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ABSTRACT
Demand for end-to-end secure messaging has been growing rapidly
and companies have responded by releasing applications that imple-
ment end-to-end secure messaging protocols. Signal and protocols
based on Signal dominate the secure messaging applications. In
this work we analyze conversational security properties provided
by the Signal Android application against a variety of real world ad-
versaries. We identify vulnerabilities that allow the Signal server to
learn the contents of attachments, undetectably re-order and drop
messages, and add and drop participants from group conversations.
We then perform proof-of-concept attacks against the application
to demonstrate the practicality of these vulnerabilities, and suggest
mitigations that can detect our attacks. The main conclusion of
our work is that we need to consider more than confidentiality and
integrity of messages when designing future protocols. We also
stress that protocols must protect against compromised servers and
at a minimum implement a trust but verify model.

1 INTRODUCTION
Recently many software developers and companies have been inte-
grating end-to-end encrypted messaging protocols into their chat
applications. Some applications implement a proprietary protocol,
such as Apple iMessage [1]; others, such as Cryptocat [7], imple-
ment XMPP OMEMO [17]; but most implement the Signal protocol
or a protocol based on Signal, including Open Whisper Systems’
Signal [18], WhatsApp [21], Facebook Messenger [9], and Google
Allo [10]. These protocols have only recently started to undergo
formal security analysis.

Signal was known as TextSecure for versions 1 and 2 of the pro-
tocol but changed the name at version 3. TextSecure was developed
to provided end-to-end secure messaging over SMS. This required
TextSecure to support asynchronous conversations that are toler-
able to delayed, out-of-order, and dropped messages. Version 2 of
TextSecure added support for group conversations and the capabil-
ity to send messages over the internet instead of SMS. TextSecure
version 3 made a few changes to the cryptographic primitives and
protocol along with dropping support for SMS encryption.

To support asynchronous conversations Signal and protocols
based on it follow a consistent design. They assume a trusted cen-
tral server that handles key distribution and message routing and
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(a) Alice’s view of the conversa-
tion.

(b) Bob’s view of the conversa-
tion.

Figure 1: Speaker inconsistency in a conversation.

caching. Most implementations provide a user interface to verify
or authenticate the keys of conversation participants. To use one of
these applications, a user, Alice, registers and uploads a collection
of public keys and an identity key to the server. To send a message
to Alice, Bob downloads the public key material from the server
and initiates a protocol session, encrypting the first message and
sending it along with all the necessary data for Alice to initialize
her protocol session. The message is cached at the trusted server
until Alice is able to retrieve it. The applications provide a method
to verify that the server has distributed the correct public keys but
not to verify any other functionality of the server.

There are many other properties that the server is blindly trusted
to provide e.g. participant consistency and speaker consistency.
However, in many cases these properties are nearly as important
as message authentication. For example, Figure 1 shows Alice’s
and Bob’s differing views of a single Signal conversation. These
screenshots demonstrate the need for additional security properties.
The first transcript demonstrates Alice’s view of the conversation in
which she asks two questions of Bob. Without speaker consistency
Bob may see the second transcript, which has drastically different
meaning than the first.

We argue that a blindly trusted server is not a realistic threat
model for secure communication: if a protocol designer does not
trust the server to protect the content of messages, why should the
server be trusted to protect the order of their delivery, or the list of
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their recipients? Nation State Adversaries have previously coerced
private companies to provide access to servers or in the case of
Lavabit [16] to provide the private keys for a secure email platform.
Even without coercion the Signal application has pinned Google’s
TLS certificate to allow for censorship circumvention via domain
fronting, intentionally providing a third party with strong Man-In-
The-Middle (MITM) capabilities. We will show that in some cases,
even this restricted model of server compromise can be sufficient
to compromise the integrity of a Signal conversation.

In this work we analyze Signal with respect to conversations,
from the standpoint of a compromised server or server connec-
tion. Other work has looked at the Signal messaging protocol and
provided formal proofs for various properties of the protocol, some-
times requiring slight modifications. Since Signal does not docu-
ment a formal threat model we describe one we believe to be con-
sistent with the Signal developers’ decisions, along with a stronger
practical threat model. We analyze the conversation properties pro-
vided by signal under these threat models. Our work does not focus
on the usability of Signal, but on whether the application provides
any indication of violations of these conversation properties.

Our primary conclusion is that the Signal application puts too
much trust in a single entity. We describe attacks against the confi-
dentiality of messages, and integrity of conversations, along with
simple application modifications to mitigate these attacks by de-
tecting their presence and alerting the user. We emphasize future
applications with a single provider should use an untrusted server
model or at least a trust but verify model.

