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Abstract—End-to-end flow correlation attacks are among the
oldest known attacks on low-latency anonymity networks, and
are treated as a core primitive for traffic analysis of Tor.
However, despite recent work showing that individual flows
can be correlated with high accuracy, the impact of even
these state-of-the-art attacks is questionable due to a central
drawback: their pairwise nature, requiring comparison between
N2 pairs of flows to deanonymize N users. This results in
a combinatorial explosion in computational requirements and
an asymptotically declining base rate, leading to either high
numbers of false positives or vanishingly small rates of successful
correlation. In this paper, we introduce a novel flow correlation
attack, DeepCoFFEA, that combines two ideas to overcome these
drawbacks. First, DeepCoFFEA uses deep learning to train a pair
of feature embedding networks that respectively map Tor and
exit flows into a single low-dimensional space where correlated
flows are similar; pairs of embedded flows can be compared
at lower cost than pairs of full traces. Second, DeepCoFFEA
uses amplification, dividing flows into short windows and using
voting across these windows to significantly reduce false positives;
the same embedding networks can be used with an increasing
number of windows to independently lower the false positive
rate. We conduct a comprehensive experimental analysis showing
that DeepCoFFEA significantly outperforms state-of-the-art flow
correlation attacks on Tor, e.g. 93% true positive rate versus
at most 13% when tuned for high precision, with two orders
of magnitude speedup over prior work. We also consider the
effects of several potential countermeasures on DeepCoFFEA,
finding that existing lightweight defenses are not sufficient to
secure anonymity networks from this threat.

I. INTRODUCTION

Tor is perhaps the most well-known anonymous network,
used by millions of people each day [1] to hide their sensitive
internet activities from servers, ISPs, and potentially, nation-
state adversaries. Tor provides low-latency anonymity by rout-
ing traffic through a series of relays using layered encryption
to prevent any single entity from learning the source and
destination of a connection through its content alone.

Nevertheless, it is well known that in low-latency anonymity
networks, the timing and volume of traffic sent between the
network and end systems (clients and servers) can be used
for traffic analysis. For example, recent work applying traffic
analysis to Tor has focused on website fingerprinting [2]–[9],
identifying which website a client has downloaded based on
the traffic between the client and the entry relay.

Perhaps the most fundamental traffic analysis attack on a
low-latency anonymity system is the end-to-end flow corre-
lation attack: an adversary observes traffic flows entering the

network and leaving the network and attempts to correlate
these flows, thereby pairing each user with a likely destination.
Such attacks were known and discussed in the context of
system designs that predate Tor, such as the Onion Routing
network [10] and the Freedom network [11].

The Tor design [12] explicitly acknowledges that such
attacks can be effective and concentrates on a more limited
threat model. In turn, many published analyses of the security
of Tor treat flow correlation as a core primitive and simply
account for the fraction of flows that can be observed by an
adversary [13]–[24]. These works typically describe methods
to increase or limit the fraction of flows that an adversary can
observe through some combination of internal manipulation of
Tor protocols, manipulation of the Internet routing infrastruc-
ture, or network positioning and resources, and assume that
flow correlation will work on these observations.

Despite these assumptions, the extent to which end-to-end
flow correlation attacks are a realistic threat against the Tor
network remains unclear. A problem with directly applying
these attacks to Tor traffic is that traffic between the client
and entry relay is not identical to traffic between the exit
relay and the destination server, due to a variety of factors:
multiplexing of encrypted traffic; the use of fixed-size cells
to carry data between Tor nodes; and delays caused by
buffering, congestion, interaction between circuits, and Tor’s
flow control mechanisms. For example, when Sun et al. [17]
applied Spearman’s rank correlation to a small set of entry
flows (called Tor flows since they are wrapped in the Tor cell
protocol), they found that nearly 100MB of traffic per flow
was needed to get adequate performance. Nasr, Bahramali,
and Houmansadr [25] addressed this limitation by using deep
neural networks (DNNs) to learn a more effective Tor-specific
flow correlation metric, DeepCorr, that classifies pairs of flows
as correlated or uncorrelated with very high accuracy using
much less traffic.

Another fundamental limitation, however, on the end-to-end
correlation of Tor flows is the pairwise nature of the attack.
To decide if a flow entering the Tor network and one leaving
it are on the same Tor connection, these attacks compute the
correlation between the two flow vectors (consisting of packet
times and sizes); to deanonymize a set of flows, the attacks
must compute the correlation between all possible incoming
and outgoing flows. Thus, to deanonymize N Tor connections,
they will perform N2 comparisons.



Fig. 1. Threat model of DeepCoFFEA: We have two types of attackers – one
controls ISPs (blue) and the other runs their own relays (red).

Naturally, this is computationally expensive when the num-
ber of flows at a given moment can be in the tens of thousands.
Perhaps more critically, the pairwise comparison results in
poor Bayesian Detection Rates (BDRs), since the base rate
– the probability that both ends of a Tor connection are
correlated – is very low (i.e., 1

N ). Any correlation metric with
a fixed False Positive Rate (FPR) of ρ will incorrectly classify
ρN exit flows as being correlated with each entry flow, so
that the probability that a given pair is actually correlated
given that the metric classifies them that way is 1

1+ρN , which
approaches 0 as N increases.

This paper presents a novel approach that (i) significantly
reduces the cost for each of these comparisons by using a
modified triplet network approach [26] that first embeds both
Tor flows and exit flows into a low-dimensional space, and
then uses much more efficient comparisons between these
embeddings; and (ii) uses amplification [27] to aggregate
multiple comparisons for each pair of flows, allowing the FPR
to be significantly reduced without the need to learn a new
embedding or metric.

To better see the advantage of the triplet network approach,
note that DeepCorr learns a pairwise combination of Tor and
exit flow features and thus must evaluate a costly DNN on
every pair of flows (cost of N2 DNN runs). In contrast, we
develop feature embedding networks to learn two types of
embeddings, namely Tor and exit flow embeddings, extending
ideas from prior work in website fingerprinting attacks [28].
This architecture learns a pair of functions to generate entry
flow and exit flow embeddings separately, and both functions
are applied to each flow, which costs just two DNN evaluations
per flow (cost of 2N DNN runs). The pairwise comparisons
can then be done much less expensively using simple distance
functions in the embedding space.

The key advantage of amplification, an idea borrowed from
randomized algorithms [27], comes from the ability to conduct
multiple, partially independent tests of correlation on each pair
of flows. To do this, we divide flows into a sequence of k short
time segments, or windows. We then extract k embeddings per
flow (modestly raising our computational cost by a factor of k),
and conduct step-by-step pairwise comparisons of Tor and exit
flows. Correctly matched flows should be correlated in nearly
all k windows, while mismatched flows are likely to only be
correlated for at most some of the windows. This windowing
approach thus amplifies the difference between true positives

(TPs) and potential false positives (FPs).
We call the resulting attack DeepCoFFEA, for Deep Corre-

lated Flow Feature Extraction and Amplification.1 To sketch
our attack at a high level, the network-level adversary monitors
Tor flows ti, between clients and entry guards, and exit flows
xj , between exit relays and destination servers, by running
its own relays or controlling autonomous systems (ASes) as
shown in Figure 1. After extracting packet timing and size
information, the adversary jointly trains two DNN models (G
and H) in which Tor flows and exit flows are used as inputs,
respectively; G and H should have the property that if Tor
flow t and exit flow x are correlated, then d(G(t), H(x)) ≥ τ
for some correlation metric d and threshold τ , but if they are
not correlated, then d(G(t), H(x)) < τ . Then, the adversary
applies G and H to k consecutive flow windows to extract
feature embedding vectors and computes the pairwise correla-
tion matrix. Finally, if two flows are seen as correlated by d in
at least k− ` windows (for a small threshold `), the adversary
determines that the flows are correlated, and otherwise they
are not; this exponentially amplifies the difference in TPs and
FPs.

Even though both DeepCorr and DeepCoFFEA both per-
form pairwise correlation, DeepCoFFEA is much more effi-
cient, since G and H generate a total of 2kN embedding
vectors, while DeepCorr deals with N2 pairs. This is because
DeepCoFFEA compares the embedding vectors for each pair
of flows using inexpensive distance computations, while Deep-
Corr performs expensive DNN evaluations based on pairwise
information about the Tor and exit flows together.

This improved strategy enables DeepCoFFEA to simul-
taneously decrease the required computing resources while
increasing the BDR compared to DeepCorr. For instance,
when performing a correlation analysis among 10,000 flows,
DeepCoFFEA detects an order of magnitude more true corre-
lated pairs (85% vs 8% TPR) for a given FPR (10−4), while
decreasing the compute time by two orders of magnitude. We
also show that the effectiveness of DeepCoFFEA can be trans-
ferable across destinations, circuits, and time; in particular,
DeepCoFFEA was able to effectively correlate flows on an
evaluation dataset that was collected 14 months apart from
its training dataset. We also show that, due to amplification,
DeepCoFFEA can learn enough useful features to correlate
flows that have been protected by unknown padding defenses.

Combined with the DeepCorr results and recent advances in
website fingerprinting [5], these results show an urgent need to
develop and deploy traffic analysis countermeasures to protect
the users of Tor.

II. BACKGROUND

A. Flow Correlation Attacks

We first review past end-to-end flow correlation studies in
Appendix A. Then, we discuss more recent flow correlation
techniques, RAPTOR and DeepCorr, which we call state-of-
the-art attacks in this paper and compare to DeepCoFFEA.

1We pronounce it “Deep Coffee.”



State-of-the-Art Attacks. In more recent work focusing on
passive correlation attacks on Tor, Sun et al. [17] presented the
RAPTOR attack, which exploited asymmetric traffic analysis
to monitor both ends of a higher fraction of Tor connections.
They measured the correlation between 50 pairs of flows, each
consisting of 300 seconds of traffic, using Spearman’s rank
correlation algorithm. They found that such previously-studied
statistical correlation metrics suffered from a scalability issue,
because a long sample of flow data was necessary to yield
acceptable results.

