch yet?

Bob: No... Yes.

Bob’s View:

Alice: Have you had lunch yet?

Alice: Are you going to the protests?

Bob: No... Yes.

We refer to the security property that a conversation must be

displayed consistently to all participants as conversation integrity.
This is an example of an additional security property we deem

necessary for any future protocols to achieve end-to-end secure

messaging.

Another property provided by some end-to-end encryption pro-

tocols is deniability. Consider the following conversation:

Reporter:What is your company doing illegally?

Whistleblower: They are dumping poison into the water.

Message deniability guarantees there is no cryptographic proof to

a third party that the whistleblower authored the message. Now

consider the following conversation:

Whistleblower:My SSN is 123-45-6789.

Reporter:What is your company doing illegally?

Whistleblower: They are dumping poison into the water.

A protocol that provides message deniability allows the whistle-

blower to argue that they did not author the messages. But only

the whistleblower knows their social security number so a proto-

col must also provide message unlinkability, guaranteeing there is

no cryptographic proof to a third party that both messages were

authored by the same participant.

Finally, most deployed secure messaging applications are based

on the Signal two-party protocol, which is non-trivial to extend to

group settings. Recently, multiple vulnerabilities [23, 25] have been

discovered in the way these applications implement end-to-end se-

cure messaging for groups. These vulnerabilities allow an adversary

to drop or reorder messages in two-party and group conversations.

Other messaging applications ignore end-to-end security of group

https://doi.org/10.1145/3338498.3358644
https://doi.org/10.1145/3338498.3358644
https://doi.org/10.1145/3338498.3358644

WPES’19, November 11, 2019, London, United Kingdom Michael Schliep and Nicholas Hopper

conversations entirely. We consider group conversations just as im-

portant as two-party conversations and future deployable protocols

must be designed with that in mind.

On the other hand, secure messaging protocols appearing in

the research literature [6, 8, 10, 16, 26] make assumptions that do

not fit the modern mobile internet which makes them unrealistic

for practical mobile deployments. Most of these works require

synchronous communication, and provide little to no guarantees

about conversation integrity. Moreover, many of these protocols

provide deniability but not unlinkability.

Another related effort is the recent IETF Working Group on Mes-

sage Layer Security (MLS) [4, 21]. MLS is focused on improving the

scalability of end-to-end encryption to support thousands of users

while explicitly not supporting conversation integrity or deniability.

While this is one possible tradeoff, we argue that it is equally useful

to support stronger security properties for smaller groups of people

who can mutually authenticate each other.

In this paper we address the problem of designing a deploy-

able, end-to-end secure mobile group messaging application. Our

contributions include:

• We identify key constraints of the mobile end-to-end secure

messaging model as well as describe the security properties a

protocol should provide. We also identify a real-world threat

model a protocol must provide these properties under (Sec-

tion 2).

• We describe a relatively simple and provably secure protocol

for Mobile Conversations With Privacy and Integrity (Mo-

bile CoWPI) in Section 9. We show in Section 4 that Mobile

CoWPI provides the desired security properties.

• We then analyze the security properties of our mobile mes-

saging model and show the restrictions they impose on any

mobile end-to-end secure messaging protocol (Section 6). We

argue that under these restrictions, Mobile CoWPI is within

a constant factor of optimal in terms of message size.

• We implement Mobile CoWPI as a Java server and library

and show that it performs well in a realistic internet en-

vironment (Section 5) deployed on Amazon AWS[3] and

Linode [15] with both desktop and Android [1] clients.

2 BACKGROUND
In this section we lay out the system model of modern secure

messaging applications and show how this model is insufficient to

provide conversation integrity.We then detail our systemmodel and

discuss how it enforces conversation integrity. We also overview

our strong threat model along with all of the security properties

we provide in our protocol.

2.1 Mobile Messaging Model
All popular mobile messaging applications provide the same core

features using a consistent system model. The key feature is provid-

ing a conversation for two or more participants. These applications

allow participants to start a new conversation, send messages, and

add or remove participants from a conversation even while other

participants are offline. When the offline participants return they

are updated with all missed messages in the conversation. To im-

prove conversation flow with offline participants the members of

the conversation are notified when other participants have received

the messages. This informs the author of a message not to expect a

response until the recipients have received the message.

To provide these conversation properties the service provider

handles routing and caching messages in the conversation. The

messages are cached for delivery to offline participants. All popular

secure messaging applications rely on a single service provider to

perform the message routing and caching.

Unfortunately, if the server providing this service to a partic-

ular conversation is compromised, it can break the conversation

integrity property
1
of any protocol that allows a conversation to

progress while some participants are offline. The service provider

simply needs to “fork” the conversation (into two separate sub-

conversations) after a target message and can partition the group

into multiple views of the same conversation. We illustrate this with

an example. Consider a conversation between Alice, Bob, Charlie,

and Dave. The service provider forks the conversation after Alice’s

secondmessage. The group is partitioned into two views, one where

Alice and Bob believe they are the only participants online and the

other where Charlie and Dave believe they are the only participants

online.

Alice’s and Bob’s View:

Alice: Lets go to the protest if 3 people want to?

Alice: I want to go.

Bob: I cannot make it.

Charlie’s and Dave’s View:

Alice: Lets go to the protest if 3 people want to?

Alice: I want to go.

Charlie: I am in.

Dave: Yes, me too.

2.2 Multi-providers for conversation integrity
To avoid this conversation integrity attack the system model of

Mobile CoWPI consists of a routing/caching service provider with

multiple order-enforcing-service (OES) providers. In this model,

users register and communicate directly only with the routing

service provider. However, when sending the ith message in a

conversation, the user uploads it to the routing service provider,

who forwards the message to each OES, receiving a confirmation

binding the message to index i . Since service providers should

only confirm a single message at each index i , if users only accept

messages confirmed by all OES providers, the protocol can ensure

that messages are handled in an order that preserves the integrity

of the conversation if at least one provider is honest. In this “any

trust” model we believe a single routing provider and two OES

providers are sufficient to provide practical conversation integrity;

we discuss some limitations of this model in Section 6.

2.3 Service Availability
Service availability is not a security goal of Mobile CoWPI. When

discussing the protocol we describe multiple service providers. We

do not necessarily expect each service to be provided by a single

machine, but require each service to be provided by a separate

1
Informally, that all participants should have the same view of a conversation.

End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability WPES’19, November 11, 2019, London, United Kingdom

entity. Standard techniques for achieving high availability can be

deployed to ensure the service is reliably available.

Denial of Service protection is also a non-goal of Mobile CoWPI.

It is trivial for a service provider to deny service to a client by not

processing or forwarding messages. It is possible for a malicious

provider to behave incorrectly and send malformed or incorrect

messages to a client and cause a denial of service. This is equivalent

to not sending the messages at all. All messaging applications that

rely on a service provider are vulnerable to this type of denial of ser-

vice. Additionally, if any participants are offline or cannot process

a message, all other participants can still progress the conversation.

They are not blocked on the offline/denial of serviced participants.

2.4 Threat Model
The security provided by Mobile CoWPI needs to withstand strong

adversaries. We consider an adversary that may compromise mul-

tiple service providers and multiple users. The adversary also has

full network control and may drop, modify, reorder, and add net-

work traffic. In effect the adversary can control the routing service

provider and all OES providers as well as any number of partici-

pants, unless it would trivially allow the adversary to compromise

a target security property. This strong threat model is consistent

with modern secure messaging threat models.

2.5 Security Properties
Besides the system goals of offline users and message receipts we

now informally discuss the security goals of secure mobile mes-

saging. Unger et. al. [28] provide a comparison of security goals

of different secure messaging applications. We relate our security

goals to the goals of their work where appropriate. In Section 4

we provide sketches of the security proofs for these properties and

provide both the formal definitions of these properties and the full

proofs that Mobile CoWPI achieves these properties in Appendix A.

Message Confidentiality is the property that only conversation

participants can read a message. More formally, an adversary that

does not control a participant in the conversation cannot learn the

plaintext of a message. There are two additional properties related

to message confidentiality which limit the window of compromised

messages even if an adversary is able to compromise any or all

participants.

Forward Secrecy is similar to message confidentiality but intro-

duces the concept of key ratcheting. After users have ratcheted

their key material all messages sent prior to the key ratchet are

confidential even if the adversary is able to reveal the long-term

and session state information of any or all participants after the

key ratchet.

Post-Compromise Secrecy is similar to message confidentiality

but introduces the concept of key healing. If an adversary is allowed

to reveal the long-term and session state of any or all of the users

in a conversation, after the key healing, all future message remain

confidential. The forward and post-compromise secrecy properties

bound the window of exposure of any key compromise to a limited

period.

Message Authentication is the security property that all partici-

pants can verify the author of a message and that a message has not

been modified in transit. Message authentication implies message

integrity.

Participant Authentication is the property that all honest partic-

ipants can verify all other honest participants are really who they

claim to be. Participant verification transfers between conversa-

tions. This is commonly accomplished by verifying long-term key

fingerprints in person.

Conversation Integrity is the property that all participants see

the same conversation. This includes the order of messages in a

conversation and the order of participant changes in a conversation.

As we showed earlier, conversation integrity cannot be achieved if

the adversary controls all of the routing and OES providers. Thus,

the adversary is allowed to control all but one of the OES providers.

In relation to Unger et. al. this goal implies speaker consistency,

causality preservation, and a global transcript.

Additionally, we consider post-compromise conversation in-

tegrity which introduces key healing. A protocol provides post-

compromise conversation integrity if after a key healing process,

the conversation integrity of future message is not compromised

by an adversary that may have revealed the long-term and session

state of users or OES providers.

Participant Consistency guarantees all participants of a conver-

sation agree on the set of all participants in the conversation. In

Mobile CoWPI, setup and participant change messages are handled

in the same manner as conversation messages. Thus, conversation

integrity implies participant consistency.

Deniability is the property that participants may deny taking part

in a conversation. Unger et al. refer to this as participant repudiation.

They also discuss two additional deniability properties: message

repudiation and message unlinkability. Message repudiation allows

participants to deny sending a message and is implied by partic-

ipant repudiation. Message unlinkability is the property that if a

distinguisher can be convinced a user authored one message, this

should not prove the authorship of any other message.

3 DESIGN
3.1 Overview
At a high level Mobile CoWPI is designed as follows. Users register

with the routing service provider out-of-band. This registration

links a user identity, a long-term public key, and multiple single

use pre-keys. When messages are sent as part of a conversation

they are uploaded to the routing provider. The routing service

then forwards the message to all of the OES providers, each OES

returns a confirmation binding the message to its index in the

conversation. The routing server then delivers the message and

OES confirmations to the clients. The participants do not process a

message until it has been received from the routing service provider

and has an order confirmation from all of the OES providers. As

long as a single OES provider is honest conversation integrity and

participant consistency are enforced.

There are 4 types of protocol messages in Mobile CoWPI; setup,
conversation, participant update, and receipt. Setup messages are

used to instantiate a new Mobile CoWPI session and are detailed

in Section 3.7. Conversation messages contain a message to be dis-

played to the participants of the session, detailed in Section 3.9.

Participant Updatemessage allow adding and removing participants

WPES’19, November 11, 2019, London, United Kingdom Michael Schliep and Nicholas Hopper

from a conversation, detailed in Section 3.10. Finally, Receipt mes-

sages indicate a participant has received, accepted, and processed

all prior messages, detailed in Section 3.8.

For a conversation between Alice, Bob, and Charlie. All messages

sent by Alice are of the form:

Sid, “TYPE”,Alice, idx , P , cab , cac ,authas1 , . . . ,authasm

All messages received by Bob from Alice will be of the form:

Sid, “TYPE”,Alice, idx , P , cab ,authbs1 , . . . ,authbsm

Where Sid is the session identifier, idx is the index of the mes-

sage, ca∗ is a pairwise ciphertext block between Alice and each

participant detailed in Section 3.5 and authas∗ , authbs∗ are pair-

wise authentication blocks between Alice or Bob and each OES

provider detailed in Section 3.6. Sending a message is linear in the

number of participants plus the number of OES providers, while

receiving a message is constant in the number of participants and

linear only in the number of OES providers. This linear size does not

limit the scalability of the Mobile CoWPI as Snapchat’s end-to-end

encrypted snaps are also linear in size and more than a Billion are

sent a day [24].