In Section 2 we discuss related work and detail the security
and conversation goals we consider. Section 3 and 4 detail the
Signal protocol and attacks we demonstarte against the Android and
desktop applications. Section 3 focuses on two party conversations
with Section 4 looking at group conversations. We discuss traffic
analysis of Signal in Section 5 and conclude in Section 6.

2 BACKGROUND
2.1 Signal Design
Briefly the Signal protocol works as follows for the user Alice:

(1) When installing, Alice registers her device with the Signal
server using SMS or voice to verify she owns the phone
number.

(2) Alice generates a handful of public-private key piars. An
identity key, a signed prekey, a last resort prekey, and 100
prekeys. She signs the signed prekey with her identity key.

(3) She uploads the public keys to the server.

Next we quickly describe Alice sending a message to Bob. We
describe the process in greater detail in Section 3

(1) The first time Alice sends a message to Bob she fetches his
public identity key, signed prekey, last resort prekey, and a
single prekey from the server. The server should not hand
out a prekey more than once.

(2) Alice then initiates a Signal session on her device and pro-
duces a symmetric encryption key. She encrypts her message
with this key.

(3) Alice uploads her encrypted message along with the key
material required for Bob to initialize his corresponding
session.

(4) Bob fetches this material and ciphertext from the server,
initializes his view of the session and decrypts the message.

There is only a single protocol session between Alice and Bob.
Multiple types of messages may be sent using this single session e.g.
two party conversation, attachments, group messages. For a more
detailed description of the protocol [13] describes the key exchange,
[12] describes the key ratcheting, and [2] details the protocol as
implemented in the Signal application.

2.2 Related Work
Frosch et. al. [5] were the first to formally analyze the TextSecure
messaging protocol. Their work was performed before TextSecure
changed its name to Signal. The authors show the key chaining of
Signal is an authenticated encryption scheme. They also describe
an Unknown Key Share Attack(̃UKS).

The goal of the Unknown Key Share Attack is to have an adver-
sarial user Bob convince Alice his keys are those of Charlies. Then
when Alice sends a message to Bob, Bob can forward the message
to Charlie as if Alice sent it to Charlie. Charlie then believes that
Alice has sent the message. This attack could be mitigated by simply
including the phone numbers of the participants in the Key Deriva-
tion Function (KDF) of the Authenticated Key Exchange (AKE).
If Alice was to included Bob’s phone number in the KDF Charlie
would compute a different decryption key than Alice’s encryption
key. This attack seems to be out of scope of the Signal develop-
ers [14]. For Bob to perform the attack in Signal, Bob downloads
Charlie’s public keys from the server and uploads them as his own.
The server does not require proof of knowledge of private keys
while uploading public keys.

Cohn-Gordon et. al. [2] formally analyze the Signal protocol as a
multi-stage key exchange protocol. They provide the most detailed
and up-to-date description of the protocol. They also define and
analyze a freshness model for considering forward secrecy in Signal.

Kobeissi et. al. [8] provide a novel method for automated verifica-
tion of protocols and implementations. They implement a variation
of Signal in their framework and apply their automated analysis.
They also demonstrate the UKS attack exists in the protocol and
a message replay attack exists when a prekey is not used in the
initial message of a session.

Rösler et. al. [15] recently analyzed security properties of group
conversations in three common messaging applications including
Signal. They describe a new model for considering the security of
group messaging and define similar properties to ours. Their prop-
erties are end-to-end confidentiality, perfect forward secrecy, future
secrecy, message authentication, traceable delivery, no duplication,
no creation, and closeness.

Traceable delivery is the property that a sender is notified of
successful or unsuccessful deliver of a message. No duplication
or creation are the properties that a message can not be replayed
and an outsider user can not send a message to the group. Finally
closeness is the property that only administrative users can modify
the group participants.



They identify and demonstrate two attacks we describe in this
paper. One attack allows a non-participating user to update group
membership and the other allows an adversary to forge receipt of
a message. They also identify a potential message ordering vul-
nerability but describe the attack incorrectly. We discovered these
attacks independent of their work.

2.3 Threat Model
Signal does not have a formally documented threat model. We first
describe five adversaries with differing capabilities and indicate
which ones we believe to be included the Signals original threat
model.

Adversary 1 is that of a passive Internet Service Provider. The
adversary can monitor all internet traffic originating from and dis-
tend for a target device. We assume the adversary can not monitor
SMS or voice data.

Adversary 2 has the capabilities of a Signal user participating in
a target conversation. The adversary may only control messages
originating from its own device.