Further investigating this issue, Nasr, Bahramali and
Houmansadr [25] later described a new flow correlation metric,
DeepCorr, which was trained specifically for Tor flows using
deep learning. To evaluate DeepCorr, they also collected the
largest and most comprehensive correlated flow dataset appear-
ing in the literature, using live Tor network traffic with varying
circuits and in different time periods. Although DeepCorr
achieved much higher TPR and lower FPR compared to
RAPTOR using only 100 packets of flow data, their models
yielded a low BDR. For example, based on our experiments
using 2,093 testing flow pairs, DeepCorr achieved 81.7% TPR
and 0.16% FPR; however, the BDR was 19.8%.

The DeepCorr approach also has significant limitations
that might lead skeptics to discount the results of the paper.
First, the computational complexity of conducting a correlation
attack on a popular network like Tor using DeepCorr is high,
since the DeepCorr network operates on pairs of flows to
estimate their correlation, so it must be evaluated on N ×N
pairs of flows. Additionally, because the metric learns which
features are best to predict correlated flows under the current
network conditions, it must be re-trained every 3-4 weeks.

B. Embeddings and Triplet Networks

Schroff et al. [26] proposed a face recognition system, called
FaceNet, based on CNNs. Rather than directly comparing
high-dimensional images of faces, FaceNet maps an image
to a lower-dimensional vector (which we call a feature em-
bedding) so that two images of the same person have very
similar embeddings, while images of different people have
embeddings with lower similarity. More specifically, FaceNet
attempts to train a CNN with a “triplet” loss function that
should minimize the Euclidean distance between embeddings
of images of the same person and maximize the distance
between the embedding of images of different people. Thus,
we call this DNN training model a triplet network.

FaceNet is trained by having three copies of the embedding
network – called the Anchor (A), Positive (P), and Negative
(N) CNNs – with jointly trained and shared weights, namely a
unified embedding. Each input to this network consists of three
images: A, P, and N triplets. A and P are always selected from
the same person class (i.e., positive pair) while A and N are
chosen from different people classes (i.e., negative pair). To
select the optimal triplets for training, researchers used several
triplet mining methods: random, hard-negative, and semi-hard-
negative. Hard negative samples mean N triplets that are more
likely to be close to A triplets.

The objective function in their work aims to ensure a
minimum margin or gap α between the L2 distance between A
and P embeddings and the L2 distance between A and N em-
beddings. That is, ‖f(A)− f(P )‖22+α < ‖f(A)− f(N)‖22 in
which f is the embedding and α is the margin being enforced
between positive (i.e., (A,P)) and negative (i.e., (A,N)) pairs.

Recently, Sirinam et al. [28] studied the use of triplet
networks for website fingerprinting, which they called “Triplet
Fingerprinting” (TF). They used cosine similarity scores be-
tween embeddings of website traces to compute the triplet
loss and adapted the DF [5] architecture to serve as the sub-
networks of the triplet network. In the “attack phase” of TF,
rather than directly computing the cosine similarity scores of
embedding pairs, they trained and tested a k-NN classifier
using website trace embeddings with the concept of N-shot
learning, which is a technique to use very few training samples
to train a classifier. They demonstrated that using embedding
networks trained on one set of website traces, they were able to
learn a classifier for an independent set of traces with very few
samples per class, and achieved comparable or higher accuracy
than DF using a large training set.

The embedding portion of DeepCoFFEA is inspired by
these two previous works. The main difference between ours
and theirs is that DeepCoFFEA has to learn Tor and exit
flow embeddings while TF and FaceNet learned one unified
embedding (website trace embedding and and face image
embedding, respectively). This is because the flows between a
client and the Tor entry guard have been heavily modified
from the flow between the server and the Tor exit relay,
thus our training phase consists of two separate networks: an
Anchor network that always operates on packet flows between
a client and guard, and Positive and Negative networks (the
P/N network) that share weights and always operate on packet
flows between an exit relay and server. For distinction, we
call a modified triplet network Feature Embedding Networks
(FENs). In addition, further modifications were needed for
flow correlation rather than website fingerprinting or face
recognition. We discuss the Convolutional Neural Networks
(CNNs) which we adopted for the architecture of feature
embedding networks in Appendix B.

Similar to TF, we use the cosine similarity in the triplet
loss, but rather than “N-shot” learning we directly compute
the cosine similarity of all flow pair embeddings to classify
whether a pair of flows is correlated or not. Further details
about our training strategy and the network architecture of
DeepCoFFEA appear in Section IV and in particular, we
discuss how we extended FaceNet and TF training to Deep-
CoFFEA in Section IV-A

III. MOTIVATION

In this section, we discuss why and how DeepCoFFEA
improves the state-of-the-art correlation metrics.
Problems in State-of-the-Art Attacks. In previous work on
flow correlation attacks [17], [25], the adversary targets a
correlation metric d(t, x) and computes d(ti, xj) for every pair
of traces observed in a given time window; if d(ti, xj) ≥ τ



for some threshold τ , the adversary outputs that ti and xj are
correlated flows. This approach requires adversaries to collect
long flow sequences in the case of RAPTOR [17] or to evaluate
an expensive DNN model on all n2 flow pairs of n connections
to use the DNN classifier [25].

For example, in evaluating the RAPTOR attack [17], Sun
et al. computed Spearman’s rank correlation coefficients for
every pair of 50 Tor connections, where each connection
captured 300 seconds of traffic, and selected the exit trace
with the highest coefficient as the best match for the Tor
trace. DeepCorr [25] trained CNN models to learn a metric
d(t, x), and then, in the testing phase, computed this metric
using all pairings of 5,000 input and output flows, where
the number of associated pairs was 5,000 and non-associated
pairs was 5, 000 × 4, 999. In particular, they built feature
vectors based on two-dimensional arrays, Fi,j=[ti;xj], where
i, j ∈ {1, ..., 5, 000} and trained models to minimize the
cross-entropy loss between the model output and each pair’s
label (0 for uncorrelated, 1 for correlated). With this style of
training, DeepCorr requires the pairwise combination of each
Tor flow and exit flow’s features, leading to high space and
time complexity. We find, e.g., that DeepCorr requires 5.5 days
for testing 10,000 flows on a Tesla P100 GPU.

Furthermore, this high time complexity limits the ability to
maximize the data for significant reductions in FPR, which
is critical for large-scale traffic analysis. Our amplification
technique uses 11 DNN passes through each Tor flow and each
exit flow, which remains manageable. Attempting to apply
the technique to every pairwise combination in DeepCorr,
however, would further exacerbate the computational cost.

A. Our Approach

We introduce a new type of correlation attack, which
addresses both the computational complexity and the low
BDRs of previous approaches to flow correlation in Tor using a
combination of two techniques: Feature Embedding Networks
(FENs) and Amplification.
FENs with 2n Pairs. Creating feature vectors based on
all pairings of input and output flows adds substantial costs
to both training and testing in DeepCorr. Each comparison
d(ti, xj) must evaluate the DeepCorr DNN. In contrast, Deep-
CoFFEA learns a pair of functions for Tor flows (G) and
exit flows (H). To correlate a set of n flows, DeepCoFFEA
computes n low-dimensional Tor embeddings ti = G(ti), then
computes n low-dimensional exit embeddings xj = H(xj),
for a total of 2n DNN evaluations, and then uses just these
embedding vectors to perform n2 low-cost cosine similarity
computations cos(ti · xj).

More specifically, DeepCoFFEA jointly trains three net-
works: anchor (A), positive (P ), and negative (N ), in which
P and N share weights. A learns function G using Tor traces,
while P and N learn function H based on exit traces. If
we have two flow pairs, (t1, x1) and (t2, x2), the possible
A, P , and N triplets, (a, p, n), will be (t1, x1, x2) or (t2,
x2, x1). As shown in this example, x1 and x2 appear in
both P and N networks, and this negatively affects training.

TABLE I
SPACE AND TIME COMPLEXITY COMPARISON OF DIFFERENT FLOW

CORRELATION ALGORITHMS WHEN EVALUATING N FLOWS AND EACH
FLOW CONTAINS L PACKETS (NOTE THAT R = L

F
, R > 1 AND q < 1).

Algorithm Space Time
CTA O(NL/R) O(N2L/R)

CTA+LSH O(NL/R) O(N(1+q)L/R)

DeepCorr O(N2L) O(N2L)

DeepCoFFEA O(NL/R) O(N2L/R)

Thus, we implement a modified triplet generator, detailed in
Section IV-A. Eventually, using the triplet loss, DeepCoFFEA
trains these embedding networks towards maximizing the
similarity between a and p while minimizing the similarity
(i.e. maximizing the difference) between a and n.

Thus, even though DeepCoFFEA computes the pairwise
cosine similarity of n2 embeddings, it only needs to evaluate
2n FENs. This significantly reduces the complexity of corre-
lation attacks, because the low-dimensional cosine similarity
computation between embedding pairs is much less expensive
than the deep CNN computation on full flow pairs.
Comparison to CTA. The use of dimensionality reduction
to improve the efficiency of flow correlation was also a
central idea in Compressive Traffic Analysis (CTA) [29]. To
efficiently correlate flows that had been perturbed by network
noise, rather than routing through Tor, Nasr, Houmansadr, and
Mazumdar applied a Gaussian random projection algorithm
to compress IPD feature vectors into fixed-dimension cosine-
similar embeddings and then used Locality Sensitive Hashing
(LSH) to further reduce the pairwise correlation cost. For N
flows with L packets, the sensing basis matrix, ΦF×L in which
F < L led to F -dimensional feature vectors, which reduced
the both time and space complexity by a factor of L

F . Fur-
thermore, they extended CTA with LSH to avoid comparing
some pairs of embeddings, decreasing the comparison cost
from O(N2F ) to O(N (1+q)F ), where 1 + q < 2.

