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Abstract. At TCC 2005, Backes and Cachin proposed a new and very
strong notion of security for public key steganography: secrecy against
adaptive chosen covertext attack (SS-CCA); and posed the question of
whether SS-CCA security was achievable for any covertext channel. We
resolve this question in the affirmative: SS-CCA security is possible for
any channel that admits a secure stegosystem against the standard and
weaker “chosen hiddentext attack” in the standard model of compu-
tation. Our construction requires a public-key encryption scheme with
ciphertexts that remain indistinguishable from random bits under adap-
tive chosen-ciphertext attack. We show that a scheme with this property
can be constructed under the Decisional Diffie-Hellman assumption. This
encryption scheme, which modifies a scheme proposed by Kurosawa and
Desmedt, also resolves an open question posed by von Ahn and Hopper
at Eurocrypt 2004.

1 Introduction
Suppose that Alice and Bob are prisoners, and that their prison warden has
foolishly allowed them to send “harmless messages” between their cells, so long
as he may listen to everything they say. Steganography is the study of techniques
that allow Alice and Bob to hide arbitrary messages – hiddentexts – in their
apparently harmless communications (normally, covertexts) so that the warden
cannot detect the presence of these messages. The case where the prisoners
share a secret key has been studied extensively in both information-theoretically
[5] and computationally secure settings [13, 9]. Several recent papers have also
addressed the case in which one or both of the prisoners has a public key [1, 3,
17]. In this paper, we are only concerned with the bare public key scenario,
considered in [3], in which only Bob publishes a public key, and any prisoner can
send hidden information to Bob.

A recent paper by Backes and Cachin [3] considers the scenario where the
warden may also inject messages into the channel between Alice and Bob, and
observe Bob’s reaction to these messages. Roughly, [3] gives a formal model
of this scenario and defines a strong sense of security against this adversary:
a stegosystem is said to be steganographically secure against adaptive chosen
covertext attacks (SS-CCA) if, even in this case, the warden cannot tell whether
Alice’s messages contain hiddentexts. Analogously to the standard cryptographic
notion of a chosen ciphertext attack, this seems to be the most general type of
attack possible on a system for steganography.



Backes and Cachin leave open the problem of constructing a stegosystem sat-
isfying SS-CCA, and instead address a relaxed notion of security, against adaptive
replayable chosen-covertext attacks (SS-PDR-CCA). Roughly, in this notion, the
warden is still allowed to inject messages into the channel between Alice and
Bob, except that he is now restricted from sending messages which are, in some
sense, replays of previous messages sent by Alice. Intuitively, two covertexts are
replays of each other with respect to a public key if they decode to the same
hiddentext. Backes and Cachin construct public-key stegosystems which satisfy
SS-PDR-CCA under a variety of assumptions.

While it is an important advancement to limit the adversary to replay attacks,
these attacks still constitute a serious threat against steganography. Imagine
that Alice sends Bob some message which prompts an “unusual” reaction; in a
replay attack, the warden can construct an apparently harmless covertext which
corresponds to the same hiddentext as Alice’s message, and send it to Bob.
If Bob has the same “unusual” reaction, in response to a different message, it
suggests to the warden that Alice’s covertext contained a hidden message.

In this paper, we show how the previously known schemes fail in defending
against replay attacks, and modify them to demonstrate the feasibility of the SS-
CCA security condition, for any efficiently sampleable channel. This is a stronger
assumption on the channel than in many previous works on steganography [1, 18,
9, 3], which assume only oracle access to the channel distribution. However, [14]
shows that any channel which admits a secure stegosystem at all (in the standard
model of computation) must be efficiently sampleable. Thus this construction
serves as a demonstration that the SS-CCA notion is feasible, even though our
particular construction may not always be practical to implement.

Our construction relies on the existence of public-key encryption schemes
which are pseudorandom against chosen-ciphertext attack, a nonstandard secu-
rity notion for encryption schemes. We also show that such encryption schemes
exist, without need of the random oracle assumption,1 under the Decisional Diffie-
Hellman assumption. The existence of an encryption scheme satisfying this no-
tion was an open question posed by von Ahn and Hopper [1].

Related Work. In addition to the work of Backes and Cachin [3], which we
build on, Le and Kurosawa [17] and von Ahn and Hopper [1] have both proposed
notions of security against “chosen stegotext attack.” The notion proposed in
[17] seems to be equivalent to SS-CCA; however the construction proposed there
requires that the receiver know the sender’s public key in order to decode. Sim-
ilarly, the SS-CSA notion of [1] explicitly includes the public key of the sender;
it can be thought of as an “attacker-specific” notion of security. However, the
security model of [1] is also intended to prevent forgery by the warden, which is
not a concern in the present model.