Adversary 3 is that of an active Internet Service Provider. The
adversary may drop, inject, delay, or reorder network traffic but
can not break any of the cryptographic assumptions of Signal or
TLS.

Adversary 4 is an adversary that has access to the private TLS
keys of Signal or a domain front of Signal. This adversary may
intercept a target TLS session between a device and the Signal
infrastructure.

Adversary 5 is capable of corrupting the Signal servers. The
adversarymaymodify, inject, drop, or reorder anymessage between
any pair of users.

We assume that Signal’s threat model only includes Adversaries
1 and 3. A more realistic threat model would include all of our
adversaries. These adversaries represent the capabilities of Nation
State Adversaries that are known to exist.

2.4 Conversation Properties
Unger et. al. [19] identified security and usability properties recent
secure messaging research and applications have attempted to pro-
vide. We now describe these security and usability properties in
a manner consistent with [19] and discuss the academic research
related to each property in Signal.

Confidentiality is the property that only the intended recipients
are able to read a message. [5] and [2] show that the Signal proto-
col provides confidentiality but in Section 3.1 we show a passive
adversary can learn the contents of some attachments.

Integrity guarantees that a message will not be accepted if it
has been modified in transit. Since Signal provides authenticated
encryption it also provides message integrity.

Message Authentication implies all recipients can verify the source
of a message. Authenticated encryption also implies message au-
thentication.

Participant Authentication implies all participants in a conversa-
tion receive proof of possession of a long-term secret from all other
participants. The Unknown Key Share Attack is an attack against
participant authentication.

Participant Consistency is the property that all participants agree
on the participants in a conversation. The UKS attack is an attack
against participant consistency. We demonstrate another attack
against participant consistency of group conversations that is easier
to exploit in Section 4.

Destination Validation is provided when a recipient of a mes-
sage can verify they are an intended recipient of the message. The
existence of the Unknown Key Share attack violates destination
validation. Since the attack may have been performed the recipient
can not be convinced they were the intended recipient.

Forward Secrecy guarantees all previously encrypted messages
remain confidential after all key material has been compromised.
[2] and [8] show Signal is forward secure under a passive network
adversary that may corrupt past messages.

Backward Secrecy guarantees future encrypted messages remain
confidential after compromising key material. [8] shows Signal is
backward secret under a passive adversary that may reveal past
key material.

Anonymity Preserving is the property that the protocol does not
undermine any privacy preserving features of the underling trans-
port protocol. This is not a stated goal of Signal but the application
does attempt to circumvent state level censorship.We describe a the-
oretical attack against this circumvention along with a participant
correlation attack in Section 5.

Speaker Consistency implies all participants agree on the order
of messages as sent by an individual participant. We demonstrate
an attack against speaker consistency under Adversaries 2, 4, and 5
in Section 3

Causality Preserving is provided if messages are only displayed
after messages that causally proceed them. We demonstrate an
attack against causality preservation under Adversaries 2, 4, and 5
in Section 4.

Global Transcript is the property that all participants see all the
messages in the same order. Since Signal is not speaker consistent
or causality preserving it can not provide a global transcript.

Message Unlinkability is the property that proving ownership of
one messages does not prove ownership of another.

Message Repudiation exists if there does not exist a cryptographic
proof that a user authored a message. [5] discusses message repu-
diation and argues Signal provides this property.

Participant Repudiation exists if there does not exists a crypto-
graphic proof that a user participated in a conversation.

Out-of-Order Resilience is provided if a message is displayedwhen
it has been delayed in transit. This was an important goal of Signal’s
design.

Dropped Message Resilience is provided if a message can be de-
crypted without receipt of all previous messages. This was another
important goal for Signal.

Asynchronicity is provided if messages can be sent and received
when other participants are offline. Asynchronicity was a require-
ment of the Signal protocol.

Multi-Device Support implies an individual user may participate
in a conversation under the same identity from multiple devices.
Signal supports multiple devices.

No Additional Service. Signal requires a central service for user
key distribution, and message routing and caching.



(a) Sender notification of sent
message. (b) Sender notification of re-

ceived message.

Figure 2: Sender notification of successful message delivery

Computation Equality is the property that all participants in a
conversation perform computation equivalent operations. Signal
provides computational equality between participants.

Trust Equality is provided if all participants ave equivalent re-
sponsibility. Signal is trust equivalent.

Subgroup Messaging allows messages to be sent to a subset of the
participants of a group conversation. We show Signal can provide
subgroup messaging but these messages appear as normal messages
in the group conversation effecting the transcript consistency. There
does not exist a user interface to subgroup messaging.