FENs also generate lower-dimensional feature embedding
vectors, which reduces the complexity by a factor of L

F . Note
that we empirically chose F in Section V-C. We note that it
might be possible to extend DeepCoFFEA to apply an adapted
version of LSH to avoid some comparisons between pairs of
embeddings, but we leave this for future work.

We summarize the complexity comparison of CTA, Deep-
Corr, and DeepCoFFEA in Table I. In Section VI-C, we
also evaluate the accuracy of CTA (without LSH, so we
maximize the TPR for a given FPR) using the implementation
by Nasr, Houmansadr, and Mazumdar [29] and show that when
applied to Tor/Exit flow pairs, CTA does not produce usefully
correlated results.
Amplification. To reduce the number of FPs, we adapt the
concept of amplification from randomized algorithms [27], in
which a randomized decision procedure that has any signif-
icant gap between acceptance probabilities for positive and
negative cases can be repeated multiple times to create a
decision procedure with exponentially small false positive and
false negative rates. In the context of DeepCoFFEA, we apply
amplification by window partitioning, in which we divide



the flow into several smaller partially-overlapping subflows
(windows). Then, we evaluate each window separately and
aggregate the results using voting in an ensemble fashion.

By dividing t and x into k discrete windows, and computing
the similarity between G and H on the subflows in each
window, we end up with k-dimensional vectors comprised of
1s if the subflows are correlated and 0s otherwise. These act as
votes from k windows, which we then aggregate to determine
the final decision: if at least k − ` votes are positive, the
flows are correlated, and otherwise they are uncorrelated. For
example, if k = 5 and ` = 1, and the votes for a given flow
pair are [1,1,1,0,1], the pair is predicted as correlated.
By adjusting k and ` for a given anticipated flow set size n,
we can push the false positive rate below the base rate of 1/n,
giving a BDR that does not trend asymptotically to 0.

Compared to DeepCorr [25], instead of learning a compari-
son metric d(t, x), the adversary computes G(t) for every Tor
trace and H(x) for every exit trace in k successive windows.
We expect only one exit trace, xj , to line up with the same Tor
trace, ti, with at least k− ` 1 votes. We show in Section VI-C
that amplification can significantly reduce the number of
FPs against a pairwise cosine similarity computation, and
consequently, DeepCoFFEA becomes more effective with a
much lower FPR and higher BDR than the state-of-the-art
correlation techniques.

Furthermore, our models do not learn based on labels;
rather, they learn statistical differences between correlated
and uncorrelated flow pairs, leading to more effective feature
extraction as well as a more generalized model. Notably,
our empirical study in Section VI-B shows the robustness of
DeepCoFFEA against padding-based defenses.

IV. DEEPCOFFEA ATTACKS

In this section, first, we detail how we extended previous
work [26], [28] to train the DeepCoFFEA FENs to generate
Tor and exit flow embeddings. Next, we describe several meth-
ods to compute whether two embedded vectors are correlated
and discuss the architecture of the DeepCoFFEA FENs and
the hyperparameters involved.

A. Feature Embedding Networks for Correlation Study

To develop FENs for use in the DeepCoFFEA attack, we
started with the TF network architecture [28] and adapted it
for the flow correlation attack model. As a preliminary step,
we tried using their networks directly (that is, having the A,P,
and N networks all share weights) when trained with Tor flow,
exit flow, and exit flow triplets, but as expected we found that
triplet loss did not decrease with training. We then made the
following key changes to improve this initial result.

Two Different Networks. Using the TF architecture, the
triplet loss did not converge, due to two factors. First, Tor
and exit flows are different traffic collected at different points
in that the Tor trace is collected between the client and guard
node and the exit traffic is collected between the exit relay and
the web server. Second, Tor traces contained a relatively lower

number of packets per window than exit traces, requiring dif-
ferent input dimensions for the two networks. Thus, in contrast
to FaceNet [26] and TF, we adopted two separate models: one
for the A network and another common model to the P and
N networks. This approach led to reduction of the initial loss
value, and further, helped achieve decreasing loss curves with
training. However, we still ended up with an overall small drop
in the training loss. For further improvement, we modified the
triplet generator, as described next.

Triplet Epoch Generator. The TF implementation chose
triplets from positive and negative examples without regard
to whether a particular negative had already been used in a
previous input, which led to many exit flows being selected
both as a positive (p) and as a negative (n). This quickly
froze the triplet loss at some value because some flow pairs
were used interchangeably to both maximize and minimize the
correlation in the triplet loss function. To resolve this issue,
we divided the exit flows into two sets and implemented the
triplet generator to choose p from one set and n from the other
set. In this way, we guaranteed that p and n were always
different within a batch. However, we found that we could
obtain a better loss curve when that guarantee was extended
to an epoch. Note that we set 128 batches for an epoch in all
experiments in the paper. Thus, we kept shuffling the exit trace
set and dividing it into two separate pools for every epoch.
With this epoch generator, we were able to reach a training
loss value closer to zero.

Loss Function. The DeepCoFFEA FENs were trained to
minimize the following triplet loss function:

max(0, corr(G(a), H(n)) − corr(G(a), H(p)) + α)

In other words, the goal of FENs is to learn embed-
dings G and H that satisfy corr(G(a), H(n)) + α <
corr(G(a), H(p)). The “negative” triplet n plays an im-
portant role to train FENs since “easy” negatives in
which under the current network parameters we already
have corr(G(a), H(n)) + α < corr(G(a), H(p)) will not
contribute to the loss while “hard” negatives in which
corr(G(a), H(p)) < corr(G(a), H(n)) will always lead to
positive loss. Thus, we used “semi-hard negatives” in which
corr(G(a), H(n)) < corr(G(a), H(p)) + α. That is, semi-
hard negatives are “hard enough” that they contribute to the
loss but “easy enough” that adjusting the parameters can push
the loss to 0. As such, by tuning α, we could adjust the
margin that was enforced between positive and negative pairs.
In the following section we describe how we chose the cosine
similarity for the correlation metric (i.e., corr); we chose α
using hyper-parameter tuning, as described in Section V-C.

B. Correlation Methodology

Based on G and H , we extract the Tor and exit flow
embeddings, G(ti,w) and H(xi,w) in which ti are the Tor
flows, and xi are exit flows, fi,w is the w-th window of flow fi,
and 0≤ i < n, and 1 ≤ w ≤ k for n flow pairs and k windows.
Then, we compute the correlation values, d(G(ti,w), H(xj,w))



Fig. 2. ROC with different evaluation methods (Note that x-axis is log scale
and RG is Random Guess.

for each 0 ≤ i, j < n, and each window w ∈ 1, . . . , k, for
each of the n2 potential flow pairings. Third, based on these
correlation values, we record a 1 vote if d(G(ti,w), H(xj,w))
is high enough and 0 otherwise. Finally, we decide that t
and x are correlated if they received at least k − ` 1 votes.
We considered three different approaches to computing these
similarity “votes”: the softmax function, k-NN classifiers, and
cosine similarity. In this section, we describe these options.

Softmax. We applied the softmax function, which normalizes
the embedding into a vector following a probability distribu-
tion with a sum of 1, to the feature embeddings. Based on this
probability vector, we could determine a predicted “label” by
taking the logit with the highest probability. To investigate the
Tor and exit flow pair (t, x), we computed the top-h labels for
t and x based on argsort(soft(G(t))) and argsort(soft(H(x)))
in which soft(xi)= exi

Σn
j=1e

xj . If the matched flow appeared in
the top labels, we assume that it is possibly correlated flow.
By varying h from 2 to 31, we plot TPRs against FPRs.

k-NN with Clustering. We trained k-NN classifiers using the
Tor flows and tested them using the exit flows. We further
trained the classifiers using the exit flows and tested them
using the Tor flows to find the best setting. For either direction,
we first had to label the flows in the training set before training.
We explored k-means [30] and Spectral clustering [31] to
label training flows. For both clusters, we varied k from 2
to 295, resulting in 2-295 labels to be trained. After training
k-NN models using Tor (or exit) flows labeled by clustering,
we evaluated the models using exit (or Tor) flows. We then
conducted the pair-wise comparison over the predicted labels
of exit flows and labels of Tor flows decided by the clustering
algorithm. If the labels are the same in the correlated flows,
they are TPs. If they are the same in the uncorrelated flows,
they are FPs. Based on the preliminary experiments, we
decided to train k-NN models using Tor flows and further
test them using exit flows. We also empirically chose Spectral
clustering with the cosine similarity to label the Tor flows and
computed TPRs and FPRs at various k from 2 to 295.

Cosine Similarity. The cosine similarity measures the co-
sine of the angle between two vectors projected in a multi-
dimensional space. It captures the angle, not magnitude, such
as the Euclidean distance. Since the FENs were trained using
triplet loss based on the cosine similarity (cos), we naturally

Fig. 3. Example DeepCoFFEA Scenario: In this example, we had ten (ti, xi)
flow pairs and five windows (W1,...,W5). First, we performed the non-
overlapping window partition to generate two training sets, Ttr and Xtr , and
ten testing sets, Tte1,..,Tte5,Xte1,..Xte5. Then, we trained the DeepCoFFEA
feature embedding network (FEN) with Ttr and Xtr and generated the feature
embedding vectors using A and P/N models for each testing set, (Ttew ,Xtew )
where w=1,...,5. We then computed the pairwise cosine similarity scores for
each testing window and voted with 1 if the score was greater than τ or 0
otherwise. Finally, we aggregated those results and determined that the flow
pair was correlated if it had at least four 1 votes.

studied this similarity score as the similarity metric for Deep-
CoFFEA. That is, we computed the similarity scores for each
window w of all Tor and exit embedding pairs, (ti,w, xj,w), in
which 0 ≤ i, j < n for n testing flow pairs. For each pair, if
cos(G(ti,w), H(xj,w)) ≥ τ for some threshold τ , we recorded
a vote of 1 and 0 otherwise. By varying τ , we drew the ROC
plot. We present how we chose τ in Section V-E.