Both of these schemes require the sender to publish a public key. While this
may not be a concern for ordinary communication, it is undesirable for steganog-
raphy. This is because the aim of the sender in steganography is to avoid suspi-
cion – yet publishing a public key for a stegosystem may be inherently suspicious.

1 We note that several constructions in the random oracle model are known [4, 19].



On the other hand, it is frequently the case, as [1] argue, that the receiver
of steganography need not avoid suspicion. This could be the case when, for
example, the receiver is a newspaper or government agency wishing to receive
whistle-blowing reports. Or when the receiver is a human-rights organization
that would like to receive reports from its volunteers in the field. Thus it is
important to have a construction which is secure in the bare public key model.

Other recent papers on foundations of steganography have focused on the
private key setting. Cachin [5] formulated a model for steganography in an
information-theoretic setting. Hopper et al [13] gave the first rigorous formulation
of steganography with computational security, and demonstrated the feasibility
of the notion with provably secure constructions. They also proposed the model
of communication which subsequent work has followed. Independently, Katzen-
beisser and Petitcolas [15] proposed a similar security condition. Dedić et al [9]
address bounds on communication rate for a generic stegosystem. Lysyanskaya
and Meyerovich [18] consider the possibility of an imperfect covertext oracle.

Anderson and Petitcolas [2] first proposed the possibility of public-key stegan-
ography and gave a heuristic construction. Craver [8] proposed a notion of public-
key steganography with heuristic security against removal of the hiddentext. von
Ahn and Hopper [1] were the first to formulate rigorous security definitions for
the public-key case and demonstrate that public-key steganography was feasible.

Notation A function µ : N→ [0, 1] is said to be negligible if for every c > 0, for
all sufficiently large n, µ(n) < 1/nc. We denote the length (in bits) of a string
or integer s by |s|. The concatenation of string s1 and string s2 will be denoted
by s1‖s2. The assignment a‖lb = c means that a is the first l bits of c and b is
the remaining |c|− l bits of c. We assume the existence of efficient, unambiguous
pairing and un-pairing operations, so (s1, s2) is not the same as s1‖s2.

We let Uk denote the uniform distribution on k bit strings. If V denotes
an event in some probability space, we denote its complement by V. If D is a
probability distribution with finite support X, we define the minimum entropy
of D, by H∞(D) = minx∈X{log2(1/ PrD[x])}. For a probability distribution D,
we denote by x← D the action of drawing a sample x according to D. We denote
the statistical difference between distributions D and E , with finite support X,
by ‖D − E‖ = 1

2

∑
x∈X |PrD[x]− PrE [x]|.

2 Pseudorandomness against chosen-ciphertext attack

We will need to construct a public-key encryption scheme which satisfies a non-
standard security notion: indistinguishability from random bits under chosen-
ciphertext attack. A scheme satisfying this notion is also non-malleable [10]
and has pseudoranom ciphertexts [1]; the existence of a scheme simultaneously
satisfying these latter notions without random oracles was an open question
posed by von Ahn and Hopper at Eurocrypt 2004 [1].

Let E be a public-key encryption scheme with message expansion function `.
We define a chosen-ciphertext attack against E as a game played by an oracle
adversary A:



1. ADSK (PK) outputs challenge message m∗ ∈ {0, 1}l∗ .
2. A is given a challenge ciphertext c∗, where either c← EPK(m∗) or c← U`(l∗).
3. A continues to query DSK subject to the restriction that A may not query

DSK(c∗). A outputs a bit.

We define A’s CCA advantage against E by

Advcca
E,A(k) =

∣∣Pr[ADSK (PK, EPK(m∗)) = 1]− Pr[ADSK (PK, U`) = 1]
∣∣ ,

where m∗ ← ADSK (PK) and (PK, SK) ← G(1k), and define the CCA inse-
curity of E by InSeccca

E (t, q, µ, l∗, k) = maxA∈A(t,q,,µ,l∗)

{
Advcca

E,A(k)
}

, where
A(t, q, µ, l∗) denotes the set of adversaries running in time t, that make q queries
of total length µ, and issue a challenge message m∗ of length l∗. Then E is
(t, q, µ, l∗, k, ε)-indistinguishable from random bits under chosen ciphertext at-
tack if InSeccca

E (t, q, µ, l∗, k) ≤ ε. E is called indistinguishable from random bits
under chosen ciphertext attack (IND$-CCA) if for every probabilistic polynomial
time (PPT) A, Advcca

A,E(k) is negligible in k.