Contractable groups are supported if participants may leave a
group conversation without restarting the protocol. Signal provides
contractible groups.

Expandable group are supported if participants can join a group
without restarting the protocol. Signal provides expandable groups.
We demonstrate a vulnerability in Section 4 where Signal allows
participants to be added to a group by non-participating Signal
users.

3 PROTOCOL USAGE ATTACKS
The process of Alice sending an encrypted message to Bob via the
Signal application is as follows:

(1) Alice computes a ciphertext for her message and assigns it an
ID of her current timestamp. She then uploads the message
and ID to the server addressed for Bob.

(2) The server notifies Alice when the message has been stored
for delivery to Bob. The application notifies the user via a
checkmark next to the outgoing message.

(3) If the server has an open websocket channel with Bob the
server will send the message to Bob over this channel. If not
the server will send a notification to Bob via Google Cloud
Messenger (GCM) then Bob will download the message via
an HTTP GET request to the server.

(4) After receiving the message Bob notifies the server of receipt
via the websocket channel or an HTTP DELETE request. Bob
then processes the ciphertext for display.

(5) When the server receives Bob’s notification it creates a re-
ceipt message with a source of Bob and destination of Alice.
The server sets the ID for the receipt to the ID of the message.
The server sends this receipt to Alice.

(6) WhenAlice receives the receipt the application adds a second
checkmark to the outgoing message.

Figure 2 shows the user interface of Alice when sending a message.
The single checkmark in (a) represents the message was received by
the server. The double checkmark in (b) informs Alice the message
has been delivered to Bob.

The encrypted message format is
key material| |counter| |ciphertext

where the key material is used to ratchet the encryption keys, the
counter is the sequence number of messages sent from Alice to Bob.
The message plaintext is formatted as
flags| |body| |attachment pointers| |group context| |expiration timer
The relevant fields of the plaintext are the body which contains
the message to display, the attachment pointers which contain the
ID, key, and digest of an attachment along with other information
that is not relevant to this work, and the group context which is
described later.

When Alice includes an attachment in a message to Bob the
following happens.

(1) Alice request an attachment ID and an attachment pointer
URL from the server.

(2) Alice then generates a symmetric encryption key, encrypts
the attachment with this key, and uploads the ciphertext to
the attachment URL.

(3) Alice then creates an attachment pointer which contains the
ID, key, and digest of the attachment.

(4) Alice sends an encrypted message to Bob which contains
this attachment pointer.

(5) Bob requests the attachment URL from the server for the
ID in the attachment pointer and downloads the attachment
ciphertext.

(6) Bob then verifies the digest, decrypts the ciphertext, and
displays the attachment.

Our goal in rest of this section is to demonstrate our attacks
against the Android Signal application downloaded from the Google
Play Store. The application is distributed with a pinned TLS cer-
tificate for the Signal server. We modified the APK to include our
own pinned certificate. This allowed us to intercept communication
between the application and the server and demonstrate attacks as
adversaries 4 and 5. We used mitmproxy to intercept and modify
the connections between the application and the server. We clearly
state when we intercept or modify communication in this manner,
it is only required for two of our attacks.

3.1 Confidentiality
Signal, like other messaging applications, is commonly used to send
animated images in GIF format. Many messaging services provide
integration with databases of gifs, allowing for convenient search
of gifs within the app. Signal introduced GIF searching in January
2016, giving users access to the Giphy database inside the Signal
application and using Giphy’s network API [11]. In order to retain
privacy for its users, Signal deployed anHTTP proxy throughwhich
a TLS Tunnel is negotiated to Giphy servers. The user’s query and
Giphy’s response flows through this tunnel. According to Signal,
this arrangement prevents them from seeing the plaintext content
of the search term or the GIF being selected. Giphy sees the search
term but not the address of the user who issued the request [11].



Figure 3: The top two images are always downloaded when
the user makes a query (assuming the images are not
cached).

We evaluated the strength of this approach against fingerprinting
attacks and found it to be lacking.

For an average user, the experience of sending a GIF is simple.
She selects Giphy from the attachments menu, opening a pane with
a search box and beginning the proxied phase of the transaction.
She searches and selects an image, which downloads the image
to her phone. Once she clicks send, her connection is no longer
proxied through an HTTP proxy and the image is sent like any
other attachment in Signal.

However, this approach presents an avenue for fingerprinting of
Signal traffic. Signal reveals the fact that an attachment exists by
communicating directly with the attachment server on both sides of
the transaction. Both the sender and receiver use the same amount
of bandwidth in their communication with the attachment server
and attachments are padded deterministically to 16 bit alignment
(in order to satisfy block cipher requirements).