3.2 Message Order
To enforce conversation integrity there are seven rules to message

ordering.

(1) An OES confirmation must be received from every OES

provider for a protocol message before processing the mes-

sage. The protocol messages must also be processed in the

order they are received and confirmed.

(2) All conversations start with a setup message.

(3) When Alice sends a receipt, it must acknowledge all setup,

conversation, and participant update messages prior to the

receipt that she has not yet acknowledged. Typically they

are sent shortly after every message is received.

(4) Prior to Alice sending a conversation or participant update

message, Alice must have sent a receipt.

(5) When Alice sends a receipt, she acknowledges messages

with every participant separately. If Bob has just joined the

conversation she only acknowledges the messages that she

and Bob have in common.

(6) When Alice sends a conversation or participant update mes-

sage, she must acknowledge the most recent prior setup,

conversation or participant update message. She must also

acknowledge all receipts received after that prior message

in order.

(7) If Alice receives an invalid protocol message from the routing

server she terminates the conversation on her client and does

not process any future messages.

Rule (1) implies that even the author of a message must wait until

they have received confirmation of the message order from all

OES providers before processing it. Otherwise, if two users sent a

message at the same time, both users would think their message

would come first, causing an order inconsistency.

Rule (6) implies strong ordering of setup, conversation, and par-

ticipant update messages but not receipts. This was a design choice

as requiring receipts to acknowledge receipts would cause signifi-

cant overhead and excess network traffic when every client sends

a receipt at the same time, forcing n − 1 receipts to be outdated and
resent.

Rules (3) and (4) restrict the amount of time a message is vul-

nerable if the keys used to encrypt it are compromised. We discuss

this more as it relates to forward and post-compromise secrecy in

Section 4.

3.3 Primitives
We assume standard cryptographic primitives. Let l be the security
level in bits of Mobile CoWPI. All primitives are assumed to provide

at least l bits of security. LetG be a group of prime orderp generated
by д where the decisional Diffie-Hellman assumption is hard.

We assume a hash function and three key derivation functions:

H : {0, 1}l × Zp 7→ Z ∗p

KDF1 : S ×G ×G ×G ×U ×U 7→ {0, 1}
l

KDF2 : {0, 1}
l 7→ {0, 1}l

KDF3 : G ×G ×G ×U ×U 7→ {0, 1}
l

Where H and KDF1 are used for two-party NAXOS [14] key agree-

ments, KDF2 is used to produce a random symmetric key from an

input string, and KDF3 is used for the secure channel between the

clients and routing service provider. S is the set of possible session

identifiers andU is the set of possible participant identifiers. That

is, KDF1 takes as input a session identifier, three group elements

and two user identities, the sender and receiver. These functions

are modeled as random oracles. We choose NAXOS as it has the

property that to distinguish between a random key and a NAXOS

key the distinguisher must know both the long-term and ephemeral

secret keys of one of the participants. KDF1 is a minor modifica-

tion of the NAXOS KDF that also includes the session identifier of

the current Mobile CoWPI session, where as, KDF3 is the original
NAXOS key agreement.

We assume a symmetric authenticated encryption with associ-

ated data (AEAD) scheme. AEAD consists of two functions,Enck (m,d) 7→
c , and Deck (c,d) 7→m, or ⊥ if c and d do not authenticate with key

k . The AEAD scheme must provide indistinguishable from random

chosen-plaintext-attack security (IND$ −CPA) [22] and integrity

of ciphertext security (INT − CTXT) [5]. We choose AES-GCM

with random IVs for our AEAD scheme.

3.4 Registration
To register with the providers Alice generates a long-term public

private key pair:

lska ←R Z ∗p , lpka ← дlska

She also generates a list of ephemeral pre-keys where i is the id of

the pre-key:

eska [i] ←R {0, 1}
l , epka [i] ← дH (eska [i],lska)

Alice registers her identity, public long-term key lpka and public

ephemeral pre-keys epka with the providers out-of-band. Alice

should generate enough pre-keys to support as many conversations

as she expects to start while she is offline. She can always upload

new pre-keys in the future. Each pre-key may only be used once.

The participants must enforce this rule.

End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability WPES’19, November 11, 2019, London, United Kingdom

3.5 Two Party Ciphertext Blocks
All protocol messages contain pairwise ciphertext blocks cab where

a is the sender and b is the receiving participant. These blocks are

used to send additional key information and authenticate the proto-

col message. They are computed using a simple key ratchet where

the initial block uses a pre-key to perform a NAXOS authenticated

key agreement and then utilizes AEAD to encrypt and authenti-

cate the message. All subsequent blocks after the initial block use

ephemeral keys sent in the previous block to derive a new NAXOS

key and then encrypt with AEAD as in the initial block. In this

section we describe how to compute these ciphertext blocks in

terms of Alice sending to Bob.

Here we describe how Alice computes the initial ciphertext block

cab to send to Bob in session Sid . This ciphertext block encrypts

messagem and authenticates associated datad .m is only used when

sending conversation messages, in which case it is random sym-

metric key material. When sending setup, receipt, and participant

update messagem is empty.

First, Alice fetches Bob’s long-term public key lpkb and an ephemeral

pre-key epkb from the routing service provider where idb is the id

of epkb . Alice generates a new ephemeral key:

eskab ← {0, 1}
l , epkab ← дH (eskab ,lpka)

Then Alice computes a symmetric key:

ki1 ← epklskab

ki2 ← lpk
H (epkab ,lska)
b

ki3 ← epk
H (epkab ,lska)
b

k ← KDF1(Sid,ki1,ki2,ki3,a,b)

Alice generates her next ephemeral key pair:

id ′ab ← 1

esk ′ab ←R Z ∗p

epk ′ab ← дH (esk
′
ab ,lska)

She computes the ciphertext block as:

cab ← epkab , idb ,Enck ((m, id
′
ab , epk

′
ab),d)

When Bob receives cab = epkab , idb , c from the providers he

first fetches Alice’s long-term public key lpka and looks up the

ephemeral secret key eskb associated with idb and computes the

symmetric key as:

ki1 ← lpk
H (eskb ,lskb)
a

ki2 ← epk
lskb
ab

ki3 ← epk
H (epkb ,lskb)
ab

k ← KDF1(Sid,ki1,ki2,ki3,a,b)

Then he verifies c and d with k and decrypts:

(m, id ′ab , epk
′
ab) ← Deck (c,d)

and stores id ′ab and epk ′ab for latter use. Note that the implicit

authentication of NAXOS key exchange authenticates that the mes-

sage originated from someone with knowledge of Alice’s long-term

secret key.

All subsequent ciphertext blocks are generated and processed

in the same manner as the initial ciphertext block replacing the

pre-keys with the ephemeral keys received in the previous block.

This key ratcheting provides the self healing necessary for forward

and post-compromise secrecy. The users do not send the ephemeral

public keys in the clear in subsequent ciphertext blocks. That is the

ciphertext block has the form:

cab ← id ′b ,Enck ′((m, id
′′
ab , epk

′′
ab),d)

Alice and Bob may try to initialize the two-party key ratchet at

the same time. If this happens the providers will enforce an order

to the messages and future ciphertext blocks should use the most

recently initialized key ratchet.

These ciphertext blocks are what provide message integrity and

authentication. This is due to the NAXOS key agreement implicitly

authenticating the symmetric keys.

3.6 OES Authentication Block
Every protocol message that Alice sends contains an OES authenti-

cation block authaj for every OES provider j ∈ S where S is the set

of OES providers. The authentication blocks are necessary since

Alice only uploads the message to the routing service provider. The

routing service provider then forwards the message to the OES

providers. The authentication blocks allow the OES providers to

verify that the message is from Alice and for Alice to verify the

index a message she receives.

These OES authentication blocks are generated and handled in

the same way as the two-party ciphertext blocks discussed ear-

lier. The key ratcheting provides self healing for post-compromise

conversation integrity.

3.7 Setup Message
All conversation messages are similar in format. For Alice to setup

a conversation she first fetches ephemeral pre-keys for every other

particpant and each OES provider. Then she generates a random

Sid and computes the setup message:

data0 ← Sid,Alice, “SETUP”, idx , P

where idx is the index of the message in the session. For setup

messages the index is always 0. Next, Alice computes the two party

ciphertext block cai for every participant i ∈ P\{Alice} as described
in Section 3.5, where data0 is the associated data to authenticate in

those ciphertext blocks. Let n = |P | and :

data1 ← data0, ca0, . . . , can−1

Next, Alice computes the OES authentication block authaj for every
OES provider j ∈ S as described in Section 3.6 where data1 is the
associated data to authenticate.

Alice then sends to the routing service provider:

data1,autha0, . . . ,authas

where s = |S |.
The routing provider sends to each OES provider j the message

data1,authaj along with an ephemeral pre-key for every partici-

pant except for Alice. Each OES provider verifies the message data1
is from Alice. Then every provider for every participant i ∈ P gen-

erates an authji as described in Section 3.6 with data0, cai as the

WPES’19, November 11, 2019, London, United Kingdom Michael Schliep and Nicholas Hopper

associated data. Each OES provider then returns all of the authj∗
blocks back to the routing service.

The routing service forwards data0, cai ,auth∗i to every user

i ∈ P . Every user verifies the auth∗i blocks for every OES provider

and that that data0, cai is from Alice. The routing service only send

data0,auth∗a to Alice as there is not a ciphertext block for herself.

Once a participant has received the setup message along with

an OES authentication block from the routing service provider and

verified the message, they setup a new Mobile CoWPI session with

session identifier Sid . All providers must verify Sid is not used for

any existing session before processing the message.

3.8 Receipt Message
Participants send receipts after they have accepted any setup, con-

versation, or participant update message. If multiple messages are

sent while Alice is offline she sends a single receipt that acknowl-

edges all messagesmi with participant i ∈ P\{Alice}. Themessages

to acknowledge depend on the participant they are being acknowl-

edged to.mi is composed of all protocol message, excluding receipts

more recent than the last setup, conversation, or participant update

message, that have not been acknowledge previously and have been

sent after participant i has been added to the conversation. This

is because i cannot acknowledge messages they have not seen.mi
should be a list of all data0 blocks from the messages to acknowl-

edge in order.

A receipt is similar to a setup message. When Alice generates a

receipt for messages she computes:

data0 ← Sid,Alice, “RCPT ”,pidx

where pidx is the index of the previous setup, conversation, or

participant update message. Then she computes the two party ci-

phertext block cai for every participant i ∈ P {Alice} as detailed in

Section 3.5 with the associated data to authenticated as data0,mi .

Let

data1 ← data0, ca0, . . . , can−1

She then computes the OES authentication blocks as detailed in

Section 3.6 with the associated data as data1. Finally, she sends

data1 and the authentication blocks to the routing provider.

The routing service provender and OES providers handle the

message in the same way as a setup message detailed earlier. Except

this the routing server sends the index of the receipt (idx) to the OES
providers. They verify that pidx and idx are correct and generate

the OES block for user i with data0, cai , idx as the associated data.

When a participant receives a receipt they first verify the OES

authentication blocks then verify that the receipt authenticates the

correct messages. If anything does not verify, they terminate the

session.