As shown in Figure 2, the cosine similarity approach
outperformed other methodologies. The cosine similarity was
clearly more effective to distinguish the correlated flows
from uncorrelated flows than the softmax-based distinction
and the clustering did not extract effective correlation labels.
We adopted the cosine similarity when evaluating DeepCoF-
FEA throughout the remainder of the paper.

C. FEN Architecture

As shown in previous work [5], [6], [25], [25], CNNs
typically learn more useful features for analysis of Tor traffic.
Thus, we further explored two different architectures, one
based on 1D convolutional (Conv) layers and the other based
on 2D Conv layers. We adopted the DF [5] and DeepCorr [25]
architectures for these two architectures since they have been
effective in generating website fingerprints based on traces
between the client and the guard node and correlational flow
features based on inflow and outflow to the Tor network. We
empirically concluded that the 1D CNN-based DF architecture
performed better; more specifically, we were unable to reduce
the triplet loss below 0.01 with the DeepCorr architecture.

As shown in Figure 3, the two FEN models are learned,
and in the testing phase, the A network maps inputs from Tor
flows to feature embedding vectors, while the P/N network
maps inputs from exit flows to feature embedding vectors.
Each FEN consists of four 1D Conv blocks, including two 1D
Conv layers, followed by one max pooling layer. After that,



there was a fully connected output layer, which generated the
feature embedding. We chose the input and output dimensions,
optimizer, and learning rate based on parameter optimization
as shown in Table II.

Finally, we outline an example DeepCoFFEA evaluation
scenario in Figure 3.

V. DEEPCOFFEA EXPERIMENT DETAILS

In this section, we detail the experimental settings including
the dataset, features, window partition, hyper-parameter opti-
mization, and metrics to evaluate DeepCoFFEA in Section VI.

A. Input Preprocessing

Data Collection. To the best of our knowledge, Nasr, Bahra-
mali, and Houmansadr [25] collected the most comprehensive
flow correlation dataset collected on the Tor network and
reflects the effect of different circuit usage and time gaps
between training and testing data. After reparsing the raw cap-
tures of DeepCorr set instead of using the preprocessed data in
which the outgoing and incoming packets were separated, we
selectively chose the flow pairs to ensure that all connection
destinations are unique, resulting in 12,503 flow pairs. We call
this set the DeepCorr dataset.

However, we were interested in evaluating additional scenar-
ios that could not be addressed with this dataset alone, includ-
ing a training/testing gap longer than three months, training
and testing sets with no mutual circuits, and the ability to
test with a large non-training set. Thus, we collected our own
dataset (the DCF set) mimicking the collection methodology
devised by DeepCorr, with some small differences.

First, we used physical machines to run both Tor clients
and the SOCKS proxy servers collecting exit flows while the
original method ran clients inside VMs. Second, we crawled
60,084 Alexa websites using 1,051 batches in which the
circuits were rebuilt every batch. We captured for a full 60
seconds for every sample to ensure that any dynamic content
loaded after the initial page load was included in the capture.

Third, we captured packets at the Ethernet layer while Deep-
Corr collected it at the IP layer. This change aimed to remove
over-MTU-sized packets that appeared in the DeepCorr set
and better resemble traffic as it would be seen on the wire. To
provide transferability between datasets we combined adjacent
packets with IPD values of 0 (e.g., the packets arrived/sent
at the same moment) when training our model. Lastly, we
filtered out flows whose packet counts were less than 70, which
was shorter than DeepCorr which applied 300, 400, and 500
when evaluating the model against traces with 300, 400, and
500 packets, respectively. In this way, the DCF set caused
more flows to be padded or truncated than the DeepCorr set.
As shown in Figure 11 in Appendix D, we explored various
filters to remove shorter traffic whose length was lower than
70, 300, and 500, and the DeepCoFFEA performance was not
significantly affected by the size of the filter.

Among 60,084 flow pairs, we selected pairs whose per-
window packet count was greater than 10, which led to 42,489
pairs in total. Note that to show the model transferability across

different circuits and sites, all 42,489 connections involved
a unique destination. This ensures that there should be no
overlapping destinations and circuit usage between training
and testing sets.

In addition, we also collected 13,000 flows using the obfs4
Pluggable Transport for the evaluation against defended flows.
Furthermore, we captured some older flows crawled in April
2020 for the experimental scenario in which there is a long-
time gap between training and testing data.

To further evaluate DeepCoFFEA against light-weight web-
site fingerprinting defenses including WTF-PAD [32] and
FRONT [33], we also simulated defended flows by using
official implementations shared by researchers [34], [35].

Window Pooling. In contrast to DeepCorr, in which n corre-
lated flow pairs could be used to create up to n2 input pairs,
in DeepCoFFEA each correlated flow pair can only produce at
most one triplet, creating many fewer training examples for the
FEN models. Instead of feeding all possible pairs to FENs, for
each anchor point, we selected one semi-hard negative that was
more useful through triplet mining. For example, if we have
three flow pairs, (t1,x1), (t2,x2), and (t3,x3), our approach
results in three input pairs such as [(t1,x1,x2), (t2,x2,x1),
(t3,x3,x2)]. Based on our epoch generator, only the first and
third triplets can appear in the same epoch.

By partitioning the flows into k windows, we were able
to pool the correlated pairs across windows, increasing the
FEN training set size by a factor of k. More specifically,
we divided each flow based on a predefined time interval
chosen during the tuning (Section V-C), and constructed the
training set. Based on 10,000 pairs of training flows, we built
a training set using all k flow windows, resulting in k ·10, 000
correlated flow pairs. In contrast, we constructed k testing
sets separately for each window in which there are n pairs
(2094 ≤ n ≤ 10, 000). Thus, this setup resulted in testing
DeepCoFFEA using n Tor and exit flows across k windows.
We detail the window partitioning in Section V-B.

Features. As in DeepCorr [25], we used inter-packet delay
(IPD) and packet size information to construct the feature
vectors from the flows. Since we chose 1D CNN models
for DeepCoFFEA, we constructed one-dimensional arrays,
vi = [Ii||Si] for the bi-directional Tor and exit flows by
concatenating the vector of IPDs and packet sizes. Here, the
vector Ii consists of upstream IPDs (Iu) and downstream IPDs
(-Id) and the vector Si is comprised of upstream packet sizes
(Su) and downstream packet sizes (-Sd).

We also evaluated DeepCoFFEA based on other combina-
tions, such as vi = [Iui ||Sui ||Idi ||Sdi ] or [Iui ||Idi ||Sui ||Sdi ] and
these feature vectors led to much worse performance, perhaps
because the local interleaving of upstream and downstream
traffic allowed the (local) CNN filters to extract more relevant
features. Similarly, we tried training FENs based on feature
sets using only the IPD vectors or the packet size vectors and
found that these were less effective as well.

Lastly, we evaluated DeepCoFFEA using features based
only on packet sizes. The cosine similarity scores between



Fig. 4. Overlapping window partition.

(a) ROC for different δ applied to the
window partition when loss ≈ 0.006.

(b) ROC for various voting thresholds
when loss ≈ 0.006.

Fig. 5. DeepCoFFEA parameter tuning (Note that x-axis is log scale and RG:
Random guessing).

correlated flow pairs were higher when considering both
packet timing and size information, indicating that the IPD
sequence delivered informative features for correlated flows.

B. Window Partitioning

We tested two partition strategies, one based on time inter-
vals and the other based on the number of packets, and then
decided to use time intervals as the window interval, which
yielded a better triplet loss curve. This is because Tor flows
generally had fewer packets per time period than exit flows, so
that when using windows based on a fixed number of packets,
the flows for the second and subsequent windows no longer
corresponded to the same traffic. We empirically determined
the number of windows and the interval in Section V-C.

We further explored overlapping window partitioning to
create overlapping windows with some interval overlap (δ)
between subsequent windows, which we refer to as δ-on
partitioning. As shown in Figure 4, when the window interval
length is t and total flow duration is d, then δ-off partitioning
leads to

⌈
d−t
t

⌉
+ 1 intervals, where window w is the interval

[t×w, t×w+t). In contrast, δ-on results in
⌈
d−t
t−δ

⌉
+1 intervals,

where window w is the interval [(t− δ)×w, (t− δ)×w+ t).
For example, when t = 5, d = 25, and δ = 3, the 5 δ-off
windows are the intervals [0,5), [5,10), ..., [20,25), while the
11 δ-on windows are the intervals [0,5), [2,7), ..., [20,25). As
such, with δ-on, we create more windows, leading to more
training flow pairs and boosting difference in TPs and FPs by
aggregating results from more windows. In other words, δ-on
increases the amplification of DeepCoFFEA, improving the
performance dramatically, as demonstrated in Section VI-B.

C. Hyperparameter Optimization

The choice of hyperparameters is crucial to improve the
DeepCoFFEA performance, and particularly the behavior of
the FENs, to result in lower triplet loss. Thus, we explored
the parameter search spaces shown in Table II using one
Nvidia RTX 2080 and one Tesla P100 GPU. Although we
used the DCF set to tune these parameters, we noticed that the

DeepCoFFEA performance is not very sensitive to the dataset
when choosing these parameters. One exception is the input
dimension; the traffic rate per window can change substantially
and thus, while other parameters in this section could be used
without further search, the input dimension should be adjusted
for new network conditions. Here we give more details for how
we selected the parameter ranges.
Window Setting Parameters. The length of flow input to
FENs should be selected to optimize the model performance
within an acceptable range of training costs.