This makes it possible for adversaries 1, 3, 4 and 5 to fingerprint
a victim’s traffic and obtain with reasonable accuracy the image
and the search term that the user entered. This is made easier by
the following conditions:

• Users are most likely to pick items that occur earlier in the
list of search results. If users cannot see the image they are
looking for, they are more likely to modify their search term
than scroll down a significant amount.

• There are very few collisions (Our scrapes returned 30 cases)
of image ciphertext sizes between terms on the first two
images.

• The Signal application downloads images as the user scrolls
through the list, allowing the adversary to select an image
from a smaller subset of images that are loaded rather than
the set of all images in the database.

As a proof of concept, we developed a low cost method for scrap-
ing Giphy servers to obtain a database of images to correlate against
Signal traffic. Our script queries Giphy in the same manner as Sig-
nal. Each query returns a list of 100 items encoded in JSON format,
including sizes. It iterates through a list of search terms, parsing
and enumerating 100 items from each search (Signal requests 100
results at a time). For each image the size, ciphertext size, and po-
sition in the displayed list is recorded. This makes for a database

of about 92,000 images. We note that some searches returned less
than 100 results.

The list of search terms was obtained from Giphy by scraping
for hashtag terms on each of the categories subpages on giphy.com.
There are about 25 categories, which include ‘actions’, ‘emotions’,
‘reactions’, and ‘animals’ among others. At the time of writing our
script resulted in 1030 unique search terms. These terms remained
consistent for the duration of our research.

The database was inexpensive to build. The script had a run time
of 423 seconds on average running on an Intel Xeon 5500 Core i7
CPU. Making search queries to Giphy was the bottleneck in the
process, taking on average 361 seconds. Each scrape downloaded
47 kB of data.

We also studied the long term relevance of our scraped data. We
ran our script hourly to determine the consistency of the Giphy
database. We considered images to be consistent if they remained
in the same position in the list using the same search term as before.
Under this definition, 90% of images remained consistent after 7
hours. We also looked at the consistency of the top two images in
each search, as these images are always loaded for every query. 90%
of those images remained consistent after 87 hours (3 days and 15
hours). Therefore, an adversary can scrape every 7 hours for high
consistency, or scrape every 87 hours for lower but manageable
consistency.

We offer two algorithms for fingerprinting Giphy images from a
trace of Signal traffic. We consider a naive algorithm, which returns
an exact image and term 65% of the time and otherwise narrows it
down to a range of images. We also consider a similar algorithm
that expends slightly more resources to get nearly exact results.
We refer to this as the ‘Precise Algorithm’. Both algorithms are
enumerated below. We assume the victim searched with a term
within the adversary’s list of terms and that the adversary has
scraped Giphy at the same time. We also assume the user has not
cached any images.

(1) Find the ciphertext size of the image from network flows
between the devices and the Signal attachment server.

(2) If the ciphertext size is unique in our database then the
process is complete. If there is a collision create a set of the
first two image sizes downloaded after the search. The Naive
Algorithm will stop here and not investigate collisions.

(3) Compare this set with corresponding sets inside our database
to obtain the term.

(4) Find an image with the same size within the subset of images
you have in our database for that search term.

We see in Table 1 a demonstration of the precision that can be
expected from both algorithms. Both algorithms can only give a
range of images due to collisions of image size, but the expected
range differs between algorithms. The Naive Algorithm will return
a range of less than five images in 99.29% of cases, while The Precise
Algorithm provides an adversary with 2 or less images in all cases.
The Precise Algorithm will also return the search term used to find
the image, which is not the case with the Naive Algorithm.

Size collisions of images that appear in the same search term are
the reason the Precise Algorithm cannot obtain the exact image,
but these cases are rare. In one scrape, we discovered 430 pairs
of images which had size collisions within the same search term.



Table 1: Algorithms

Adversary
Algorithm

Range of Images
≤ 5 ≤ 4 ≤ 3 ≤ 2 1

Naive 99.29% 97.89% 92.8% 75.93% 65.33%
Precise 100% 100% 100% 100% 99.85%

(a) Alice’s view of the conversa-
tion.

(b) Bob’s view of the conversa-
tion.

Figure 4: Dropped message attack experience by Alice and
Bob.

339 of these pairs were instances of duplicate images, which we
discovered by hashing the downloaded images. This left 91 pairs of
genuine collisions of different images which are linked by appearing
in the same search term.