3.9 Conversation Message
Conversation messages are similar to receipts except they contain

a ciphertext. Let idx be the index of the next message in the session

Sid . When Alice wants to send the conversation messagem. She

first generates a random symmetric key input ka ←R {0, 1}
l
then

computes the symmetric key k ← KDF2(ka). Let

data0 ← Sid,Alice, “MSG”, idx ,Enck (m)

She then generates the ciphertext block cai for every i ∈ P \ {Alice}
as detailed in Section 3.5 with ka as the data to encrypt in the

ciphertext block and data0 as the associated data. Let

data1 ← data0, ca0, . . . , can−1

She then computes the OES authentication blocks as detailed in

Section 3.6 with the associated data as data1. Finally, she sends

data1 and the authentication blocks to the routing provider.

The routing service and OES providers handle the message in the

same manner as receipt messages, verifying the OES authentication

blocks and index. After receiving the message, each participant

verifies the OES authentication blocks and index and displays the

message. If the message does not verify the session is terminated.

3.10 Participant Update Message
To change the set of participants in a conversation a member of

the conversation can send a participant update message. Who is

allowed to send the messages as well as what modifications they are

allowed tomake are out-of-scope of this paper. However, participant

modifications must be enforceable by the providers since they need

to forward and authenticate messages.

Participant update messages are similar to conversation mes-

sages except that the conversation message ciphertext is replaced

with a list of participants. Again let idx be index of the next message

in session Sid . When Alice wishes to change the participants of a

conversation to P ′ she creates a message:

data0 ← Sid,Alice, “UPDT ”, idx , P ′

She then creates the ciphertext block cai for participant i ∈ (P∪P
′)\

{Alice} as described in Section 3.5 where data0 is the associated
data for the ciphertext blocks. Let

data1 ← data0, ca0, . . . , can−1

Alice then creates the provider authentication block authaj for
provider j ∈ S as detailed in Section 3.6 with data1 as the associated
data. She uploads data1 along with the provider authentication

blocks to the routing provider.

The routing services and OES providers handle the update mes-

sage in the same way as a setup message. Each provider checks

that Alice is allowed to make the desired group modification and

verifies the index is correct. Each participant verifies the messages

is authentic from Alice and updates their participant list after they

have received the message from every provider. If the message does

not verify the session is terminated.

This message authenticates the group change to all old and new

participants which leaks any new participants to participants that

have been removed. To avoid this leakage it is up to the implemen-

tation to send a separate group update message removing users

before sending a message adding the new users.

3.11 Two Party Channels
All communication between the clients, OES providers, and the

routing service is performed over a two-party channel that sup-

plies all of the security properties discussed in Section 2. The OES

providers act as clients when communicating with the routing

provider. This is a synchronous channel that is setup by performing

a NAXOS key agreement to provide authentication to the channel.

End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability WPES’19, November 11, 2019, London, United Kingdom

Then all messages are secured by using a NAXOS key agreement

with keys being ratcheted on every message to provide forward

and post-compromise secrecy.

Algorithm 1 Client To Provider Channel Setup

1: function C2SChannelSetup(C, S, lpks , lskc)

2: eskc [0] ←R Z ∗p , epkc [0] ← дH (eskc [0],lskc)

3: Send(S,C, epkc [0])
4: epks [0], c1 ← Recv(S)

5: km1 ← lpk
H (eskc [0],lskc)
s

6: km2 ← epks [0]
lskc

7: km3 ← epks [0]
H (eskc [0],lskc)

8: k1 ← KDF3(km1,km2,km3, S,C)
9: t , epks [1] ← Deck1 (c1)

10: eskc [1] ←R Z ∗p , epkc [1] ← дH (eskc [1],lskc)

11: km4 ← epks [1]
lskc

12: km5 ← lpk
H (eskc [0],lskc)
s

13: km6 ← epks [1]
H (eskc [0],lskc)

14: k2 ← KDF3(km4,km5,km6,C, S)
15: c0 = Enck2 (t , epkc [1])
16: Send(S, c0)
17: return eskc , epks

Algorithm 1 details the algorithm for setting up the channel from

the initiator. Line 2 generates the clients first ephemeral NAXOS

keys. Lines 3 sends the clients identity and NAXOS ephemeral pub-

lic key to the provider. Line 4 receives the provider’s response and

line 5-9 compute the shared NAXOS key and decrypt the provider’s

next ephemeral public key and a challenge. Line 10 generates the

clients next ephemeral keys. Finally, Lines 11-16 ratchets the chan-

nel keys and sends the challenge back encrypted.

Algorithm 2 details setting up the channel from the provider.

Lines 2 receives the clients identity and NAXOS ephemeral public

key. Line 3 looks up the long-term public key of the client. Lines

4-5 compute the next two ephemeral NAXOS keys of the provider.

Line 6-8 compute the NAXOS shared key. Lines 9-12 encrypt the

challenge and the providers next ephemeral DH key and send it to

the client. Lines 13-22 decrypt the clients response and check that

the client’s response matches the challenge, storing the clients next

ephemeral key.

Algorithm 3 details how a message is sent using the two-party

channel. Lines 2-3 find the id of the senders last sent ephemeral

DH key and the receivers last seen ephemeral public key. Line 4

computes the shared secret from the two keys and line 5 generates

the senders next ephemeral DH keys. Line 6 encrypts the message

and the next ephemeral public key. Finally, line 7 sends the en-

crypted message along with the id of the receivers public key used

to encrypt it.

Algorithm 4 details receiving a message from the channel. Line

2 finds the id of the sender’s last ephemeral public key. Line 3

reads the id of the receiver’s ephemeral key used to encrypt the

message and the ciphertext. Line 4 computes the shared key and

line 5 decrypts the message and the senders next ephemeral public

key.

Algorithm 2 Provider To Client Channel Setup

1: function S2CChannelSetup(S,C, lsks)
2: C, epkc [0] ← Recv(C)
3: lpkc ←LookupUser(C)

4: esks [0] ← 0, 1l , epks [0] ← дH (esks [0],lsks)

5: esks [1] ← Z ∗p , epks [1] ← дesks [1]

6: km1 ← epkc [0]
lsks

7: km2 ← lpk
H (esks [0],lsks)
c

8: km3 ← epkc [0]
H (esks [0],lsks)

9: k1 ← KDF3(km1,km2,km3, S,C)
10: ts ←R {0, 1}

l

11: c1 ← Enck1 (ts , epks[1])
12: Send(C, epks [0], c1)
13: c2 ← Recv(C)

14: km4 ← lpk
H (esks [1],lsks)
c

15: km5 ← epkc [0]
lsks

16: km6 ← epkc [0]
H (esks [1],lsks)

17: k3 ← KDF3(km4,km5,km6,C, S)
18: tc , epkc [1] ← Deck2 (c1)
19: if ts = tc then
20: return (C, esks , epkc)
21: else
22: return ⊥

Algorithm 3 Channel Send

1: function SecureSend(S,R,m, lsks , esks , lpkr , epkr)
2: ns ← |eskr |
3: nr ← |epkr |

4: km1 ← epkr [nr − 1]
lsks

5: km2 ← lpkr [nr − 1]
H (esks [ns−1],lsks)

6: km3 ← epkr [nr − 1]
H (esks [ns−1],lsks)

7: k ← KDF3(km1,km2,km3, S,R)
8: esks [ns] ← Z ∗p , epks [ns] ← дesks [ns]

9: c ← Enck (m, epks [ns])
10: Send(R,nr − 1, c)
11: return (esks , epkr)

Algorithm 4 Channel Receive

1: function SecureRecv(R, S, eskr , epks)
2: ns ← |epks |
3: nr , c ←Recv(C)

4: km1 ← lpk
H (eskr [nr−1],lskr)
s

5: km2 ← epks [ns − 1]
lskr

6: km3 ← epks [ns − 1]
H (eskr [nr−1],lskr)

7: k ← KDF3(km1,km2,km3, S,R)
8: m, epks [ns] ← Deck (c)
9: return (eskr , epks)

3.12 Long-term Key Verification
The ability for Alice to verify that Bob is actually Bob is a chal-

lenging problem in messaging systems. This is enforced in Mobile

CoWPI by verifying the real Bob knows the private key associated

WPES’19, November 11, 2019, London, United Kingdom Michael Schliep and Nicholas Hopper

with the long-term public key Alice retrieves from the providers.

Mobile CoWPI does not necessitate a specific mechanism for verify-

ing these keys and identities but some such mechanism is required

to provide participant authentication. In practice key fingerprints

can be compared in person or with an interactive scheme such as

the Socialist Millionaire Protocol (SMP) as applied by Alexander

and Goldberg [2].

4 SECURITY
In this section we discuss the security provided by Mobile CoWPI.

We argue that it provides all of the desired security properties dis-

cussed in Section 2.We provide full proofs in Appendix A.Wemodel

our hash function (H) and key derivation functions (KDF1,KDF2)
as random oracles. We also assume the decisional Diffie-Hellman

problem is hard. We utilize the fact distinguishing between a ran-

dom key and a key generated with the NAXOS key agreement is

hard if the adversary does not know the long-term and ephemeral

secret keys of one of the parties in the key agreement as shown

by the NAXOS authors. We assume our AEAD scheme provides

IND$ −CPA and INT −CTXT security. Finally, we assume all par-

ticipants in a conversation have verified their long-term keys either

manually or with SMP.

4.1 Message Confidentiality
Message confidentiality is the property that only participants of a

conversation can read a message. We provide message confiden-

tiality against a powerful adversary that may corrupt any or all of

the providers, may control any user that is not a participant in the

target conversation, and may reveal the long-term and ephemeral

keys of any participant on any non-target message.

To compromise the confidentiality of a message:

Sid, “MSG”,A, idx ,EncKDF2(ka)(m), ca1, . . . ,autha1, . . .

The adversary must be able to distinguish between EncKDF2(ka)(m)
and a random string. If an adversary can make this distinction they

must be able to do one of the following:

(1) Compute a two-party NAXOS key without being one of the

parties allowing them to decrypt one of the ciphertext blocks

c∗ and retrieve the key input ka , thus decrypting them.

(2) Decrypt one of the c∗ ciphertext blocks without knowing the
symmetric key and learn ka , thus breaking the IND$ −CPA
security of the AEAD scheme.

(3) Distinguish the ciphertext ENCKDF2(ka)(m) from random

without knowing ka , thus breaking the IND$−CPA security

of the AEAD scheme.

4.2 Message Authentication and Integrity
Message authentication provides the property that when Bob re-

ceives a message fromAlice in session Sid , Alice must have sent that

message. Mobile CoWPI provides message authentication against a

strong adversary that may control any or all of the providers and

any users in any session. As long as Alice and Bob have not had their

long-term keys and ephemeral keys of session Sid compromised,

all messages received by Bob from Alice are authentic.

For an adversary to forge a message from Alice to Bob the ad-

versary must create a message:

Sid, “MSG”,A, idx ,EncKDF2(ka)(m), cab , . . . ,autha1, . . .

If the adversary can forge the message they must be able to do one

of the following:

(1) Compute a two party NAXOS key without knowing Alice’s

or Bob’s long-term and ephemeral keys, allowing the adver-

sary to create the ciphertext block cab .
(2) Forge a valid ciphertext block cab from Alice to Bob without

knowing the symmetric key, thus breaking the INT −CTXT
security of the AEAD scheme.

4.3 Forward Secrecy
Forward secrecy is the property that past messages are confidential

even if future key material is revealed. Mobile CoWPI provides

forward secrecy of a messagem after every user i ∈ P has processed

the receipt of every user j ∈ P acknowledgingm. Forward secrecy

assumes the same adversary as message confidentiality.

Let P be the set of participants in session Sid and letma be the

message:

Sid, “MSG”,A, idx ,EncKDF2(ka)(m), ca1, . . . ,autha1, . . .

be a message sent from user A ∈ P . The adversary cannot distin-

guish EncKDF2(ka)(m) from random after every participant i ∈ P
has processed a receipt from A, acknowledgingma , and A has pro-

cessed a receipt form i acknowledgingma . First we show that every

ephemeral private key eskia used to compute ciphertext block cai
will never be used again and thus can be deleted. Then we show that

without eskia the adversary cannot distinguish EncKDF2(ka)(m)
from random similar to message confidentiality.