We first investigated the minimum duration of the first
window interval whose median packet count was 100 pack-
ets. Note that 100 packets were chosen in DeepCorr as the
minimum flow length they explored [25]. After computing the
median packet counts for intervals between 2 and 5 seconds
in Table VI of Appendix C, we determined that five seconds
would give the best performance.

Furthermore, we set the search space for the total flow
duration up to 35 seconds since the packet count for windows
after 35 seconds became lower than 100 packets as shown in
Table VII of Appendix C. Second, with δ = 0, we explored
various total flow durations since the DCF performance started
degrading after 25 seconds. Third, based on Table VIII of
Appendix C, we used the minimum and maximum flow lengths
in 11 windows as the search space for Tor flow length and exit
flow length, which were [106,501] for Tor flows and [244,855]
for exit flows.
Window Partition Parameter. First, we investigated the
impact of δ-on/off settings for varying δ. As discussed in
Section V-B, δ-on creates

⌈
25−5
5−δ

⌉
+ 1 windows, that is, it

creates 6 windows for δ = 1, 8 windows for δ = 2, and
11 windows for δ = 3. Note that we omitted δ = 4 since
with 21 windows the resulting cosine similarity matrix for
218,610 training flow pairs was too large to compute using
our resources, so we could not select semi-hard negatives.

We reported results of ` = 2 for the 3-on and the 2-on
and ` = 1 for the 1-on setting in Figure 5a. Even though
δ = 1 did not improve the DeepCoFFEA performance over δ-
off settings, by increasing δ, DeepCoFFEA was benefited by
the enhanced amplification capability with more training flow
pairs as well as more voting results. Figure 5a shows that a
larger δ typically led to better ROC curves with higher TPRs
using more votes, indicating that more resourceful adversaries
could further improve the 3-on results by using the 4-on
setting. Based on the results shown in Figure 5a, we evaluated
DeepCoFFEA in the 3-on setting throughout Section VI.
Model Parameters. As the triplet loss aims to separate the
positive pair from the negative by a distance margin, α, we
first tuned α to maximize the distinction between the cosine
similarity scores of the correlated pairs and those of the
uncorrelated pairs. With α=0.1, the FENs attained the lowest
loss and we noticed that TF [28] also used the same value.

Second, as discussed in Section IV-A, we implemented
our own triplet epoch generator which selected triplets for
the positive and negative networks from separate pools. We



TABLE II
CHOSEN HYPER-PARAMETERS AND SEARCH SPACES USED IN THE

HYPER-PARAMETER OPTIMIZATION.

Param Chosen Param Search Space
Tor flow size 500 {106, . . . , 501}
Exit flow size 800 {244, . . . , 855}

total flow duration 25 {20, . . . , 35}
δ 3 {0, 1, 2, 3, 4}
α 0.1 {5 · 10−2, . . . , 5 · 10−1}

Epoch generator 1 {1, . . . , 10}
Output node 64 {10, . . . , 100}

Optimizer SGD SGD, Adam
Learning rate 10−3 {10−3, . . . , 10−4}

Correlation metric cosine cosine, euclidean
Vote 9 {8, 9, 10, 11}

further tuned the number for how frequently those separate
pools needed to be updated (i.e., shuffled and divided into
two pools). Eventually, the FEN performance improved when
updating the pools more frequently. Thus, we recommend
updating them every epoch rather than every 2-10 epochs.

Finally, we further tuned the learning rate of SGD optimiza-
tion and the number of output nodes, which is the dimension
of the feature embeddings generated by the trained FENs.
Correlation Parameters. We had to decide a correlation
metric to be computed in the triplet loss function, so we
explored both cosine similarity and Euclidean distance metrics,
as proposed by previous research [26]. Interestingly, with the
Euclidean distance function, the loss never decreased.

Lastly, after computing the cosine similarity scores for all
testing pairs for each window, we found that DeepCoFFEA
performance was comparable with nine and 10 votes across
11 windows while the performance somewhat dropped with 8
and 11 votes (Figure 5b). So, we decided that the flow pair
would be correlated if it had at least nine 1 votes across 11
windows since the DeepCoFFEA achieved slightly more TPs
against low FPRs less than 10−4.

D. Metrics

In this section, we introduce the definitions of the TPR, FPR
and BDR metrics used in Section VI.

• TPR: The true positive rate is the fraction of correlated
flow pairs that are classified as “correlated”.

• FPR: The false positive rate is the fraction of uncorrelated
flow pairs that are classified as “correlated”.

• BDR: The Bayesian detection rate in the flow correlation
is the probability that a correlated pair is actually “cor-
related” given that the correlation function detected it as
“correlated” and it can be computed as:

P (P |C) =
P (C|P )P (P )

P (C|P )P (P ) + P (C|N)P (N)
,

where P (P ) is the probability that the pair is correlated,
P (C) is the probability that the pair will be decided
by the flow correlation as correlated, and P (C|P ) and
P (C|N) are replaced with TPR and FPR, respectively.
We note that precision is often used instead of BDR. We
chose BDR in this paper since the impact of the base rate
is shown more clearly in the computation.

Fig. 6. DeepCoFFEA (loss ≈ 0.0018) and DeepCorr performance with local
and global thresholds.

In addition, we measured the performance of state-of-the-art
attacks and DeepCoFFEA using ROC curves by varying the
correlation threshold parameter.

E. Similarity Thresholds

In DeepCoFFEA, the embedded feature correlation thresh-
old τ acts to control the number of exit traces that are
classified as “possibly correlated” with each Tor trace in
a given time window. We can either control this number
indirectly by setting a global threshold τ that is applied to
all cosine similarities (so that, generally, as τ increases, fewer
pairs will be classified as possibly correlated); or we can
control this number directly by classifying only the closest
κ exit traces to a given Tor trace window ti (as measured by
cos(G(ti), H(xj))) as possibly correlated. This latter choice
corresponds to computing a local threshold for each ti by
sorting the list di,1, ....di,n, where di,j = cos(G(ti), H(xj)),
and selecting the κth element as the threshold for ti.

We explored both approaches and found that, as shown in
Figure 6, the number of TPs decreases more rapidly with
higher τ (those that yield FPR less than 10−3) than with higher
κ, most likely due to some windows in which many flows have
similar embeddings. By selecting the thresholds locally (i.e.,
based on the pairwise score distribution of each Tor flow),
DeepCoFFEA is able to detect more correlated flows while
controlling the number of FPs.

We also evaluated DeepCorr using local thresholds even
though they adopted global thresholds in their paper. As shown
in Figure 6, the use of κ did not improve the performance of
DeepCorr and FPRs did not decrease below 10−3, indicating
that most correlation scores for uncorrelated pairs were similar
to scores of correlated pairs and decreasing κ did not help
reduce the false positives. Thus, we used τ for DeepCorr and
adopted κ for DeepCoFFEA as the curve parameter to generate
the ROC curves of DeepCoFFEA in Section VI.

VI. EXPERIMENT RESULTS

In this section, we explore the effect of various configura-
tions of DeepCoFFEA on its performance and compare the
effectiveness and efficiency of DeepCoFFEA to state-of-the-
art attacks.



(a) TPR, FPR, and BDR with varying positive counts
κ when loss ≈ 0.0018.

(b) ROC at various triplet loss values. (c) ROC for old and future testing sets when loss ≈
0.0018.

(d) ROC for various defenses when loss ≈ 0.004. (e) ROC for various adversary models against de-
fenses when loss ≈ 0.004.

Fig. 7. Performance of DeepCoFFEA across various settings (Note that RG is Random Guess and all x-axes except Figure 7a are in log scale).

A. Experimental Settings

We implemented FEN models using Keras [36] with Tensor-
flow [37] backend and used one Tesla P100 GPU with 16GB
memory to train and test DeepCoFFEA 2. We selectively chose
12,094 flow pairs from the DCF set, from which we use 10,000
pairs for training data and the other 2,094 pairs for testing
data, with no overlapping circuit usage between the two sets.
In addition, all 12,094 connections went to unique sites (i.e.,
12,094 destinations). With this setting, we aim to demonstrate
that DeepCoFFEA successfully detects correlated flows that
were collected using arbitrary circuits or sites. While we used
2,094 test connections for most of the experiments in this
section, DeepCoFFEA performs well even with 10,000 flows,
as shown in Figure 8c.

It is likely in practice that users visit sites that are in the
training set, since samples from the most popular sites are
used for this purpose. Thus, DeepCoFFEA performance shown
in all experiments in this section may be better in practice.
Moreover, as Nasr, Bahramali and Houmansadr [25] point out,
collecting exit flows using a SOCKS proxy may add some
latency, meaning that exit traces could be more distinct from
each other in practice, leading to further improvement.

B. DeepCoFFEA Effectiveness

We evaluate the impact of the different settings and ideas
behind DeepCoFFEA on the overall effectiveness of the attack.

2The source code and datasets are available on https://github.com/
traffic-analysis/deepcoffea

TABLE III
TRAINING TIME TO REACH SPECIFIED TRIPLET LOSS VALUES.

triplet loss 0.006 0.004 0.003 0.002
training time (days) 0.96 3 5 14

Amplification. One of the key advantages of DeepCoFFEA is
amplification to reduce the number of FPs. This study sheds
light on the impact of amplification by evaluating DeepCoF-
FEA on a per-window basis. Table IX of Appendix D shows
TPRs and FPRs when evaluating DeepCoFFEA using each
of 11 windows; both metrics were consistent across windows
with TPR at 97-98% for 12% FPR. Then we applied the voting
strategy to aggregate all 11 results, and DeepCoFFEA yielded
97.99% TPR and 0.13% FPR. Such a significant drop in FPR
indicates that only a few positive predictions on unmatched
pairs were aligned across all 11 windows, which was exploited
by the amplification technique to reduce the number of FPs.