We show a simple modification of an encryption scheme of Kurosawa and
Desmedt [16] (which itself is a modification of the original Cramer-Shoup en-
cryption scheme [7]) which satisfies IND$-CCA. The main modification to the
scheme is to use a dense encoding of the DDH subgroup and rejection sampling
to produce uniform k-bit strings.

Setup. We let pk, Qk be large primes such that p = 2Q + 1 and 2k+1 > Q > 2k.
We let g ∈ Z∗p have order Q, and define the maps lr : 〈g〉 → ZQ, qr : ZQ → 〈g〉
such that lr(v) = v if v ≤ Q and lr(v) = −v mod p otherwise; and qr(u) = u if u
is a quadratic residue modulo p and qr(u) = p−u otherwise. Notice that qr◦lr is
the identity map on the quadratic residues and lr◦qr is the identity map on ZQ.
We assume the Decisional Diffie Hellman (DDH) assumption: for any PPT A,
Advddh

A,g,p,Q(k) = |Prx,y←ZQ
[A(gx, gy, gxy) = 1] − Prx,y,z←ZQ

[A(gx, gy, gz) = 1]|
is negligible.

We assume the existence of a family of target collision-resistant hash func-
tions H : {0, 1}2k → ZQ,2 A universal family of hash functions Λ : ZQ →
{0, 1}2k′ , an IND$-CPA symmetric-key encryption scheme E,D with k′-bit keys,3

and a pseudorandom function family F : {0, 1}k′ ×{0, 1}∗ → {0, 1}τ .4 Note that
the existence of all of these primitives is implied by the DDH assumption.

Key Generation. Choose random g1, g2 ∈ 〈g〉, and choose random x1,x2,y1,y2∈
ZQ. Compute the group elements c = gx1

1 gx2
2 , d = gy1

1 gy2
2 . Choose hash functions

H,Λ. The public key is (g1, g2, c, d, H, Λ) and the private key is (x1, x2, y1, y2).
2 so for any PPT A, Advtcr

A,H(k) = Prh←H [h(A(h(x))) = x : x← ZQ] is negligible
3 so for any PPT A, Advcpa

A,E(k) = |PrK←Uk′ [A
EK (1k′) = 1] − Pr[AU|·|(1k′) = 1]| is

negligible
4 so for any PPT A, Advprf

A,F (k) = |PrK←Uk′ [A
FK (1k′) = 1] −

Prf :{0,1}∗→{0,1}τ [Af (1k′) = 1]| is negligible.



Encryption. Given a message m ∈ {0, 1}∗, repeat the following steps:

– Choose r ← Zq.
– Compute u1 = lr(gr

1), u2 = lr(gr
2)

Until u1, u2 are both at most 2k. Then compute α = H(u1‖u2), v = crdrα,
(K, κ) = Λ(v), e = EK(m), T = Fκ(e). The ciphertext is u1‖u2‖e‖T .

Decryption. To decrypt the ciphertext u1‖u2‖e‖T , first compute α = H(u1‖u2)
and compute v = qr(u1)x1+y1αqr(u2)x2+y2α, K‖κ = Λ(v). Test whether T =
Fκ(e); if not output ⊥, otherwise output DK(e).

Theorem 1. If k ≥ 4k′, then

InSeccca
E (t, q, µ, l, k) ≤ 8InSectcr

H (t, k) + 12InSecddh
g,p,Q(t) + 4InSeccpa

E (t, 1, l, k′)

+ (16q + 4)InSecprf
F (t, q, µ, k′) + 8q(2−τ +2−k′+1) + 2−k′+4

The security proof appears in the full version and closely follows the security
proof for Kurosawa and Desmedt’s scheme given by Gennaro and Shoup [11].

3 Definitions

Channels. We follow previous work [13, 17, 1, 9] in modeling the communication
between two parties by a channel. We define a channel C as a family of probability
distributions on documents from a set D, indexed by sequences h ∈ D∗. A
channel implicitly defines an indexed distribution on sequences of ` documents
— given index h, draw d1 ← Ch, d2 ← C(h,d1), . . ., d` ← C(h,d1,...,d`−1). We call
the index h the history and label this distribution on sequences by C`

h. A history
h = (d1, d2, . . . , d`) is called legal (denoted h ∈ H) if for all i, PrC(d1,...,di−1) [di] >

0. A channel is always informative if for every legal history h, H∞(C`
h) = Ω(`).

We will require that a channel be efficiently sampleable: there is an efficiently
computable algorithm channel such that channel(h, Uk) and Ch are computation-
ally indistinguishable.5 This is in contrast to the models of [13, 9, 1, 3], where the
channel is assumed to be accessible only via a probabilistic oracle. While results
in that model are in some sense more general, we refer the reader to [14] for a
proof that in the standard model of computation, sampleability is necessary for
secure steganography.