Mitigating this attack is difficult as there is only a limited plain-
text space of images on Giphy. Since the HTTPS connection be-
tween the application and Giphy leaks so much information any
mitigation would require Giphy to pad the HTTP response sent to
the client. This is unrealistic to assume of Giphy so Signal should
stop tunneling Giphy connections and consider dropping Giphy
integration completely.

3.2 Speaker Consistency Attacks
We demonstrate two speaker consistency attacks. These attacks
can be performed by adversaries 4 and 5, that is an active MITM or
a corrupt server.

3.2.1 Dropped Messages. The Signal application is vulnerable
to dropped messages. An adversary with the capability to intercept
and modify communication between the message recipient and the
server can selectively drop messages while going unnoticed by the
sender and receiver.

We describe the attack on a conversation where the adversary
drops a message sent from Alice to Bob. When Bob downloads the

message from the server in step (3), the adversary modifies the
response to contain an empty list of messages. Then the adversary
acts as Bob in step (4) and sends a receipt to the server for the
message. The server will then act as though Bob issued the delete
request by sending a receipt to Alice for the message. The conver-
sation appears as though the messages was delivered correctly to
both Alice and the server but Bob has not seen the message.

3.2.2 Message Order. The Signal application does not verify
the order of messages when retrieving the list from the server. We
detail an attack on message order in a conversation between Alice
and Bob.

To break the speaker consistency property our adversary in-
tercepts the message retrieval list from the server to the Bob in
step (3). If there is only a single item in the list, the adversary can
send an empty list to the Bob. If there is two or more items in the
list our adversary reverses the order of the list. Bob will display
these messages in the order they appear in the list. Bob will then
acknowledge receipt of these messages to the server in reverse
order in step (4). Our adversary simply reverses the order of these
acknowledgments. Alice and the server assume the messages were
displayed in the correct order. Figure 1 shows the conversation as
seen by Alice and Bob when this attack is carried out.

3.2.3 Mitigations. To mitigate these two attacks the application
should trust but verify the server. Receipts of messages should be
end-to-end authenticated and include enough information for the
sender to verify in-order delivery.

The sequence number of themessage should be used to guarantee
in-order delivery. An early goal of Signal is to support asynchronous
channels for encrypted messages. Since version 2.7.0 Signal no
longer supports SMS and only allows communicating with the
server over TCP. There is no need to display messages out-of-order
anymore. Messages should never be dropped or delayed.

The receipt of a message should be end-to-end authenticated.
As it stands the Signal server creates the receipt that is sent to
the sender. It should be generated on the receiving device and
authenticated in the same manner as encrypted messages.

We stress that there is currently to much trust in the server. With
simple changes to the application it could be a stronger trust but
verify model.

4 GROUP CONVERSATION ATTACKS
Group conversations were added to Signal in an ad hoc manner.
The application only maintains a single Signal protocol session
between any two parties. Group conversations are tunneled over
these two party protocol sessions.

Recall the encrypted and plaintext message formats from Sec-
tion 3. The group context data is formatted as

ID| |type| |name| |members| |avatar
where ID is the ID of the group. The type field is one of unknown,
update, deliver, quit, or request info. The name is the group name
displayed to the user. Members is a list of phone numbers of the
participant in the conversation, and avatar is an attachment pointer
to an image for the group avatar.

In this work we focus on update and deliver messages. A group
message of type deliver indicates the body of the plaintext is to be



(a) Alice’s view of the conversa-
tion.

(b) Charlie’s view of the conver-
sation.

Figure 5: Alice’s and Charlie’s view of a conversation with-
out participant consistency

displayed to the group. Update messages are used to setup or add
participants to a group conversation.

The process of Alice setting up a group with Bob and Charlie is
as follows:

(1) Alice generates a random group ID and creates a group
context message of update type. She sets the members to
include Alice, Bob, and Charlie.

(2) She then encrypts and sends the message to Bob and Charlie
individually using the Signal protocol session she maintains
with each. The messages are sent in the same manner as two
party messages discussed prior.

(3) Bob and Charlie receive themessages and create a groupwith
all three participants and the ID, name, and avatar provided.

Updating a group is the same as setting up a group except the
existing group ID is used instead of generating a new one. Sending
a message to a group is similar except the message has type deliver
and the body of the plaintext holds the message to display.

The speaker consistency attacks discussed earlier exist in both
two party and group conversations. We now describe three attacks
that can be performed by an adversary that can corrupt a partic-
ipant, intercept communication between a single participant and
the server, or corrupt the server. The adversary only needs one of
those capabilities (adversaries 2, 4, and 5).