Threshold Parameter. We evaluated the effect of the positive
correlation parameter κ, described in Section V-E. We com-
puted the number of TPs and FPs at for κ ranging from 4 to
1,255. Figure 7a shows that both the TPR and FPR increased
by increasing the threshold, while the BDR decreased.

Triplet Loss. When training FENs, the triplet loss decreased
monotonically with training time; our experiments halted train-
ing when the loss hit various loss values from 0.006 to 0.0018.
In this study, we investigate the performance of DeepCoFFEA
when training stops at different loss values; this experiment
gives insight on choosing a stopping point for training FENs.

https://github.com/traffic-analysis/deepcoffea
https://github.com/traffic-analysis/deepcoffea


Figure 7b shows that DeepCoFFEA performance continually
improved as the triplet loss decreased. We stopped the training
at 0.0018, since the loss decreased very slowly after 0.003. In
Table III, we also report the training time required to achieve
different loss values. There is a clear trade-off between model
quality and training time.

Time-Separated Testing Sets. We explored how a separa-
tion between the time (and thus, incidentally, Tor software
versions3)

of training set collection and test set collection impacted the
correlation ability of DeepCoFFEA. For this study, we trained
FENs on data from June 2021, while constructing three testing
sets: one from August 2021 (2-month-newer set), one from
April 2020 (14-month-old set), and the DeepCorr set collected
in January-April 2018 (3-year-old set).

As shown in Figure 7c, DeepCoFFEA performs approxi-
mately the same for the 2-month-newer set and the 14-month-
old set as a baseline test with no time gap. The performance
was significantly worse using the 3-year-old set. This dramatic
shift may be explained at least in part by the differences
in the collection process between the DeepCorr set and the
other two datasets. We also expect that Tor flows simply
changed more significantly during this three-year window.
Nevertheless, DeepCoFFEA still detected some correlated
flows correctly with 92% TPR and 3% FPR.

These findings indicate that even though the packet size
and timing features could change as network conditions evolve
over the time [38], the statistical difference between correlated
and uncorrelated features could be similar even after 14
months. As FENs are trained to maximize the difference be-
tween correlated and uncorrelated flows, the ability to generate
the highly correlated flow features can be persistent even after
more than a year. Thus, even though the training cost required
to ensure better model quality was considerable (Table III),
this may be amortized over long periods, as DeepCoFFEA
does not require frequent retraining.

Defended Traces. Nasr, Bahramali and Houmansadr [25]
evaluated DeepCorr against traces protected by the obfs4
pluggable transport (PT), the PT recommended by the Tor
Project for censorship evasion [39]. obfs4 encrypts and trans-
forms the traffic between the client and the guard node to
avoid potential traffic-analysis-based censorship. In particular,
it obfuscates packet sizes by appending random padding.
obfs4 also provides an IAT (Inter-Arrival Timing) mode that
randomizes inter-arrival times. We investigated obfs4 with
both IAT mode on (obfs4-iat1) and off (obfs4-iat0).

Security researchers have also investigated several website
fingerprinting defense mechanisms designed to mask traffic
patterns in Tor [33], [35], [40]. As the adversary conducts
traffic analysis on the Tor flow between the client and entry
guard, these defenses hide the total packet statistics by adding
padding packets according to various schemes. For example,

3Client versions in the 0.2.x, 0.3.x and 0.4.x series were used for the
14-month-old set, the three-year-old set, and both the two-month-newer and
training sets, respectively.

WTF-PAD [32] seeks to hide statistically unlikely (and thus
distinguishing) IPDs between packets by strategically adding
padding, while FRONT [33] adds more randomness to the
amount of padding and the location where it is injected.

Since these WF defenses reduce the similarity between Tor
flows, we might expect that they also make correlated flow
features less effective. Note that padding packets are only seen
on the Tor flows, but not the exit flows, making the matched
flows look less alike than in undefended Tor. Therefore, in this
study, we evaluated the effectiveness of DeepCoFFEA against
the obfs4 PT, WTF-PAD and FRONT. To the best of our
knowledge, this is the first investigation of the effectiveness
of WF defenses against end-to-end flow correlation attacks.

Using the same features discussed in Section V-A, we
trained three different DeepCoFFEA models using 10,000
defended traces collected with each of obfs4-iat0, obfs4-iat1,
WTF-PAD4, and FRONT5 defenses. As shown in Figure 7d,
the DeepCoFFEA TPR decreased across all defenses, while
still maintaining very low FPRs. DeepCoFFEA achieved TPRs
above 50% for FPR of 10−5 for all defenses besides FRONT.
FRONT had the most success defeating DeepCoFFEA, since
the obfuscation level in each window is random, making the
correlation pattern across windows less consistent.

An adversary may face the possibility of some users of
interest who apply a defense while most other users take
a default setting of not applying the defense. This scenario
allows us to examine whether FENs can be extended to detect
different types of flows. We trained the model using a mix of
defended (i.e., obfs4) and undefended flows with a ratio of 1:4
and then tested the model using two different testing sets, one
for each type of flow. As shown in Figure 7e, even though the
model trained using a mix had somewhat worse performance
against undefended traces (the mix-undef curve in Figure 7e),
FENs were still capable of generating effective embedding
vectors for both undefended and defended traces. This result
indicates that the inclusion of defended traces marginally
impacted the correlation capability and shows the potential
of unified FENs to detect both types of flows successfully.

Lastly, we explored a more difficult setting for DeepCoF-
FEA, in which we trained FENs using undefended traces and
then detected correlated flows of unknown defenses. We note
that this is a rather artificial attack scenario, since it is contrary
to Kerckhoff’s principle. Figure 7e shows that DeepCoFFEA
still achieved a TPR above 20% for defended flows with FPR
of 10−5, even though it was not trained on any defended traces.
Correlations thus appear to remain between the Tor flow and
the exit flow for DeepCoFFEA to find. We leave for future
work the question of whether the inclusion of flows from
different defenses in training data could improve this result.

4We used normal_rcv as the distribution parameter (bandwidth over-
head: 27.54%).

5We used the default setting of FRONT with the padding budget as Ns =
1700 (proxy side) and Nc = 1700 (client side), and the padding window
with Wmin = 1 and Wmax = 14 (bandwidth overhead: 33.26%).



(a) ROC (b) BDR against TPR (c) ROC using 5,000 and 10,000 testing flow pairs.
Fig. 8. Comparison of state-of-the-art and DeepCoFFEA attacks (Note that x-axes except Figure 8b are in log scale, CTA: Compressive Traffic Analysis,
DC: DeepCorr, m-DC: multi-DeepCorr, DCF: DeepCoFFEA (loss ≈ 0.0018), and RG: Random guessing).

C. Comparison to the State-of-the-Art
In this section, we compare the performance of DeepCoF-

FEA to several previous flow correlation algorithms, includ-
ing Cosine similarity, RAPTOR, CTA, DeepCorr, and m-
DeepCorr, a multi-stage variant of DeepCorr. This variant of
DeepCorr was suggested, but not evaluated, by Nasr, Bahra-
mali and Houmansadr [25] as a way of applying DeepCorr in
stages to decrease both time complexity and false positives.
In this variant, the attacker trains both a lower-dimensional
version of DeepCorr that uses only the first p packets to find
correlated flows and a full network that uses longer flows of
length p+ l. When searching for correlated pairs, all pairs are
evaluated using the less-expensive network; only pairs that are
considered to be correlated by this network are then evaluated
by the full network, and only flows flagged as matches by both
networks are considered to be correlated.
Tuning DeepCorr and m-DeepCorr. For a fair comparison,
we tuned DeepCorr and m-DeepCorr to obtain the best perfor-
mance on the DCF set. First, for DeepCorr, we found the best
feature dimension (number of packets) to use and the best
number of training flow pairs. The dimension is important,
because the attack requires both Tor and Exit flow feature
vectors to have the same length. Using longer vectors will
induce padding that decreases accuracy, while using shorter
vectors might truncate useful information. As detailed in
Appendix E, we empirically chose 700 packets as the flow
length and 5,000 flow pairs as the training set size.

To determine the combination of input lengths that had the
best performance for m-DeepCorr, we used multiple DeepCorr
models trained using p packets (namely DCp), and explored a
variety of multi-stage settings to choose the best configuration
to maximize performance and minimize time complexity. We
found that a 2-stage attack using DC100 as the first stage
and DC700 as the second stage yielded better performance
than other settings. The full details and results of this tuning
process appear in Appendix F.
Performance Comparison. The results of our comparison
are shown in Figures 8a and 8b, in which we also evaluate
CTA, RAPTOR, and Cosine similarity. After hyperparameter
tuning, we adopted 2,200 and 2,000 packets as the effective
flow lengths for RAPTOR and cosine similarity, respectively.

TABLE IV
SPACE AND TIME COMPLEXITIES OF DEEPCORR (DC), m-DEEPCORR

(M-DC) AND DEEPCOFFEA (DCF) FOR VARYING NUMBER OF TESTING
FLOW PAIRS. WE REPORT BOTH MAIN (MM) AND GPU (GM) MEMORY

CONSUMPTION (I.E., MM(GM)) IN SPACE COMPLEXITY.

Time (seconds) Space (gigabytes)
2,094 5,000 10,000 2,094 5,000 10,000

DC 21,128 118,532 478,667 43(15) 43(15) 43(15)
m-DC 8,041 43,641 174,067 43(15) 43(15) 43(15)
DCF 435 663 1,496 3(7) 5(7) 6(7)

TABLE V
SPACE AND TIME COMPLEXITIES OF TRAINING DEEPCORR AND

DEEPCOFFEA (LOSS≈0.004). WE REPORT BOTH MAIN (MM) AND
GPU(GM) MEMORY (I.E., MM(GM)) IN SPACE COMPLEXITY.