The ciphertext block cai is computed using a’s ephemeral private

key eskai and i’s ephemeral public key epkia . In cai , a distributes

a new ephemeral public key epk ′ai and can safely delete eskai , so
all eskai have been deleted after sendingma .

Now we show eskia can be deleted after i has sent a receipt that
acknowledgesma and processed a receipt from a acknowledging

ma . Let the receipt from i be:

ri ← Sid, “RCPT ”, I ,pidx , ci1, . . . ,authi1, . . .

Ciphertext block cia is generated using ephemeral private key

eskia and ephemeral public key epk ′ai . In cia , i distributes a new
ephemeral public key epk ′ia . Let ra be the receipt from a acknowl-

edgingma . The ephemeral private key eskia can be deleted after i
processes both ri and ra . Since receipts do not enforce an order, a
may use eskia when sending ra . After a sends ra she may only send

a conversation message or group update message, which acknowl-

edges ri and thus uses epk ′ia . This shows that eskai and eskia can

be deleted after a and i process the receipts ra and ri .
After keys have been ratcheted Mobile CoWPI provides the same

message confidentially property as discussed previously.

4.4 Post-Compromise Secrecy
Post-Compromise secrecy is the property that compromising prior

long-term and ephemeral key material does not break the confiden-

tiality of future messages. If Alice’s long-term or ephemeral state

End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability WPES’19, November 11, 2019, London, United Kingdom

are revealed, all conversation messages following Alice’s next re-

ceipt provide post-compromise secrecy. Similar to forward secrecy

we need to show that Alice’s compromised ephemeral private keys

are not used in the next conversation message.

Let eskai be Alice’s compromised ephemeral key used for the

two-party ciphertext block with user i . We show that after Alice’s

next receipt, the following conversation message does not use eskai .
Let Alice’s receipt be:

ra ← Sid, “RCPT ”,Alice,pidx , ca1, . . . ,autha1, . . .

Recall that the ciphertext block cai is encrypted with a key gen-

erated from eskai and contains a new ephemeral key esk ′ai . Let
c ′ai be the ciphertext block of the conversation message. Since all

messages must acknowledge all prior receipts, c ′ia must use Alice’s

ephemeral key epk ′ai from her receipt.

Similar to forward secrecy, after keys have been ratchetedMobile

CoWPI provides message confidentiality as discussed previously.

4.5 Conversation Integrity
Conversation integrity is the property that all honest participant in

a conversation see the same conversation. That is all honest partic-

ipants agree on the order of all setup, conversation, and participant

update messages. Conversation integrity considers an adversary

that controls the network, can compromise all but one OES provider,

and can compromise participants in the conversation. The adver-

sary is not allowed to compromise all the OES providers, otherwise

breaking conversation integrity is trivial, regardless of the protocol.

If all of the providers are compromised the adversary can simply

partition the group.

Consider a conversation between Alice, Bob, and Charlie. After

Alice sets up the conversation the adversary can partition the con-

versation by never forwarding messages from Charlie to Alice or

Bob, and similarly never forwarding any messages, after the setup

message, from Alice or Bob to Charlie. Alice and Bob will believe

Charlie has never come online and continue the conversation, while

Charlie will believe Alice and Bob are always offline and continue

the conversation alone. Thus, at least one provider must be honest.

If at least one provider is honest, to break conversation integrity

the adversary must send a message:

Sid, “MSG”,A, idx ,EncKDF2(ka)(m), c∗, . . . ,auth∗, . . .

where two honest users (Alice and Bob), decrypt different key

inputs values from their respective ciphertext that both decrypt

EncKDF2k∗ (m) to different valid plaintext. Let c,d be arbitrary strings;
then the probability ϵint that Deck (c,d) ,⊥ for a random key k
must be negligible, since an adversary can win the INT −CTXT
game by simply submitting c,d as a ciphertext query. This holds

even when c = Enck ′(m,d) for some fixed k ′. Thus if the adver-
sary makes at most q queries to KDF2, the probability of finding

a k ′ = KDF2(k) breaking conversation integrity in this way is at

most qϵint .
If the adversary cannot find a valid ciphertext under two random

keys, to break conversation integrity the adversary must convince

two participants to accept different messages as the ith message of

conversation Sid . The honest participants only accept a message

after verifying all the OES authentication blocks bind the message

to the specific index. An honest OES provider will authenticate all

messages in a consistent order to all participants. The adversary

must be able to forge an OES authentication block for a message

to an honest participant A as if it came from honest OES provider

S . If the adversary can forge such a message, it must be able to do

one of the following:

(1) Compute a two party NAXOS key without knowing A’s or
S’s long-term and ephemeral keys, allowing the adversary

to create the authentication block authsa .
(2) Forge a valid authentication block authsa from S to A with-

out knowing the symmetric key, thus breaking the INT −
CTXT security of the AEAD scheme.

4.6 Participant Consistency
Participant consistency is the property that all users agree on the

set of participants in a conversation. We provide participant con-

sistency under a strong adversarial model. The adversary controls

the network and may compromise all but one OES provider and

any participants. The adversary wins if she can cause two honest

users to have different sets of users for session Sid after processing

a setup or participant update message and not terminating. Since

setup and participant update messages in Mobile CoWPI are part

of the protocol transcript and Mobile CoWPI provides conversation

integrity, Mobile CoWPI also provides participant consistency.

4.7 Deniability
Recall deniability as discussed in Section 2. Deniability is provided

if a single user can run a simulator and produce a simulated tran-

script that is indistinguishable from a transcript of a real protocol

execution. The simulator must only take as input information that

is known to a single user. That is, only a single users view of the

conversation, which is simply a sequence of two-party messages.

The distinguisher is given all of the long-term secret information

and any secret state information of the simulating user. This re-

quires the simulator to also output any state information of the

user.

We now detail the simulator. Let Alice be the party running the

simulator. She acts as all parties in the conversation and behaves

as normal expect when performing NAXOS key agreements. The

NAXOS key agreements are the only part of the Mobile CoWPI

protocol that Alice cannot perform honestly as she does not have

the secret key material of all participants. Their are two cases of

the NAXOS key agreement she needs to simulate:

(1) When she is a participant of the NAXOS key agreement.

(2) When she is not a participant of the NAXOS key agreement.

In the first case let Bob be the other participant. Alice may have a

valid ephemeral public key of the other participant if she is sending

the SETUP message. Otherwise she generates an ephemeral key

epkb for the other participant as a random group element. She then

computes the NAXOS key as she normally would.

If she has a valid ephemeral key for Bob the NAXOS key agree-

ment is a real key agreement. If she generates a random key from

Bob the distinguisher must distinguish between the random key

and a real NAXOS ephemeral key epkb ← дH ({0,1}
l ,lskb). Since H

is modeled as a random oracle the distinguisher can only win if it

queries the random oracle on all 2
l
possible ephemeral secret keys

WPES’19, November 11, 2019, London, United Kingdom Michael Schliep and Nicholas Hopper

with Bob’s long-term secret key. Thus the adversary cannot tell

epkb apart from a random group element with less than 2
l
oracle

queries.

In the second case let Bob and Charlie be the two participants.

Alice will have a valid ephemeral public key for one of them if they

are sending a SETUP message. As before, Alice will generate any

ephemeral keys she does not have as random group elements and

then generates the NAXOS key as a random symmetric key; the

distinguisher cannot tell if the randomly generated ephemeral keys

are real with less than 2
l
oracle queries. Since the distinguisher

does not know the ephemeral secret key of either party it cannot

distinguish between a random key and a real NAXOS key.

Using these NAXOS simulators, Alice can simulate all parties of a

Mobile CoWPI protocol session and produce a simulated transcript

that is indistinguishable from a real transcript. Thus, Mobile CoWPI

provides message and participant deniability.

4.7.1 Message Unlinkability. Message unlinkability is the property

that proving authorship of any one message does not prove author-

ship of any additional message. This property has not been formally

defined previously. It was first discussed in relation to mpOTR [10],

as mpOTR is considered not to provide message unlinkability. This

is due to mpOTR using the same ephemeral signing key to sign

every message. Thus, the distinguisher having knowledge of the

ephemeral verification key can verify every message sent by a user.

Since Mobile CoWPI does not use signatures and all authentication

material is only used for a single message Mobile CoWPI provides

message unlinkability. In Appendix A, we prove a stronger version

of message unlinkability that provides the distinguisher with a

protocol message from a real transcript but can still not distinguish

the full transcript from a simulated transcript.

5 EVALUATION

0 10 20 30 40 50
Group Size

0

50

100

150

200

Ti
m

e
(m

s)

Wallclock
CpuTime

Send Protocol Message Time

Figure 1: The wallclock
(25th, 50th, and 90th per-
centile) and CPU time
to send a protocol mes-
sage.

We implemented Mobile CoWPI

as a Java server and client library
2
.

Since all protocol messages can

be processed without interaction

between clients the overhead of

Mobile CoWPI is low. To mea-

sure the run time overhead we de-

ployed Mobile CoWPI in an inex-

pensive deployment with a rout-

ing service and one OES on an

AWS [3] free tier t2.micro EC2 in-

stance in Ohio and a second OES

hosted on a $5/month Linode [15]

virtual private server located in

New Jersey. Since Mobile CoWPI

uses an any trust model two OES

providers is sufficient. We ran all of the client measurements from

a personal desktop machine over a home internet connection. The

client machine contains an AMD FX 8300 CPU. The network round-

trip-time between the client and the router is ≈ 30ms and between

the router and Linode OES is ≈ 20ms . The network round trip

of a message is from client to routing server to OES to routing

2
https://github.com/mschliep/cowpi

server then back to the client. This introduces an ≈ 50ms latency
for messaging.

We ran the measurements with 2 to 50 participants in a conver-

sation and sent 100 messages for each conversation size. The results

show Mobile CoWPI is practical for real-world deployments.

0 10 20 30 40 50
Group Size

1000

2000

3000

4000

5000

By
te

s

Send Protocol Message Sizes

Figure 2: Outgoing mes-
sage size in bytes.

Figure 1 shows the time in

milliseconds that it takes for a

user to send a protocol message

and receive a protocol message.

This represents the time it takes

to display the message. Figure 2

shows the outgoing message size

in bytes when sending a message.

All outgoingmessages areO(n+s)
in size where n is the number of

participants and s is the number

of OES providers. This is due to

the authentication being pairwise

with all receivers. We discuss why this overhead is necessary in

Section 6. Pairwise ciphertext blocks allow for very little overhead

to receive a message. Conversation and receipt messages are O(s)
while setup and participant update messages must be O(n + s) in
size to distribute the list of participants. The overhead of Mobile

CoWPI for incoming messages is less than 300 bytes.

5.1 Scalability
We evaluated the scalability of our deployment by measuring the

message throughput and storage costs of our AWS t2.micro routing

server provider and OES provider along with the performance of

our Java implementation on a Motorola G3 [17] Android [1] phone.

Figure 3a shows the time in milliseconds to create a protocol

message on the Android device. Figure 3b shows the maximum

throughput of the router for processing messages from a client and

an OES for each group size. It also shows the maximum throughput

of an OES provider. Figure 3c shows the storage space required

per conversation of each size for both the router and OES. Our

implementation uses a PostgreSQL [11] database which causes the

steps seen in Figure 3c.

Mobile CoWPI can easily scale horizontally by sharding across

multiple servers by the conversation SID. For example, for a router

service provider to support processing 1 Billion messages a day for

groups of size 5 and (10). One t2.micro can support ≈ 289(165) mes-

sages per second, it would require 40(66) instances. The t2.micro

instances are priced at $0.0116/ per hour under burstable work-

loads and are charged an addition $0.05 per hour under sustained

high workloads. Thus the cost would range from $11.14($18.38) to

$59.14($97.58) per day.

6 DISCUSSION
In this section we detail the limitations of Mobile CoWPI along

with restrictions enforced by the system model.