4.0.1 Participant Consistency. A malicious participant would
perform the attack as follows. In our attack an adversary Eve con-
structs a group that contains Alice, Bob, Charlie, and Eve. Eve con-
vinces Alice and Bob that the group contains all four participants
while convincing Charlie that the group contains Alice, Charlie,
and Eve but not Bob. To create the group Eve creates a group update
message containing the phone numbers for Alice, Bob, Charlie, and

(a) Bobs view of the conversa-
tion.

(b) Charlies view of the conver-
sation.

Figure 6: Bob and Charlies views of a conversation that does
not preserve causality

Eve with a random group ID. Eve encrypts and sends this message
to Alice and Bob. Then Eve constructs a new group update message
with the same ID but with only the phone numbers of Alice and
Eve. She then encrypts and sends this message to Charlie. Figure 5
shows Bob’s and Charlie’s views of the group under this attack.

There currently exists an open vulnerability in Android and
desktop clients where the author of a group update message is
not verified to be in the group. This allows any Signal user with
knowledge of the group ID to add any new participants to the group.
To obtain the group ID the usermust have at some point participated
in the group or corrupted a participant. This vulnerability was
independently discovered by Rösler et. al. [15]; they refer to it as
group burgling.

A MITM adversary may perform a similar participant consis-
tency attack. For a group setup by Alice between Alice, Bob, and
Charlie. When Alice sends the encrypted group update messages to
the server, she will send two at the same time: one addressed to Bob
and one addressed to Charlie. The adversary drops the message for
Charlie. Alice and Bob will believe they are in a group conversation
with each other and Charlie but Charlie does not participate in the
group.

4.0.2 Causality Preserving Attack. Signal also does not preserve
casuality of messages. We describe an attack from an adversary
with MITM capabilities. The goal of the adversary is to convince
Charlie that Bob has responded to his message when in fact Bob
replies to Alice’s.

The adversary only needs to MITM connections between a single
participant, Alice, and the server. First Charlie then Alice send a
message to the group. When the adversary sees two messages from
Alice, one destined for Bob and the other for Charlie, the adversary



stores the message for Charlie and only forwards the message for
Bob to the server. Bob then replies to Alice’s message, sending
the reply to both Alice and Charlie. After the reply is received by
Charlie, the adversary forwards the stored message to the server.
The transcript for Alice and Bob will contain the conversation as
intended by Alice and Bob but Charlie’s conversation will have a
different meaning. Figure 6 depicts Bob’s and Charlie’s view of the
conversation.

4.1 Mitigations
To provide participant consistency all users should participate in
setup and updates to come to a consensus on the group similar
to [6]. This mitigation will not allow asynchronous group setup.
Consistent asynchronous group communication is still an open
research problem.

Currently the Signal application creates a single Signal protocol
session between any two participants. This protocol session is used
to send all two party conversation messages and all group mes-
sages between the two users. To mitigate the speaker consistency
attacks a new Signal protocol session should be created for the two
party conversation and for each group conversation between the
participants.

Causality preservation of group conversations requires more
information to be encoded within the encrypted message. Each
group message should include a reference to the most recently
received message. This reference could be a hash of the most re-
cently received message. Since there does not exist a global ordering
of messages, a simple sequence number does not exist to use for
message order. The digest can be verified to exist in the transcript
before the new message is displayed. These mitigations move away
from a blindly trusted server to a stronger trust but verify model.

5 TRAFFIC ANALYSIS
Former Director of the Central Intelligence Agency General Michael
Hayden is quoted stating "We kill people based on metadata." [3]
It is not sufficient to provide only confidentiality of messages. We
should also consider the metadata of a conversation, such as who is
participating in a conversation and when messages are being sent.
There is an ongoing research effort to provide private communica-
tion but little work has attempted to do so for end-to-end secure
messaging.

Although it is not a goal of Signal to hide metadata, we quickly
discuss what is being leaked to a passive network adversary and
potential mitigations for these leaks. These mitigations may not be
difficult to implement with a trusted server model.

5.1 Censorship Circumvention
Signal implements domain fronting [4] to circumvent censorship in
repressive countries. Domain fronting is automatically applied by
the application when associated with phone numbers from those
countries. Domain fronting is a censorship circumvention tech-
nique that has been implemented by multiple applications [4]. The
technique works by connecting to an overt host in a hard to censor
cloud provider, then routing the traffic to the covert host. When
using domain fronting the Signal application will connect to one of
five google.com hosts at random and included a Host header field

used by Google servers to reroute the connection to the correct
host within Google’s cloud. The application has a separate Google
certificate pinned when accessing Signal via a fronting domain.
This provides Google with the capabilities of adversary 4.