Time (days) Space (gigabytes)
DC 2.5 134(16)

DCF 3 133(6)

DeepCoFFEA outperformed all other attacks when correlating
2,094 flow pairs, reaching a much higher TPR for any given
FPR. This substantial improvement correspondingly led to a
higher BDR as shown in Figure 8b. CTA failed to detect
the correlation between Tor and exit flows effectively, sug-
gesting that the transformations induced by the Tor network
are more extreme than the perturbations considered by Nasr,
Houmansadr, and Mazumdar [29]. Both DeepCorr and m-
DeepCorr performed considerably worse for FPRs closer to 0.
In contrast, DeepCoFFEA detected more than half of associ-
ated pairs correctly. DeepCoFFEA outperformed m-DeepCorr
by significant margins, e.g., 89% vs 13% TPR at 10−4 FPR.

Even when increasing the testing dataset size up to 10,000
(non-training) flow pairs, DeepCoFFEA detected the corre-
lated flows more effectively than both DeepCorr attacks with
85% vs 7.6% TPR at 10−4 FPR as shown in Figure 8c.

Space and Time Complexity. We compare the runtime of
DeepCorr, m-DeepCorr and DeepCoFFEA in Table IV for
varying testing set sizes (tn). We computed the total time to
complete the full tn × tn flow attack, including data loading
and the correlation metric computation. For DeepCoFFEA, we
computed the total time for loading testing flows, generating
feature embeddings, computing cosine similarity scores, and
aggregating the resulting votes across 11 windows. For m-
DeepCorr, we summed the time elapsed for the first stage



(a) ROC for old and future testing sets (b) ROC for various defenses
Fig. 9. DeepCorr performance against various testing sets and defenses (Note that x-axes are in log
scale and RG: Random guessing).

Fig. 10. DeepCoFFEA performance against
FRONTn by varying the padding window
length (n = Wmax) and the Decaf defense
(Note that x-axis is in log scale, RG: Random
Guessing, and DeepCoFFEA loss ≈ 0.006).

with DC100 and the second stage with DC700. In addition,
we measured the main and GPU memory consumption while
testing all three attacks.

Compared to DeepCorr, DeepCoFFEA had much lower
time and memory requirements. Even though the multi-stage
setting reduced the overhead of DeepCorr for longer flows,
for the correlation analysis using 10,000 testing flow pairs,
DeepCoFFEA still performed faster than m-DeepCorr by
two orders of magnitude (116:1) while using less memory.
We also note that the cost gap between m-DeepCorr and
DeepCoFFEA further increased as the number of flow pairs
increased. The discrepancy between both time and space costs
of DeepCoFFEA and DeepCorr clearly showed the benefit of
needing to apply FENs only once per flow window versus
applying DC100 to every pair of flows. More specifically, we
only needed to evaluate the Tor FEN 11 × tn times and the
Exit FEN 11 × tn times to generate all feature embeddings,
rather than evaluating t2n instances of the DeepCorr CNN.

The combination of feature embedding and amplification
helps improve the state-of-the-art performance while reducing
the complexity significantly, to the point that a DeepCoFFEA-
based end-to-end correlation attack may be feasible to deploy
at Tor scale.

Time Gap between Training and Testing Sets. Nasr, Bahra-
mali and Houmansadr [25] investigated DeepCorr using a test-
ing set collected three months later than the training set. To see
the effects of further separation, we evaluated DeepCorr using
DCF testing sets separated by 14 months. Figure 9a shows
that DeepCorr performance degraded significantly with the 14-
month-old testing set, while it performed comparably on the 2-
month-newer set. Based on the observation that DeepCoFFEA
effectively detected the correlated flows even after a 14-month
gap, this result clearly indicates that DeepCoFFEA requires
much less frequent re-training than DeepCorr, offsetting the
slightly greater training time complexity for DeepCoFFEA
compared to DeepCorr (Table III and V).

Robustness against Defenses. We further evaluated Deep-
Corr against the obfs4, WTF-PAD, and FRONT defenses.
Figure 9b shows that DeepCorr significantly degraded against
all defenses with 2.7% (obfs4), 2.5% (WTF-PAD), and 1.8%
(FRONT) TPRs at 10−3 FPR, whereas DeepCoFFEA detects
more than 80% of correlated pairs at the same FPR. This

result indicates the importance of amplification in DeepCoF-
FEA since many positive predictions on unmatched flow
windows failed to get enough votes to become FPs. The
relative effectiveness of FRONT against both attacks suggests
that WF defenses may be effective against flow correlation,
if the defense can also bypass the amplification effect of
DeepCoFFEA.

D. Summary of Contributions

We summarize the key findings as follows:
• Compared to state-of-the-art attacks, DeepCoFFEA

achieved a lower computational cost (Table IV) since
FENs are used to extract only O(n) feature embedding
vectors. Even though m-DeepCorr improved the complex-
ity of vanilla DeepCorr, DeepCoFFEA is more efficient
than m-DeepCorr by two orders of magnitude.

• DeepCoFFEA significantly lowers the number of FPs
(Figure 8a and 8b) due to the use of amplification. This
leads it to have substantial performance improvements
over DeepCorr and m-DeepCorr, e.g., by 80% in TPR
(i.e., 93% vs 13%) at 2 · 10−4 FPR.

• DeepCoFFEA is transferable across circuits, sites, and
time scales of up to 14 months (Figure 7c), suggesting
that annual retraining would suffice to maintain perfor-
mance. In contrast, DeepCorr was considerably worse
with a 14-month gap between training and testing (Fig-
ure 9a).

• DeepCoFFEA correctly detected many of the protected
flows by the obfs4 PT and WF defenses with 95%
(obfs4), 90% (WTF-PAD), and 84% (FRONT) for 10−3

FPR (Figure 7d). This is in contrast to DeepCorr de-
grading significantly against all defenses (Figure 9b).
Furthermore, DeepCoFFEA can conduct flow correlation
analysis for both undefended and defended traces without
training separate models (Figure 7e).

E. Countermeasures

In this section, we discuss potential countermeasures to
thwart DeepCoFFEA-style attacks. DeepCoFFEA learns the
difference between correlated and uncorrelated flows rather
than directly learning correlated features based on predefined
labels. This enables DeepCoFFEA to better understand the
distinction between obfuscated, correlated and uncorrelated



flows, even if the Tor flows are further perturbed. Figure 7d
demonstrates that FRONT was able to hinder DeepCoFFEA
to some degree, with a 15% TPR drop at 10−3 FPR, The
amount of the drop remains insufficient, however, such that
further ideas for defenses are needed.

Given the performance gap between DeepCoFFEA and
DeepCorr against all the defenses tested, we speculate that the
key property that makes DeepCoFFEA difficult for defenses is
its use of amplification, which can filter out incorrect correla-
tions from a subset of windows. Random noise generally does
not create enough false correlations across enough windows
among mismatched flow pairs to confuse the attacker. Thus, we
explored further settings in FRONT to undermine DeepCoF-
FEA more effectively. First, we increased the padding window
with Wmax = 25 to increase the chances to pad the entire 25-
second flow. Second, we decreased the padding window with
Wmax = 10 to increase the chances to inject dummy packets
in earlier windows. We also raised the padding data budget for
both of these tests (Ns, Nc = 2, 500) compared to Figure 7d.
As shown in Figure 10, the number of true positives decreased
when the obfuscation was forced into the first several windows.
This indicates that window-level obfuscation could be more
effective to weaken the amplification ability.

Thus, we further explored a new defense strategy called
Decaf to more effectively disrupt the window pattern. For
each Tor flow, ti, we randomly selected a peer flow from
the DCF set. After dividing the peer flow into ω-second non-
overlapping windows, we randomly picked v windows among
the total k windows. Note that vk is a tunable parameter. Then,
we extracted the timestamps, Tpad, in the chosen v windows
and for each ti, we injected dummy packets at Tpad. In this
way, we could force the defender to ruin the window pattern,
while making each Tor flow less distinct by adding timing
information from peer flows. Figure 10 shows the result of
applying this approach (Decaf-DCF) with ω = 5 seconds,
v
k = 0.5. The result had a bandwidth overhead of 49.6%
and performed much more effectively than any setting of
FRONT. This suggests that a defense specifically focused on
perturbing a significant fraction of windows could overcome
the amplification feature of DeepCoFFEA.

We made two assumptions in this evaluation. First, we
assume that the defender has access to the DCF set, which
makes Decaf less reliable. Thus, we conducted an additional
evaluation in which the defender picked peer flows from the
DeepCorr set (ω = 5 and v

k = 0.5). In this way, we can ensure
no exposure on the original flows. As shown in Figure 10, this
new setting (Decaf-DC) achieved comparable performance to
FRONT14 with 4% lower bandwidth cost.

Second, we assume that the defender knows the approximate
window duration used by the attacker. While the attacker is not
likely to disclose the parameters of the attack, our exploration
of window length found that a relatively small range of du-
rations were useful. Very short windows did not have enough
information to learn good embeddings, and longer windows
resulted in fewer windows overall, reducing the opportunity
for amplification. We leave further investigation of the best

method of regularizing windows and the consequences of
mismatched window durations for future work.

VII. CONCLUSION & FUTURE WORK

End-to-end correlation can break the unlinkability property
of an anonymity system, enabling an attacker to match users
with the servers they connect with. In this work, we illustrated
the practicality of such an attack by introducing DeepCoFFEA,
which is much more scalable and practically effective than
state-of-the-art attacks. DeepCoFFEA adapts the triplet net-
work architecture as a feature extractor to enable full pairwise
comparisons at a cost that is linear rather than quadratic with
the number of flows. Further, by splitting flows into a small
number of windows and extracting features for each window,
DeepCoFFEA creates multiple semi-independent correlation
tests that can be combined to amplify differences between
matched pairs of flows and unmatched pairs and thereby lower
the false positive rate.