6.1 Limitations of Group Key Agreements
The MLS draft protocol scales to larger group sizes than Mobile

CoWPI can support by using a tree-based Group Key Agreement

(GKA) scheme. GKAs provide a mechanism for a group of users to

https://github.com/mschliep/cowpi

End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability WPES’19, November 11, 2019, London, United Kingdom

0 10 20 30 40 50
Group Size

0

100

200

300

400

500

600

m
se

c/
m

sg

Android Message Creation Time

(a) Time to build a message on an Android de-
vice.

2 10 20 30 40 50
Group Size

0

100

200

300

400

500

m
sg

/s
ec

Router-Client
Router-OES
OES

Provider Message Rate

(b) Rate at which the Router can process a
message from a client and OES and rate at
which an OES can process a message.

0 10 20 30 40 50
Group Size

2000

4000

6000

8000

10000

By
te

s/
Co

nv
er

sa
tio

n

Router
OES

Provider Storage Size

(c) Provider storage cost per conversation.

compute a symmetric encryption key, which can then be used to

encrypt a message and authenticate that the message originated

from a member of the group. However, such a scheme by itself does

not provide a mechanism to verify that a message came from a

specific member of the group.

To provide message sender authentication, another authenti-

cation mechanism must be introduced and it must be deniable.

Recently MLS has proposed to use a signature scheme to provide

sender authentication with a tree-based GKA scheme. However, by

its nature a signature on a message is unforgeable and thus not deni-

able. Another possible approach would be to use a multi-designated

verifier signature scheme [13], which provides source hiding signa-

tures that can be validated by anyone and can be generated either

by the author or by the full group of receivers. This would provide

a weaker form of deniability than Mobile CoWPI provides, since

simulation requires the cooperation of all users.

The key challenge is to provide message authenticators that can

be simulated by any subset of the group, but cannot be forged by

any subset of the group. Mobile CoWPI achieves this by using de-

niable pairwise ciphertext blocks to authenticate every message.

While this limits the size of groups that can be supported, in practice

this has not been problematic for existing end-to-end encryption

schemes; for example, both Signal and Snapchat’s end-to-end en-

cryption [24] are linear in the number of receivers and have been

deployed to support billions of messages per day.

6.2 Multiple Providers
Requiring multiple providers for conversation integrity adds dif-

ficulty to deploying Mobile CoWPI. However, if this requirement

cannot be met the conversation integrity property could be mod-

ified to include a time aspect. Most users are expected to only be

offline for short periods of time, for example less than one week. It

is also the case that after Alice receives a receipt from Bob, she can

be confident that Bob’s transcript provides conversation integrity

with her transcript. Thus, if every user sends a receipt after every

message, we can add a time constraint to the conversational in-

tegrity property and warn users after a time limit (e.g. one week) of

not having seen a receipt from every other participant. We chose to

require multiple providers for Mobile CoWPI as it provides much

stronger conversation integrity for every message.

6.3 Denial of Service
Mobile CoWPI does not protect against denial of service attacks

from compromised servers: a server can simply not forward conver-

sation messages to a participant. Since the participant must receive

the message from every server, the participant will simply keep

waiting and not make progress. A potential solution to this problem

would be to have multiple servers perform a byzantine agreement

on the messages of a conversation and then participants could pro-

cess a message after receiving it from a majority of servers. This

changes the trust model from a single honest server to a majority of

honest servers and it is not straight forward how this modification

would affect the deniability properties of the conversation.

Mobile CoWPI also does not offer denial of service protection

against a compromised participant. A compromised participant

can send an invalid ciphertext block c∗ to a victim. The victim

will terminate the session and all non-victims will not know of

the attack. The implementation should warn the user of the attack

allowing them to notify the other participants out-of-band. It may

be possible to mitigate this issue by modifying the ciphertext blocks

to provide zero knowledge proofs of correctness that the servers

can verify. However, we do not know of an efficient mechanism

that would allow for this and also preserve message deniability and

unlinkability.

These denial of service limitations are not unique to Mobile

CoWPI. All existing protocols in the literature and in wide deploy-

ment are also vulnerable to denial of service by both the server and

individual participants.

7 RELATEDWORK
Off-The-Record (OTR) [6] is the first academic work to look at

providing private instant messaging. OTR provides message con-

fidently, integrity, authentication, repudiation, and unlinkability.

However OTR does not provide participant repudiation or conver-

sation integrity. The main limitation of OTR is it only supports

conversations between two individuals. There is not a straight

forward mechanism to apply OTR in a group setting.

WPES’19, November 11, 2019, London, United Kingdom Michael Schliep and Nicholas Hopper

Multiparty OTR (mpOTR) [10] tries to provide the properties of

OTR for group conversations. At a high level it works as follows.

First, All participants setup pairwise secure channels using a deni-

able authenticated key agreement (DAKE). Then over the secure

channels the participants execute a Group Key Agreement (GKA)

to compute an ephemeral encryption key. The users also distribute

ephemeral verification keys used to sign conversation messages.

The participants also compare a hash of the group information

to enforce participant consistency. When Alice wants to send a

message to the group she encrypts the message with the ephemeral

group key then signs the ciphertext with her ephemeral verification

key. Then broadcasts the ciphertext and signature to all participants

of the conversation. All recipients can verify the signature is from

Alice and decrypt the message. To enforce conversation integrity,

at the end of a conversation the participants execute a byzantine

agreement on a lexographically ordered list of the messages. Even

though mpOTR provides participant repudiation via the DAKE dur-

ing setup it does not provide message unlinkability due to the use

of the verification keys. With knowledge of a verification key a

distinguisher can verify all messages authored by a particular user.

mpOTR also lacks strong conversation integrity since the transcript

consistency is not checked until the conversation has ended and is

only checked on a lexographically order transcript. This requires

mpOTR to operate in the non-mobile model.

GroupOff-The-Record (GOTR)[16] utilizes a “hotplugable” Bermister-

Desmedt GKA to provide secure messaging for dynamic groups. To

set up a conversation all the users first set up secure pairwise chan-

nels. Then over those channels the participants execute the GKA.

When sending a message Alice encrypts the message with her send-

ing key generated by the GKA. Then periodically the participants

perform a transcript consistency check to verify all users have seen

the same conversation. The details of the consistency check are not

addressed in the paper. GOTR only works in the synchronous model

as all users must be online to execute the GKA and consistency

checks, making it not suitable for mobile communication.

SYM-GOTR [26] is a recent proposal for synchronous end-to-end

secure group conversations with the same properties as our work.

SYM-GOTR works with existing XMPP servers and a client plugin.

Similar to GOTR, participants first setup pairwise secure channels

between all participants. Then the participants share symmetric

key inputs and verification keys. When Alice sends a message she

first computes a symmetric encryption key by hashing all of the

symmetric key input material from all the other participants and en-

crypts the message. She broadcast the ciphertext to all participants.

After receiving a ciphertext all participants perform a two phase

consistency check of the ciphertext over the pairwise secure chan-

nels. The first phase verifies all users have received the ciphertext

and the second phase identifies any users who have misbehaved.

Modifying the participants of the conversation is as simple as dis-

tributing new symmetric key inputs and verification keys. The main

limitations of SYM-GOTR is that it requires all participants to be

online at the same time and the two phase interactive consistency

check causes additional delay in message processing.

Signal [27] (formerly TextSecure) is the most widely deployed

protocol for secure mobile messaging. However it has only recently

received formal analysis of its security properties [7, 9, 12].With [23,

25] identifying multiple participant consistency and conversation

integrity vulnerabilities in two-party and group conversations. We

now quickly describe the group conversation protocol of Signal.

When Alice registers with the Signal server she uploads pre-keys

allowing other users (Bob) to execute an X3DH [20] two-party

key agreement with her while she is offline. When Bob wants to

start a conversation with Alice and Charlie he fetches a pre-key for

each of them, then executes the X3DH key agreement and sends

each a secure “Group Setup” message. Conversation messages are

sent in the same fashion, setting up or ratcheting forward a two-

party symmetric key with every pair of users, then sending an

encryption of the conversation message to each user individually.

When Alice receives a group message from Bob she sends a receipt

of the message back to Bob. When Bob’s phone receives the first

receipt of a messages it indicates to Bob the message was delivered.

Signal lacks conversation consistency of messages and receipts,

Charlie can not verify if Alice has received Bob’s message and no

order of messages is enforced.

Asynchronous Ratcheting Trees (ART) [8] describes a group key

agreement protocol with forward and backward—Post Compromise—

secrecy. The protocol is asynchronous in that it allows a single user

to set up the group key while the other users are offline. ART is

only a group key agreement and not a full messaging protocol like

Mobile CoWPI. It does not provide authentication of the author of

a message, support for dynamic groups, or conversation integrity.

ART works by bootstrapping on secure two-party channels similar

to our NAXOS two-party channels. When setting up a group all

participants are added one at a time. The group key agreement

forms a DH tree where the root node is the group key. Setting up a

group with ART is O(n) but performing a single user key ratchet is

O(loд(n)) where n is the number of users in the group.

Recently, the IETF has formed a working group to provide a

standard for Message Layer Security (MLS) [4, 21]. The focus of

the working group has been on improving scalabity to thousands

of users with limited security trade offs. The two major trade offs

compared to Mobile CoWPI is the lack of conversation integrity

and deniability of MLS. These security properties are currently

considered OPEN ISSUES by the working group.

8 CONCLUSION
In this work we addressed the problem of practical end-to-end se-

cure mobile messaging with support for group conversations. We

identified a mobile messaging model and showed that (1) multi-

ple service providers are required to provide strong conversation

integrity and (2) to provide deniable message sender authentica-

tion, messages must be O(n) in size. We then showed that given

an any-trust model, a relatively simple protocol, Mobile CoWPI,

can achieve these strong security properties while being practically

efficient. We provide proofs of the security of Mobile CoWPI, and

analyze the performance of a Java implementation with groups

of varying size to show the protocol performs well with realistic

internet latencies.

9 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feedback. This

work was supported by the NSF under grant 1814753.

End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability WPES’19, November 11, 2019, London, United Kingdom

REFERENCES
[1] [n.d.]. Android | The World’s Most Populare Mobile Platform. https://www.

android.com/

[2] Chris Alexander and Ian Goldberg. 2007. Improved user authentication in off-

the-record messaging. In Proceedings of the 2007 ACM workshop on Privacy in
electronic society. ACM, 41–47.

[3] Inc. Amazon Web Services. 2019. Amazon Web Service (AWS) - Cloud Compute

Services. https://aws.amazon.com/

[4] Richard Barnes, Jon Millican, Emad Omara, Katriel Cohn-Gordon, and Raphael

Robert. 2019. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-
ietf-mls-protocol-06. Internet Engineering Task Force. https://datatracker.ietf.

org/doc/html/draft-ietf-mls-protocol-06 Work in Progress.

[5] Mihir Bellare and Chanathip Namprempre. 2008. Authenticated Encryption:

Relations among Notions and Analysis of the Generic Composition Paradigm. J.
Cryptol. 21, 4 (Sept. 2008), 469–491. https://doi.org/10.1007/s00145-008-9026-x

[6] Nikita Borisov, Ian Goldberg, and Eric Brewer. 2004. Off-the-record communica-

tion, or, why not to use PGP. In Proceedings of the 2004 ACM workshop on Privacy
in the electronic society. ACM, 77–84.

[7] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-

glas Stebila. 2017. A formal security analysis of the signal messaging protocol.

In Security and Privacy (EuroS&P), 2017 IEEE European Symposium on. IEEE,
451–466.

[8] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Mil-

ner. 2018. On ends-to-ends encryption: Asynchronous group messaging with

strong security guarantees. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 1802–1819.

[9] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Jörg

Schwenk, and Thorsten Holz. 2016. How Secure is TextSecure?. In Security
and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE, 457–472.