Since it is widely believed that all natural processes can be computed in
probabilistic polynomial time [12], we do not in theory rule out steganography
for any realistic channels by requiring the channel to be sampleable. On the
other hand, it is conceivable that there are channels which we can currently
sample physically but not computationally, and thus in practice it is still an
open problem to design a stegosystem which is SS-CCA secure for such channels.
5 Some examples of widely used channels satisfying this notion include: scientific sim-

ulations, cryptography and security protocols, computer games, financial modeling,
weather forecasts, etc.



Public-Key Stegosystem. A public-key stegosystem S is a triple of proba-
bilistic algorithms:

– S.Generate (abbreviated SG) takes as input a security parameter 1k and
generates a key pair (ρ, σ) ∈ PK × SK.

– S.Encode (abbreviated SE) takes as input a public key ρ ∈ PK, a string
m ∈ {0, 1}∗ (the hiddentext), and a channel history h. SE(ρ,m, h) returns a
sequence of documents s1, s2, . . . , sl (the stegotext) from the support of Cl

h.
– S.Decode (abbreviated SD) takes as input a secret key σ ∈ SK, a sequence

of documents s1, s2, . . . , sl, and a channel history h. SD(σ, s, h) returns a
hiddentext m ∈ {0, 1}∗.

We require that a stegosystem is correct: for every polynomial p(k) there exists
a negligible ν(k) such that for every m ∈ {0, 1}p(k), legal history h, and (ρ, σ) ∈
[SG(1k)], Pr[SD(σ, SE(ρ,m, h), h) = m] ≥ 1− ν(k).
Chosen-Covertext Attack. In an adaptive chosen-covertext attack against a
public-key stegosystem S, a challenger draws a key pair (ρ, σ) ← SG(1k), and
an adversary W is given PK and allowed oracle access to SDσ. The attacker
produces a challenge hiddentext m∗ and history h∗ and is given as a response a
sequence of documents s∗ ∈ D`(|m∗|). After this, the attacker continues to query
SD with the restriction that he may not query SD(s∗). (As always, W may
depend on the channel distribution C) At the conclusion of the attack, W must
guess whether s∗ ← SE(ρ,m∗, h∗) or s∗ ← C`∗

h∗ . We define the (steganographic)
Chosen-Covertext Advantage of W against S with respect to C by

Advscca
S,C,W(k) =

∣∣∣Pr[WSDσ (PK, SE(ρ,m∗, h∗)) = 1]− Pr[WSDσ (ρ, Cl∗

h∗) = 1]
∣∣∣ ,

where (m∗, h∗)←WSDσ (ρ) and (ρ, σ)← SG(1k). We define the sCCA insecurity
of S with respect to C by

InSecscca
S,C (t, q, µ, l∗, k) = max

W∈W(t,q,µ,l∗)

{
Advscca

S,C,W(k)
}

,

where W(t, q, µ, l∗) denotes the class of all W running in time t which make at
most q oracle queries of µ bits and submit a challenge hiddentext of length at
most l∗.

We say that S is (t, q, µ, l, k, ε) secure against chosen-covertext attack with
respect to C if InSecscca

S,C (t, q, µ, l, k) ≤ ε, and that S is secure against chosen-
covertext attack with respect to C (SS-CCA) if Advscca

S,C,W(k) is negligible for all
PPT W .

4 Previous constructions

Both previously known constructions of (bare) public-key steganography [1, 3]
have a common structure. Let F denote a strongly universal family of hash
functions f : D → {0, 1}. Let f ← F be chosen as part of a public key, or fixed
as a “common reference string.” Then both constructions use the routine shown
in figure 1 to hide uniformly chosen bits in C



Procedure sample:
Input: target c ∈ {0, 1}, history h, bound k
Let j = 0
repeat:

sample s← Ch, increment j
until f(s) = c OR (j > k)
Output: s

Fig. 1. Sampling routine

Proposition 1. Let C be always informative and f ← F . Then for any h ∈ H,

‖(f, sample(h, U1, k))− (f, Ch)‖ ≤ 2−H∞(Ch)/2 .