By evaluating DeepCoFFEA in various experimental set-
tings, we demonstrated that this new architecture and attack
paradigm greatly improves state-of-the-art flow correlation
attacks while reducing time complexity by two orders of
magnitude.

Our work suggests several important directions for future
research. For example, it is possible that more realistic Tor
traffic is somehow different from our datasets, and realistic
flows lead to less correlated features. Another possible ques-
tion is whether more sophisticated DNN architectures (e.g.,
Var-CNN [8]) can be used to decrease the size of the training
set while yielding comparable performance to DeepCoFFEA.
Further investigation of the DeepCoFFEA architecture for
stepping-stone detection and correlation of VPN or HTTPS
proxy services might yield interesting results as well. However,
the most important next step is to devise a defense that can
be effectively deployed against DNN-based traffic analysis
attacks, since our empirical study demonstrates the weakness
of existing defenses.
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TABLE VI
MEAN TOTAL PACKET COUNT PER WINDOW DURATION.

interval 2 3 4 5
Tor flow 16 31 52 106
Exit flow 24 44 101 244

APPENDIX A
END-TO-END FLOW CORRELATION ATTACKS

End-to-end flow correlation attacks are mentioned in some
of the earliest work on low-latency anonymous communi-
cations, typically being referred to as Last/First attacks or
Packet Counting attacks [10], [11], [41]. Since designs like
the Freedom Network and Tor introduce some basic amount
of padding that defeats simple packet counting, later works
on passive end-to-end attacks used statistical measures of
correlation (e.g., normalized distance metrics, Pearson and co-
sine correlation, empirical mutual information) between flows
entering and exiting the network [42]–[45]. A separate line
of work has pursued active flow correlation attacks that insert
“watermarks” into network flows – by delaying or dropping
packets – that can survive the transformations introduced by
various network conditions [16], [46], [47].

While Tor does not attempt to defend against global passive
adversaries, Feamster and Dingledine [19] introduced the idea
of AS-level adversaries and showed that such adversaries could
potentially observe the entry and exit flows of a significant
fraction of the Tor network. Following this work, many
researchers investigated how routing dynamics and potential
manipulation of the routing infrastructure could position an
adversary to observe a larger fraction of traffic flows into and
out of the Tor network [13]–[15], [17], [18], [22], [23], [48],
[49], and introduced systems intended to reduce the fraction
of potentially observed flows [20], [21], [24], [50].

APPENDIX B
CONVOLUTIONAL NEURAL NETWORKS

CNNs [51] are DNN architectures that learn local patterns in
input data by employing local filters. More specifically, filters
are vectors of weights that are convolved with input feature
vectors by “sliding” along the positions of the input vector and
computing local dot products to produce feature maps. These
feature maps are then “pooled” to reduce their dimensions
before further processing is applied to these maps. CNNs are
composed of multiple convolutional blocks where each block
consists of a convolutional layer, followed by a pooling layer.
These blocks are followed by fully connected layers that each
compute an output vector by applying an element-wise non-
linear activation function to multiple linear combinations of
the previous layer.

CNNs have recently been applied as classifiers and feature
extractors for website fingerprinting and Tor ingress and egress
flow correlation analysis [5], [6], [25]. In this paper, we used

Fig. 11. ROC for different filter applied to the preprocessing when loss ≈
0.006.

the architecture of Deep Fingerprinting (DF) [5] as a starting
point for our feature extractors based on the preliminary
experimental results presented in Section IV-C.

APPENDIX C
WINDOW SETTING INVESTIGATION

Packet Count per Interval. We reported the mean values of
the total number of packets in various intervals (seconds) in
Table VI. This preliminary study helped determine window
intervals in which each window carries enough packets to
make correlational traffic analysis possible. We utilized this
result to determine the window interval search space as shown
in Table II.

Total Flow Duration. We presented the packet counts of 5-
second (non-overlapping) consequent subflows for 60 seconds.
Table VII shows that the packet count becomes less than 100
after 35 seconds. Based on this observation, we configured the
search space for the total flow duration up to 35 seconds in
Section V-C and finally chose 25 seconds after hyperparameter
tuning.

Window Length. We presented the packet counts of 11
windows and those are counts after padding or truncating
flows until the same packet counts remain in each window
in Table VIII. Since we used one Tor FEN and one Exit FEN,
the input dimensions for all windows have to be equal, in our
training, we used 500 packets for Tor traces and 800 packets
for exit traces in all windows.

Fig. 12. ROC of DeepCorr (DC) by varying the flow length (i.e., the number
of packets) (Note that x-axis is log scale and DC(w) is when evaluating
DeepCorr in the window setting).



TABLE VII
THE MEDIAN NUMBER OF PACKETS (PKT) FOR EACH INTERVAL (TOTAL FLOW DURATION: 60SECONDS).

window [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 60)

Tor 106 458 497 421 290 169 104 65 48 37 27 29
Exit 244 836 797 624 391 202 114 66 48 37 27 26

TABLE VIII
THE MEDIAN NUMBER OF PACKETS (PKT) FOR EACH INTERVAL (TOTAL FLOW DURATION: 25SECONDS AND TOTAL: THE TOTAL NUMBER OF PACKETS OF

25 SECOND FLOW).
window 0 1 2 3 4 5 6 7 8 9 10 total

Tor 106 271 415 481 501 497 479 439 399 347 299 2003
Exit 244 583 797 855 846 797 727 658 586 496 391 3441

TABLE IX
DEEPCOFFEA PERFORMANCE (%) PER WINDOW WHEN κ = 261.

w 0 1 2 3 4 5 6 7 8 9 10
T 97.2 98.8 97.9 98.2 97.3 96.9 97.4 97.3 97.8 97.6 97.5
F 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Fig. 13. ROC of m-DeepCorr (m-DC) by varying the multi-staged settings .

APPENDIX D
DEEPCOFFEA IN VARIOUS EXPERIMENTAL SCENARIOS.

Impact of Padding Amount. The connections to different
websites should carry a variety of packet counts since the
corpus of site sizes is tremendous. The DCF set was collected
using all unique 60,084 sites which led to a fair number
of flows to be padded or truncated. In this experiment, we
investigated the impact of the connections to smaller sites on
the DeepCoFFEA performance. We applied different filters
when preprocessing the training and testing sets to filter out
the connections whose trace packet counts were less than h.
As shown in Figure 11, we adopted h from 70, 300, and 500
and the DeepCoFFEA performance was hardly affected by
the inclusion of smaller sites, in other words, the increased
amount of padding. Thus, we selected 70 for h to evaluate the
transferability of the DeepCoFFEA across numerous sites in
a more realistic setting by adding more diversity to the site
load sizes.

Per-Window Performance. To quantify the amplification
capability to reduce the false positive count, we first evaluated
DeepCoFFEA within each window and then aggregated the
results with voting for comparison. As shown in Table IX,
the DeepCoFFEA behavior was consistent across all windows.
More interestingly, its performance was significantly benefited
by the amplification since FPR decreased from 12.5% to
0.13%. As such, the amplification plays a key role in boosting
the performance of DeepCoFFEA.

APPENDIX E
DEEPCORR WITH VARIOUS FEATURE DIMENSIONS

In Section VI-C, using 5,000 training and 2,093 testing
flow pairs, we tuned DeepCorr to maximize its performance
for a fair comparison. First, we started training the DeepCorr
using 5,000 flow pairs as DeepCorr used this scale in most
evaluations in the paper, and kept increasing up to 10,000
unique connections. The performance of DeepCorr did not
improve with more training data, rather, it became worse using
10,000 pairs. Thus, we chose 5,000 flow pairs as a more
effective number of training flows. After that, we explored
various packet counts per training flow up to 2,200 packets.
According to Figure 12, we decided to use 700 packets as
the flow length since the performance became more effective
than other flow lengths. Even though it was unable to train
DeepCorr using flows containing more than 1,000 packets due
to the limited resource, the performance of DeepCorr unlikely
improves using more packets since it degraded against 1,000
packet flows.

APPENDIX F
m-DEEPCORR TUNING

In this section, we investigated m-DeepCorr in a variety of
multi-stage settings. To gain the upgraded performance along
with the reduced correlation complexity, the latter stage of
DeepCorr trained using N packet flows should outperform
the former stage of DeepCorr trained using M packets when
M < N . Based on this insight and Figure 12 of Appendix E,
we chose 100, 300, 500, and 700 as the flow lengths since
they led to the performance improvement compared to shorter
dimensions and set 700 as the longest feature dimension since
the performance did not improve after 700 packets. The goal of
this analysis was to find the multi-stage setting which achieves
the effective performance while yielding the acceptable time
complexity.

We trained four DeepCorr models using p packets of
training data (namely DCp in which p=100, 300, 500, and
700) and then tested them in various r-stage settings in which
1 ≤ r ≤ 4 using testing traces. For example, in one of 2-
stage settings, 100 → 700, we first tested DC100 using all



testing flow pairs and then, tested DC700 using the correlated
flows determined by DC100. After investigating all possible
seven settings 6, we reported our exploration in Figure 13. We
excluded the results for 300→700 and 100→300→500→700
because we did not achieve better performance than 1-stage
setting (i.e., 700) and 3-stage settings, respectively. Compared
to 100 and 500, subsequent attacks such as 100→700 and
500→700 improved the overall performance. However, com-
pared to 1-stage attack (i.e., 700), multi-stage attacks led to
almost comparable (i.e., 100→700 and 500→700) or worse
performance (i.e., 100→300→700, 100→500→700). Based
on this study, we chose 100→700 and used it in Section VI-C
as m-DeepCorr since it gave us more effective correlation
capability than others at less time complexity than 500→700.

6There were 700, 100→700, 300→700, 500→700, 100→300→700,
100→500→700, and 100→300→500→700.
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