[10] Ian Goldberg, Berkant Ustaoğlu, Matthew D Van Gundy, and Hao Chen. 2009.

Multi-party off-the-record messaging. In Proceedings of the 16th ACM conference
on Computer and communications security. ACM, 358–368.

[11] The PostgreSQL Global Development Group. 2019. PostgreSQL: The world’s

most advanced open source database. https://www.postgresql.org/

[12] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. 2017. Automated

verification for secure messaging protocols and their implementations: A sym-

bolic and computational approach. In IEEE European Symposium on Security and
Privacy (EuroS&P).

[13] Fabien Laguillaumie and Damien Vergnaud. 2004. Multi-designated verifiers sig-

natures. In International Conference on Information and Communications Security.
Springer, 495–507.

[14] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. 2007. Stronger security of

authenticated key exchange. In Provable Security. Springer, 1–16.
[15] linode. [n.d.]. linode. https://linode.com/.

[16] Hong Liu, Eugene Y Vasserman, and Nicholas Hopper. 2013. Improved group

off-the-record messaging. In Proceedings of the 12th ACM workshop on Workshop
on privacy in the electronic society. ACM, 249–254.

[17] Motorola Mobility LLC. 2019. Moto G3 - Motorola. https://www.motorola.com/

us/products/moto-g-gen-3

[18] Moxie Marlinspike. 2016. Facebook Messenger deploys Signal Protocol for end

to end encryption. https://whispersystems.org/blog/facebook-messenger/

[19] Moxie Marlinspike. 2016. Open Whisper Systems partners with Google on

end-to-end encryption for Allo. https://whispersystems.org/blog/allo/

[20] Moxie Marlinspike and Trevor Perrin. 2016. The X3DH Key Agreement Protocol.

https://whispersystems.org/docs/specifications/x3dh/

[21] Emad Omara, Benjamin Beurdouche, Eric Rescorla, Srinivas Inguva, Albert Kwon,

and Alan Duric. 2019. The Messaging Layer Security (MLS) Architecture. Internet-
Draft draft-ietf-mls-architecture-02. Internet Engineering Task Force. https:

//datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-02 Work in Progress.

[22] Phillip Rogaway. 2004. Nonce-based symmetric encryption. In International
Workshop on Fast Software Encryption. Springer, 348–358.

[23] Paul Rösler, Christian Mainka, and Jörg Schwenk. 2018. More is Less: On the

End-to-End Security of Group Chats in Signal, WhatsApp, and Threema. (2018).

[24] Subhash Sankuratripati, Moti Yung, Anirudh Grag, and Wentao Huang. 2019.

Catch Me if You Can: An Account Based End-to-end Encryption for 1/1 Snaps.

In Real World Crypto Symposium. IACR.

[25] Michael Schliep, Ian Kariniemi, and Nicholas Hopper. 2017. Is Bob Sending Mixed

Signals?. In Proceedings of the 2017 onWorkshop on Privacy in the Electronic Society.
ACM, 31–40.

[26] Michael Schliep, Eugene Vasserman, and Nicholas Hopper. 2018. Consistent

Synchronous Group Off-The-Record Messaging with SYM-GOTR. Proceedings on
Privacy Enhancing Technologies 2018, 3 (2018), 181–202.

[27] Open Whisper Systems. [n.d.]. Open Whisper Systems. https://whispersystems.

org/.

[28] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian

Goldberg, and Matthew Smith. 2015. SoK: Secure Messaging. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 232–249.

Figure 4: IND$-CPA Game
function Initialize(l)

k ←R {0, 1}l

b ←R {0, 1}

function Test(m,data)
c0 ← Enck (m,data)

c1 ←R {0, 1}
|c0 |

return cb

function Finalize(d)
return (d = b)

Figure 5: INT-CTXT Game
function Initialize(l)

k ←R {0, 1}l

S ← {}

function Enc(m,d)
c ← Enck (m,d)
S ← S ∪ {c}
return c

function VF(c)
m ← Deck (c,d)
if m , ⊥ and c < S then

win ← true
return (m , ⊥)

function Finalize(d)
returnwin

[29] WhatsApp. 2017. https://www.whatsapp.com/security

A FORMAL DEFINITIONS AND PROOFS
We define all of our security conditions in terms of a game in

which a challenger runs a procedure Initialize to set up an initial

state, before running an adversary that may access several oracles

that can access and modify the game state; the game concludes

when the adversary calls the Finalize oracle, which determines

if the adversary has won the game. For each game, the complete

experiment is defined by the initialization procedure, the set of

oracles defined for the game, and the finalization function. For

all experiments that involve running Mobile CoWPI, we assume

that each client c maintains a list Mc of the tuples of the form

(sid, s, i,pm) indicating that c accepted pm ,⊥ as the i-th protocol

message in session sid , with sender s .

A.1 Security Assumptions
We assume our symmetric AEAD scheme ciphertexts are indis-

tinguishable from random bit strings (IND$-CPA) as defined by

the game in Figure 4 and provides integrity of ciphertexts as de-

fined in Figure 5. The advantage of an adversaryM winning each

of the games is defined as Adv I ND−CPA(M) = Pr [M wins] − 1

2
,

Adv I NT−CTXT (M) = Pr [Mwins] respectively.

https://www.android.com/
https://www.android.com/
https://aws.amazon.com/
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-06
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-06
https://doi.org/10.1007/s00145-008-9026-x
https://www.postgresql.org/
https://linode.com/
https://www.motorola.com/us/products/moto-g-gen-3
https://www.motorola.com/us/products/moto-g-gen-3
https://whispersystems.org/blog/facebook-messenger/
https://whispersystems.org/blog/allo/
https://whispersystems.org/docs/specifications/x3dh/
https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-02
https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-02
https://whispersystems.org/
https://whispersystems.org/
https://www.whatsapp.com/security

WPES’19, November 11, 2019, London, United Kingdom Michael Schliep and Nicholas Hopper

Figure 6: NAXOS Game
function Initialize(U)

Initialize PKI for all users inU .

function Send(A,B, comm)

Send comm to A on behalf of B
This query allows A to start a NAXOS AKE with B.
return A’s communication to B

function Long-Term Key Reveal(A)
return Long-term private key of A

function Ephemeral Key Reveal(sid)
return Returns the ephemeral private key of a possibly

incomplete session sid .

function Reveal(sid, Sid)
return Session key of completed NAXOS session sid with

Mobile CoWPI session id Sid

function Test(sid, Sid)
b ←R {0, 1}

if b = 0 then
C ←Reveal(sid, Sid)

else
C ←R {0, 1}l

return C

function Finalize(d)
return (d = b)

We assume the NAXOS protocol is a secure authenticated key

agreement protocol. Figure 6 describes the game used by the original

authors [14], modified to include an additional bit string ({0, 1}l)

into the Ephemeral Key Reveal and Test queries that is included

in the input of KDF2 of NAXOS. This modification is to allow the

Mobile CoWPI session id Sid to be incorporated into the KDF and

does not affect the security of NAXOS. The NAXOS session id is

sid = (role, ID, ID∗, comm1, . . . , commn)

where ID is the identify of the executing party and ID∗ is the

identities of the other party, role ∈ {I ,R} is the role of initiator or

responder, and commi is the i
th

communication sent by the parities.

This preserves the session matching of NAXOS.

An adversary wins if it queries Test on a clean session and guess

the correctly in Finalize. Let sid be the NAXOS session between

partiesA and B. Let sid∗ be the matching session of sid executed by

B, sid∗ may not exist. A session is not clean if any of the following

hold:

• A or B is an adversary-controlled party

• Reveal is queried on sid or sid∗

• sid∗ exists and both the long-term and ephemeral key of A
or B are revealed

• sid∗ does not exist and the long-term key of B was reveled

or both the long-term and ephemeral key of A was revealed

An adversaryM ’s advantage at winning the NAXOS game is defined

as AdvNAXOS (M) = Pr [M wins] − 1

2
.

Figure 7: Message Confidentiality Game G0

function Initialize(U)

b ←R {0, 1}

Initialize PKI for all users in and serversU .

function Send(R, S,m)

Sendm to R from S where R and S may be participants or

servers.

return Network output of R after processingm

function SetupGroup(Sid, P ,U)

Setup session Sid , as participant P for usersU .

return Network output of P

function SendGroupMessage(Sid, P ,m)

Send messagem from P to group Sid .
return Network output of P .

function UpdateParticpants(Sid, P ,U)

Send participant update message as P for participantsU in

session Sid .
return Network output of P .

function RevealEphemeralKeys(Sid,A,B)
return The ephemeral secret keys of A that A uses for

communication with B in session Sid . A or B may be users or

servers. If A or B is a server, Sid is ignored.

function RevealLongTermKeys(T)
return The Long-term keys of T where T may be a server

or participant.

function Test(Sid, P ,m)

if b = 0 then
P sends protocol broadcast message ofm in session Sid

else
P send a random bit string in Sid

return P ’s network traffic to send the message

function Finalize(d)
return (d = b)

A.2 Message Confidentiality
Message Confidentiality is the property that only conversation

participants can read a message. The adversary we consider con-

trols the network and is allowed to register malicious users and

reveal the long-term keys and ephemeral keys of users. When dis-

cussing message confidentiality we consider the confidentiality of

individual (target) messages in a session. The adversary is only

limited to avoid trivially breaking message confidentially. Message

confidentiality is captured by the game in Figure 7.

First the adversary Initializes with a set of honest user identi-

ties. The challenger sets up the public key infrastructure (PKI) and

generates long-term keys for the honest users. The adversary is

allowed to register additional users and long-term keys with the

PKI. Send is called by the adversary to send network messages

from entity S to entity R. The adversary is also allowed to instruct

users to Setup, SendGroupMessage, and UpdateParticipants,

to setup a session, send group messages, and update the set of

participants in a session. Additionally, the adversary is allowed to

End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability WPES’19, November 11, 2019, London, United Kingdom

reveal the long-term and ephemeral secret keys of any participant

or server with RevealLongTermKeys and RevealEphemalKeys.

The adversary may issue a single Test query where the challenger

flips a coin and sends either the encrypted message or a random

ciphertext. Finally, the adversary calls Finalizes providing its guess

of the bit. The adversary wins if it guesses correctly.

To prevent the adversary from trivially wining it is not allowed

to:

• Control a participant in the target session at the time of the

target message.

• Call RevealLongTermKeys and RevealEphemeralKeys of

the sender P and a receiving participant R , P in session Sid .
This does allow the adversary to compromise the long-term

and ephemeral keys between receivers.

The advantage of adversaryM is defined asAdvconf (M) = Pr [Mwins]−
1

2
.

Theorem A.1. Mobile CoWPI provides message confidentiality if
all hash and key derivation functions are modeled as random oracles.

For any message confidentiality adversaryM that runs in time at
most t and creates sessions with at mostw users. We show that there
exists a NAXOS adversaryM0, an IND$-CPA adversaryM1, and an
IND$-CPA adversaryM3 such that

Advconf (M) ≤w − 1 · AdvNAXOS (M0)

+w − 1 · Adv I ND−CPA(M1)

+Adv I ND−CPA(M3)

WhereM1,M0, andM3 run in time O(t).

Proof. We prove Mobile CoWPI provides message confidential-

ity in a sequence of games:

G0 The challenger behaves correctly.

G1.i The challenger replaces the NAXOS key exchange in the

ciphertext block between the sender and the ith receiver of

the test message.

G2.i The challenger replaces the first ciphertext block between

the sender and the ith receiver of the test message with a

random bit string.

G3 The challenger replaces the ciphertext block of the test mes-

sage with a random bit string.

The first games show the adversary can not learn the NAXOS keys

of the ciphertext block of the test message, the second games show

the adversary can not learn the key used to encrypt the test message,

and the final game shows the adversary cannot distinguish the test

message from random. Thus the protocol transcript is effectively

random.