Previous research has looked at how effective domain fronting
is in other applications. Wang et. al. [20] applied theoretical fin-
gerprinting attacks to a campus network traffic dataset to evaluate
each attack and finds the domain fronted services to be highly fin-
gerprintable with low false positive. We believe Signal to be highly
fingerprintable as well due to its traffic pattern being fairly distinct
from normal HTTP web traffic.

Signals traffic pattern is consistent between connections to the
server while sending or receiving messages. We discuss the traffic
pattern in enough detail to fingerprint the application but can not
perform a qualitative analysis without representative background
traffic which we were not able to procure for this research.

When the application is launched it first creates a websocket
connection to the server that stays idle except for heartbeat mes-
sages. To send a message the client sends a relatively constant sized
message to the server over the websocket channel and receives
a short OK message in response. When an encrypted message is
received, the server pushes a relatively constant sized message to
the client over the websocket channel and a short OK is sent to the
server in response. When receiving a message while the application
is closed, the phone receives a Google Cloud Messaging (GCM)
notification then makes an HTTP GET request to the server for all
messages in the client’s inbox. The server sends a response with all
the requested messages. After parsing the list, the client issues an
HTTP DELETE for each message individually. These messages have
consistent sizes and consistent timings. This differs from normal
web traffic, which downloads a file and may optionally create more
connections or download more files after the initial download.

Finally, the application does not use domain fronting for the
Giphy proxy or for attachment downloads, leaving the users vul-
nerable to detection.

To increase the censorship resistance of domain fronting in Sig-
nal, the application should use domain fronting for all network
traffic. Avoiding fingerprinting is still an ongoing research prob-
lem.

5.2 Conversation Metadata
We assume an adversarial network provider. The adversary may
record information about network traffic but not modify or delay it
in any way. These are the capabilities of an ISP. The adversary has
knowledge of all DNS traffic of the clients and all size and timing
of packets in a network stream.

When Alice sends a message to the server to be delivered to Bob,
the server sends the message if there is an open websocket channel
between Bob and the server. Then the server sends a receipt to
Alice. The only time this pattern differs is if there is not a websocket
channel between the server and Bob, in which case the server sends
a GSM message to Bob. Then Bob fetches the message and deletes
it, causing the server to send a receipt to Alice. The clients and the
server try to minimize the latency and network traffic produced
by Signal. This traffic pattern should allow a passive adversary to
infer participants of a conversation.



Figure 7: Network traffic pattern for sending and receiving Signal messages.

To demonstrate Signals network traffic patterns we sent 100
message from a sending client to a receiving client and recorded
the timing and size of TCP packets. Figure 7 represents the network
traffic of these messages. Positive values represent outgoing traffic
and negative incoming traffic. We summed all traffic in 100ms
windows of sending. The plots show that there is very little delay in
sending messages and both the sender and receiver have consistent
spikes in the first 200ms.

Mitigating these metadata leaks may not be too difficult. Since
Signal relies on a trusted server, it can simply inject delays and
noisy messages between clients to degrade the accuracy of these
simple attacks. Without an accurate model of Signal’s deployment
and usage we cannot provide further information on how much
noise to add to the communication.

The application may also provide access to Signal via Tor. This
would hide the destination of the client from the adversary and
help hide the traffic pattern of Signal. This may not hide all the
metadata from a determined adversary but will raise the bar for
mass surveillance.

6 CONCLUSION
We argue that although Signal is a strongmove in the right direction
there is still room to improve end-to-end encrypted messaging
applications. Starting from the assumption that the Signal server
should not be trusted with conversations any more than it would be
for messages, we have identified attacks on the extensions of Signal
messaging to attachments, conversations, and group participation.
These attacks allow an untrustworthy server or third-party relay to
violate confidentiality, speaker consistency, participant consistency,
andmessage causality in the Signal Android andDesktopmessaging
applications.

Our attacks are simple to implement and can be carried out by
realistic adversaries without detection against the current imple-
mentations. However, in most cases it is also possible to detect and
mitigate these attacks with small changes to the implementation or
protocol messages. In some cases, further work may be required

to determine the most effective way to notify users when these
attacks are detected.

It is our contention that the reason these vulnerabilities were not
identified sooner is because models of the protocol did not directly
incorporate the server as an independent entity. As a result, future
work in end-to-end secure messaging protocols should explicitly
model both conversational integrity properties and the possibility
of a compromised central server, and provide mechanisms to verify
the behavior of the server.
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