Let G1.0 = G0. We now construct a challenger M0 that given

a distinguisher D0 that can distinguish between playing G1.i and
G1.i + 1 with probability S0,M0 can win the NAXOS game.

The challengerM0 plays G1.i in the following way:

• During Initialize the challenger initializes a NAXOS game

and setups the PKI forU .

• When RevealLongtermKeys(T) is called,M0 returns Long-

term Key Reveal(T) of the NAXOS game.

• The challenger plays the NAXOS game replacing all NAXOS

keys as detailed next.

• When RevealEphemeralKeys(Sid,A,B) is called, M0 re-

turns Ephemeral Key Reveal((A,B, epkab) of the NAXOS
game for the most recent NAXOS session between A and B

in Sid.

• When D0 finalizes the game and guesses G1.i ,M0 finalizes

the NAXOS game and 0. If D0 guesses G1.i + 1,M0 guesses

1.

We now describe how M0 computes the NAXOS key of the

ciphertext block between the sender and the receiver.Let A be the

sender of the block and B the receiver. Compute the key as follows:

(1) epkab ← Send(A,B)
(2) epkba ← Send(A,B, epkab), epkba may be a pre-key of B.

(3) When computing a NAXOS key of a ciphertext block not

part of the test message, kab ← Reveal(A,B, epkab , epkba)
is used as the key.

(4) When computing the NAXOS key of the ith ciphertext block

of the test message, kab ← Test(A,B, epkab , epkba) and is

used byA to encrypted the ciphertext block and B to decrypt

it.

M0 wins the NAXOS game if D0 guesses correctly. Thus the

advantage ofM0 is Adv
NAXOS (M0) = S0. The advantage of distin-

guishing between G1.0 and G1.w − 1 is at most AdvNAXOS (M0) ·

w − 1.
Let G2.0 = G1.w − 1. We now construct a challenger M1 that

given a distinguisher D1 that can distinguish between playing G2.i
and G2.i + 1 with probability S1,M1 can win the IND$-CPA game.

The challengerM1 plays G2.i in the following way:

• During Initialize the challenger initializes an IND$-CPA

game.

• The challenger replaces the ciphertext block of the test mes-

sage between the sender and the ith receiver with an IND$-

CPA Test query detailed next.

• When D1 finalizes the game and guesses G2.i ,M1 finalizes

the IND$-CPA game and 0. IfD1 guessesG2.i+1,M1 guesses

1.

We now detail how the challengerM1 generates the ciphertext

block between the sender and the ith participant. Let A be the

sender of the block and B the receiver. Letm be the plaintext to be

encrypted by the block, d the associated data, and idba the id of

B’s ephemeral public key used to compute the key. The blocks is

generated as follows:

(1) cab ← idba , Test(m,d).
(2) When B receives cab , it usesm and d as the plaintext and

associated data respectively.

M1 wins the IND$-CPA game ifD1 guesses correctly. Thus the ad-

vantage ofM1 isAdv
I ND$−CPA(M1) = S1. The advantage of distin-

guishing betweenG2.0 andG2.w−1 is at mostAdv I ND$−CPA(M1)·

w − 1.
We now construct a challenger M2 that given a distinguisher

D2 that can distinguish between playing G2.w − 1 and G3 with

probability S2,M2 can win the IND$-CPA game.

The challengerM2 plays G3 in the following way:

• During Initialize the challenger initializes an IND$-CPA

game.

WPES’19, November 11, 2019, London, United Kingdom Michael Schliep and Nicholas Hopper

Figure 8: Message Authentication Game
function Initialize(U ,C)

Initialize PKI for all users in and serversU .

Initialize Out[P] ← {} for P ∈ U

function Send(R, S,m)

Sendm to R from S where R and S may be participants or

servers.

return Network output of R after processingm

function SetupGroup(Sid, P ,U)

Setup session Sid as participant P for usersU .

return Network output of P

function SendGroupMessage(Sid, P ,m)

Send messagem from P to group Sid .
Record the broadcast protocol message pm output of P as

Out[P] ← Out[P] ∪ {pm}.
return Network output of P .

function UpdateParticpants(Sid, P ,U)

Send participant update message as P for participantsU in

session Sid .
return Network output of P .

function RevealEphemeralKeys(Sid,A,B)
return The ephemeral secret keys of A that A uses for

communication with B in session Sid . A or B may be users or

servers. If A or B is a server, Sid is ignored.

function RevealLongTermKeys(T)
return The Long-term keys of T where T may be a server

or participant.

function Finalize

returnTrue iff there exist clients R,P , session id Sid , index
i and protocol message pm such that (Sid, P , i,pm) ∈ MR , pm <
Out[P], and R and P are clean.

• The challenger replaces the ciphertext of the test broadcast

message an IND$-CPA Test query detailed next.

• When D2 finalizes the game and guesses G2.w ,M2 finalizes

the IND$-CPA game and 0. If D2 guesses G3,M2 guesses 1.

M3 constructs the protocol message as follows:

(1) c ← Test(m, ·).
(2) The protocolmessage is thus Sid, “MSG”, P , c, cp∗, . . . ,authp∗,
(3) When the participants receive the sent protocol message

with c they usem as the plaintext.

M2 wins the IND$-CPA game if D2 guesses correctly. Thus the

advantage ofM2 is Adv
I ND$−CPA(M2) = S2. We have now shown

that the protocol output is indistinguishable from random. □

A.3 Message Integrity and Authentication
Message authentication and integrity is the property that receivers

can verify the author of a messages and are confident that the

messages has not been modified in transit. Message authentication

implies message integrity. Mobile CoWPI provides message authen-

tication under an adversary that may compromise the servers or

participants as well as control the network. Message authentica-

tion is provided as long as the adversary cannot trivially break the

authentication. That is the adversary is not allowed to control the

sender or have revealed the long-term and ephemeral keys for the

target message.

Figure 8 captures the message authentication and integrity prop-

erty in a game similar to message confidentiality. The adversary

first Initializes the PKI and can register adversary controlled users

and long-term keys. The adversary controls the network and uses

the Send function to send messages between users and servers. The

adversary may also instruct honest users to SetupGroup, Send-

GroupMessage, and UpdateParticipants as with message confi-

dentiality. The adversary is allowed to RevealLongTermKeys and

RevealEphemeralKeys of users. Finally, the adversary Finalizes

the game and wins if a participant R accepted protocol broadcast

message pm from P in session Sid where the P did not send c and R
and P have not had their long-term and ephemeral keys of cipher-

text block of pm revealed.

That is R must have received a message:

Sid, “MSG”, P , c, cPR

Where cPR is the ciphertext block used to authenticate pm with

AEAD from P .
To avoid trivially winning the game the adversary is not allowed

to:

• Control the sender of the winning protocol message.

• Issue RevealLongTermKeys and RevealEphemeralKeys

of the sender or receiver of the winning protocol message.

The advantage of an adversary M is defined as Advauth (M) =
Pr [Mwins].

Theorem A.2. Mobile CoWPI provides message authentication
and integrity if all hash and key derivation functions are modeled as
random oracles.

For any message authentication adversary M that runs in time
at most t ,w is the maximum number of participants in a session, q
is the maximum number of messages received in a session, y is the
maximum number of sessions. We show that there exists a NAXOS
adversaryM0 and an INT-CTXT adversaryM1 such that

Advauth (M) ≤
1

(w − 1)qy
· AdvNAXOS (M0)

+Adv I NT−CTXT (M1) ·
1

(w − 1)qy

WhereM0 andM1 run in time O(t).

Proof. We prove Mobile CoWPI provides message authentica-

tion in a sequence of games:

G0 The challenger behaves correctly.

G1 The challenger replaces the NAXOS key exchange used to

decrypt a random ciphertext block between the sender and a

random receiver of a random forged message with a random

key.

G2 The challenger replaces the ciphertext block of a forged

message between the sender and a random receiver with an

instance of the INT-CTXT game.

End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability WPES’19, November 11, 2019, London, United Kingdom

Game G1 shows the adversary can not learn the NAXOS keys be-

tween users and is used as a transition to a game thatM1 can play.

We construct a challengerM0 that given a distinguisher D0 that

can distinguish between playingG0 andG1 with probability S0,M0

can win the NAXOS game.

The challengerM0 deviates from G0 in the following way:

• During Initialize the challenger initializes a NAXOS game

and setups the PKI forU .

• When RevealLongtermKeys(T) is called,M0 returns Long-

term Key Reveal(T) of the NAXOS game.

• The challenger plays the NAXOS game replacing all NAXOS

keys as detailed next.

• When RevealEphemeralKeys(Sid,A,B) is called, M0 re-

turns Ephemeral Key Reveal((A,B, epkab) of the NAXOS
game for the most recent NAXOS session between A and B

in Sid.

• When D0 finalizes the game and guessesG0,M0 finalizes the

NAXOS game and 0. If D0 guesses G1,M0 guesses 1.

We now describe how M0 computes the NAXOS key of the

ciphertext block between the sender and the receiver.Let A be the

sender of the block and B the receiver. Compute the key as follows:

(1) epkab ← Send(A,B)
(2) epkba ← Send(A,B, epkab), epkba may be a pre-key of B.

(3) When computing a NAXOS key of a ciphertext block not

part of the test message, kab ← Reveal(A,B, epkab , epkba)
is used as the key.

(4) When computing the NAXOS key of the ciphertext block

of the of a received protocol message that was not sent,

kab ← Test(A,B, epkab , epkba) and is used by B to decrypt

the ciphertext block.

M0 wins the NAXOS game if it guesses the correct forged mes-

sage, correct receiver, and D0 guesses correctly. Thus the advantage

of M0 is Adv
NAXOS (M0) = S0. The advantage of distinguishing

between G1 and G1 is at most AdvNAXOS (M0) ·
1

(w−1)qy .

We now construct a challengerM1 that given a an adversary M
that can win the authentication game S1,M1 can win the INT-CTXT

game.

The challengerM1 behaves as follows:

• During Initialize the challenger initializes an INT-CTXT

game.

• The challenger guesses a random sent message in a random

session and guesses a random receiver of the message. Then

challenger replaces the instance of the ciphertext block with

a query to Enc(m, d) of INT-CTXT game.

• When the challenger receives an unsent protocol message

in the chosen session from the chosen sender, it submits the

ciphertext block between the sender and chosen recipient to

VF of the INT-CTXT game.

M1 wins the INT-CTXT game if it guesses session, protocol

message, and receiver of a forged message correctly and M wins.

Thus the advantage ofM1 is Adv
I NT−CTXT (M1) = S1 ·

1

(w−1)qy .

□

Figure 9: Conversation Integrity Game G0

function Initialize(U)

Initialize infrastructure and PKI for all users and servers in

U .

function Send(R, S,m)

Sendm to R from S where R and S may be participants or

servers.

return Network output of R after processingm

function SetupGroup(Sid, P ,U)

Setup session as participant P for usersU .

return Network output of P

function SendGroupMessage(Sid, P ,m)

Send messagem from P to group Sid .
return Network output of P .

function UpdateParticpants(Sid, P ,U)

Send participant update message as P for participantsU in

session Sid .
return Network output of P .

function RevealEphemeralKeys(Sid,A,B)
return The ephemeral secret keys of A that A uses for

communication with B in session Sid . A or B may be users or

servers. If A or B is a server, Sid is ignored.

function RevealLongTermKeys(T)
return The Long-term keys of T where T may be a server

or participant.

function Finalize()

return True iff there exist honest users A,B, session Sid ,
and index i such that (Sid, sa , i,pma) ∈ MA, (Sid, sb , i,pmb) ∈

MB , and pma , pmb .

A.4 Conversation Integrity
Conversation integrity is the property that all users see all messages

in the same order. Since participant update messages are treated the

same as conversation messages, participant consistency is implied.

The adversary is allowed to compromise all but one of the OES

providers and any of the participants. Conversation integrity is

provided between honest participants.

Figure 9 details the conversation integrity game. First the adver-

sary Initializes the PKI and registers corrupt users and providers.

The adversary may then issue commands instructing participants

and providers to execute protocol operations the same way as the

previous two games. Finally, the adversary wins the game if he con-

vinces two participants A and B of session Sid to accept different

messages as the ith message.

To avoid trivially winning the game the adversary is not allowed

to:

• Issue RevealLongTermKeys and RevealEphemeralKeys

of all the OES providers and one of A or B.

The advantage an adversaryM has at winning the game is de-

fined as Adv I NT−CONV (M) = Pr [M wins].

Recall from Section 4 the probability of an adversary finding a

protocol ciphertext that successfully decrypts under two separate

WPES’19, November 11, 2019, London, United Kingdom Michael Schliep and Nicholas Hopper

keys is at most qϵint . If an adversary cannot constructs such a

message they must be able to forge a message from an honest server

to an honest participant indicating that an out-of-order protocol

message should be processed.

Theorem A.3. Mobile CoWPI provides conversation integrity if
all hash and key derivation functions are modeled as random oracles.

For any conversation integrity adversary M that runs in time at
most t , performs at most q KDF2 oracle queries and sends at most
y messages between honest OES providers and honest participants.
We show that there exists a NAXOS adversaryM0 and an INT-CTXT
adversaryM1 such that

Adv I NT−CONV (M) ≤
1

y
· AdvNAXOS (M0)

+Adv I NT−CTXT (M1) ·
1

y

+qϵint

WhereM0 andM1 run in time O(t).

Proof. We prove Mobile CoWPI provides conversation integrity

in a sequence of games:

G0 The challenger behaves correctly.

G1 The challenger replaces the NAXOS key exchange used to

create a randomOES authentication block between an honest

server and participant with a random key.

Games G1 show the adversary can not learn the NAXOS keys used

in the OES authentication block and is used as a transition to a

game thatM1 can play. If ifM can win the conversation integrity

game, thenM1 can win the INT-CTXT game.

We construct a challengerM0 that given a distinguisher D0 that

can distinguish between playingG0 andG1 with probability S0,M0

can win the NAXOS game.

The challengerM0 deviates from G0 in the following way:

• During Initialize the challenger initializes a NAXOS game

and sets up the PKI forU .

• When RevealLongtermKeys(T) is called,M0 returns Long-

term Key Reveal(T) of the NAXOS game.

• The challenger plays the NAXOS game replacing all NAXOS

keys as detailed next.

• When RevealEphemeralKeys(Sid,A,B) is called, M0 re-

turns Ephemeral Key Reveal((A,B, epkab) of the NAXOS
game for the most recent NAXOS session between A and B

in Sid.

• When D0 finalizes the game and guessesG0,M0 finalizes the

NAXOS game and 0. If D0 guesses G1,M0 guesses 1.

We now describe howM0 computes the NAXOS key in the OES

authentication block honest servers and participants. Let A be the

participant and B the server. Compute the key as follows:

(1) epkab ← Send(A,B)
(2) Send epkab to B.
(3) Upon B receiving epkab , epkba ← Send(A,B, epkab), epkba .
(4) When computing a NAXOS key of a OES authentication

block not part of the testmessage,kab ← Reveal(A,B, epkab , epkba)
is used as the key.

(5) When computing the NAXOS key of the OES authentication

block of the of a received protocol message that was not sent,

Figure 10: Deniability Game G0

function Initialize(τ ,S)
Initialize an PKI and executes the protocol on plaintext tran-

script τ producing protocol transcriptT0, and state information

output0.
Run the protocol simulator S with input τ and inputs to

produce protocol transcript T1 and state information output1
Flip a coin b ←R {0, 1}

return (Tb ,outputb , inputb)

function Finalize(d)
return (d == b).

kab ← Test(A,B, epkab , epkba) and is used by B to decrypt

the OES authentication block.

M0 wins the NAXOS game if it guesses the OES authentication

block correctly and D0 guesses correctly. Thus the advantage ofM0

is AdvNAXOS (M0) = S0 ·
1

y .

We now construct a challenger M1 that given an adversary M
that can win the conversation integrity game with probability S1,
M1 can win the INT-CTXT game.

The challengerM1 behaves as follows:

• During Initialize the challenger initializes an INT-CTXT

game.

• The challenger replaces a random OES authentication block

between an honest OES provider and participant with an

INT-CTXT game detailed next.

We now detail how the challenger M1 generates the random

OES authentication block between an honest OES provider and

participant. Let A be the sender of the message and B the receiver.

Letm be the plaintext to be encrypted by the block, d the associated

data, and idba the id of B’s last received ephemeral public key used

to compute the key. The blocks is generated as follows:

(1) cab ← idba , Enc(m,d).
(2) When B receives the next authentication block auth′ab ,

authab , the challenger submits auth′ab to VF of the INT-

CTXT game.

M1 wins the INT-CTXT game if it guesses the OES authentication

block correctly andM wins the game. Thus the advantage ofM1 is

Adv I NT−CTXT (M1) = S1 ·
1

y . □

A.5 Deniability
We capture the deniability property with the general-purpose game

detailed in Figure 10. The distinguisher Initializes the game with a

plaintext transcript τ . Then the challenger executes Mobile CoWPI

on τ producing a real protocol transcript T0 and three outputs

inputd , inputs , output0. The challenger then runs a simulator with

inputs τ and inputs producing a forged protocol transcript T1 and
state output1. The challenger returns a random transcriptTb , output
outputb , and inputd to the distinguisher. The distinguisher wins the

game if it guesses b correctly. The advantage of the distinguisher

M is defined as AdvDENY−∗(M) = Pr [M wins] − 1

2
. The DENY-*

game depends on how inputd , inputs , and output∗ are defined.

End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability WPES’19, November 11, 2019, London, United Kingdom

When proving message deniability and participant deniability it

is sufficient to define the inputs and output as follows:

inputd = {(lsk0, epk0) . . . , (lskn , epkn)}

inputs = {(lpk0, epk0), . . . , (lpkn , epkn)}, (lska , eska)

outputb = {eska0, eskaw }

where n is the number of participants, a is the user running the

simulator, and w is the number of ciphertext blocks where a is a

participant. In this case the distinguished is provided with long-

term secret keys and single use public pre-keys of all users in the

transcript. The simulator is only given the public values and the

secret values of a single user and must output all of a’ ephemeral

secret keys.

Theorem A.4. Mobile CoWPI provides message and participant
deniability if all hash and key derivation functions are modeled as
random oracles.

For any participant deniability adversaryM that runs in time at
most t , performs at most q H oracle queries and supplies a transcript
that produces at most y ciphertext blocks between participants that
are not the simulating participant. We show that there exists a NAXOS
adversaryM0 such that

AdvDENY−PART (M) ≤y · AdvNAXOS (M0)

(1)

WhereM0 runs in time O(t) and q < 2
l .

Proof. Recall the Mobile CoWPI simulator discussed in Sec-

tion 4. We prove the simulated transcript is indistinguishable from

the real transcript in a sequence of games. In each game we replace

an additional NAXOS key agreement, between two parties that are

not the simulating party, from the real transcript with a random

NAXOS key. In the final game the real transcript is generated in

the same way as the simulated one.

Below is the sequence of games:

G0 The challenger behaves correctly.

G1.i The challenger replaces the NAXOS key exchange used to

encrypt the ith ciphertext block between two user that are

not the simulating user.

Game G1.i shows the adversary cannot distinguish between a sim-

ulated and real NAXOS key agreement and is used as a transition

to a game thatM1 can play. IfM can win the participant deniability

game, thenM1 can win the NAXOS game.

Let G1.0 = G0, we construct a challenger M0 that given a dis-

tinguisher D0 that can distinguish between playing G1.i and G1.i
with probability S0,M0 can win the NAXOS game.

The challengerM0 deviates from G1.i − 1 in the following way:

• During Initialize the challenger initializes a NAXOS game

and sets up the PKI for U and issues RevealLontermKeys

for allU .

• The challenger replaces the first i − 1 NAXOS keys between
non-simulating participants with random keys.

• The challenger plays the NAXOS game replacing the ith
NAXOS key between non-simulating participants with a

NAXOS Test query detailed next.

• WhenD0 finalizes the game and guessesG1.i−1,M0 finalizes

the NAXOS game and 0. If D0 guesses G1.i ,M0 guesses 1.

We now describe howM0 computes the ith NAXOS key. Let B
and C be the participants. Compute the key as follows:

(1) epkbc ← Send(B,C)
(2) Send epkbc to C .
(3) Upon C receiving epkbc , epkcb ← Send(C,C, epkbc), epkcb .
(4) When computing a NAXOS key of all ciphertext blocks after

the ith kbc ← Reveal(B,C, epkbc , epkcb) is used as the key.

(5) When computing the NAXOS key of the ith ciphertext block

, kbc ← Test(B,C, epkbc , epkcb).

M0 wins the NAXOS game if D0 guesses correctly. Thus the

advantage ofM0 is Adv
NAXOS (M0) = S0. There are y ciphertexts

blocks the between non-simulating participants. □

A.6 Message Unlinkability
We now detail message unlinkability provided by Mobile CoWPI.

Compared to participant deniability we consider a stronger def-

inition where the distinguisher is given a real protocol message

and the ephemeral public keys of the sender for the message. The

simulator is given the ephemeral secret key used to encrypt the

message.

inputd =lsks , (lsk0, epk1) . . . , (lskn , epkn), epksi , i,pmi

inputs =lpks , (lpk0, epk1) . . . , (lpkn , epkn),

lska , eskai , epksi , i,pmi

outputb = {eska0, eskaw }

Where epkn is the ephemeral secret key of receiver n shared with

the sender, esksi is the ephemeral secret key of the sender shared

with the simulating party for the ith message, eskai is the secret
key of the simulation party for the ith message, and i is the index
of the protocol message pmi in the transcript. The simulator must

output all of a’s ephemeral keys.

This definition provides the distinguisher with knowledge of

a non-deniable protocol message. The goals is to simulate a tran-

script that contains pmi and is identically distributed to the real.

The message unlinkability simulator behaves as a participant re-

pudiation simulator discussed earlier. When the simulation party

sends its’ last ciphertext block prior to pmi the simulator uses

epkai ← дH (eskai ,lska) as the next ephemeral public to the sender.

Similarly, when the sender of pmi sends it last ciphertext block to

the simulating party it uses epksi as it next ephemeral public key.

The simulator then sends pmi as the i
th

message in the transcript.

The simulator then continues to behave the same as the participant

deniability simulator from earlier. The simulated transcript is iden-

tically distributed to the real transcript and contains the undeniable

message pmi in position i . The proof is identical to the proof of

participant deniability.

	Abstract
	1 Introduction
	2 Background
	2.1 Mobile Messaging Model
	2.2 Multi-providers for conversation integrity
	2.3 Service Availability
	2.4 Threat Model
	2.5 Security Properties

	3 Design
	3.1 Overview
	3.2 Message Order
	3.3 Primitives
	3.4 Registration
	3.5 Two Party Ciphertext Blocks
	3.6 OES Authentication Block
	3.7 Setup Message
	3.8 Receipt Message
	3.9 Conversation Message
	3.10 Participant Update Message
	3.11 Two Party Channels
	3.12 Long-term Key Verification

	4 Security
	4.1 Message Confidentiality
	4.2 Message Authentication and Integrity
	4.3 Forward Secrecy
	4.4 Post-Compromise Secrecy
	4.5 Conversation Integrity
	4.6 Participant Consistency
	4.7 Deniability

	5 Evaluation
	5.1 Scalability

	6 Discussion
	6.1 Limitations of Group Key Agreements
	6.2 Multiple Providers
	6.3 Denial of Service

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References
	A Formal definitions and proofs
	A.1 Security Assumptions
	A.2 Message Confidentiality
	A.3 Message Integrity and Authentication
	A.4 Conversation Integrity
	A.5 Deniability
	A.6 Message Unlinkability