The proposition is a direct consequence of the leftover hash lemma. If the
channel is always-informative, sample can operate on samples from Ck

h and in-
duce only a negligible statistical difference in its output distribution. The basic
construction of a stegosystem, HashRS, is shown in figure 2, where (G, E, D) is
a public-key cryptosystem which has pseudorandom ciphertexts.

Informally, the scheme works by transforming the hiddentext into a uniform-
looking ciphertext c = EPK(m). The ciphertext bits are then used one at a time
(or w at a time, with sampling costs and statistical difference increased by a
factor of 2w) to select covertexts that hash (via f) to the bits of the ciphertext,
using sample. Since the ciphertext looks uniform, the covertexts thus selected will
be indistinguishable from samples from Ch. Decoding applies f to each covertext
document to recover the ciphertext c, and then decrypts this ciphertext using
SK to compute the hiddentext m = DSK(c).

The Backes-Cachin construction instantiates HashRS with a public-key en-
cryption scheme which satisfies two properties. First, it must be PDR-CCA se-
cure, as defined by Canetti et al [6]. Second, the encryption scheme should have
pseudorandom ciphertexts: given the public key it was encrypted under, a ci-
phertext should be computationally indistinguishable from a random string of
the same length. When instantiated with a public-key cryptosystem satisfying
these properties, we call the resulting stegosystem BC.

Intuitively, the SS-PDR-CCA security of the BC scheme arises from the fact
that W is disallowed from submitting covertexts that decode to the same hidden-
text. Thus an attack W against BC can easily be turned into a PDR-CCA attack
A against the underlying encryption scheme. The main technical step is in simu-

Procedure Encode:
Input: m ∈ {0, 1}l, h, PK
Draw c1 · · · c` ← E(PK, m)
for i = 1 . . . ` do

set si = sample(ci, (h, s1,...,i−1), k).
Output: s1, s2, . . . , s`

Procedure Decode:
Input: s1, s2, . . . , sl, SK
for i = 1 . . . l do

set ci = f(si)
set c = c1||c2|| · · · ||cl.
Output: D(K, c)

Fig. 2. HashRS Stegosystem



lating decryption queries: whenever W queries the decoding oracle on a covertext
s = s1, . . . , s`, the PDR-CCA attacker computes a ciphertext c = c1, . . . , c` by
setting ci = f(si). If the ciphertext c is a replay of the challenge ciphertext c∗,
then the stegotext s is also a replay, so A responds to W with ⊥. Otherwise A
queries his decryption oracle at c and returns the result to W .

This standard simulation technique also hints at a CCA attack against the
BC stegosystem. We now formally describe the attack W . On input PK, W
uniformly picks a challenge message m∗ ← Ul∗ . On receiving the challenge
covertext s∗, W computes c∗ by setting c∗i = f(s∗i ). W computes a “replay”
covertext s′ ← sample((h∗, s∗), c∗, k). Finally, W queries the decryption oracle
on s′. If SDSK(s′) = m∗, W outputs 1 and otherwise W outputs 0. It is obvious
that when s∗ ∈ SE(PK, m∗, h∗), then we will have that SD(SK, s′, h∗) = m∗

except when encoding fails, since otherwise unique decryption requires that
DSK(c∗) = DSK(EPK(m∗)) = m∗. On the other hand, when s∗ ← C`

h, then m∗

and s∗ are chosen independently of each other, so Pr[DSK(c∗) = m∗] ≤ 2−l∗ .

Proposition 2. For every l∗, there exists a negligible function ν(k) such that

Advscca
W,BC(k) ≥ 1− 2−l∗ − ν(k)

Note that the “replay” covertext will be indistinguishable from a sample from
the channel, so the decoder would have no reason not to decode it and act on any
information contained in the hiddentext. Thus this attack is reasonable, in that
it could be applied in a realistic scenario, rather than being merely an artifact
of the model. Of course the adversary might further attempt to replay the exact
stegotext; this latter attack is, however, impossible to defeat.

5 Our Construction

Intuitively, the reason the attack in the previous section succeeds is that even
though the underlying ciphertext is non-malleable, there are many possible en-
codings of the ciphertext. This observation immediately suggests a possible im-
provement: design a sampling method such that each ciphertext corresponds
to exactly one stegotext. Indeed, the construction of [17] seems to have this
property, but this construction inherently requires a shared secret between the
encoder and the decoder. Likewise, the “attacker-specific” construction of [1]
seems to achieve a similar property, but validity of a stegotext is determined
by the sender’s public key. Our construction modifies this latter approach to
remove this dependence on the sender, and also removes the reliance on the
random oracle model from that construction.

We make use of the fact that we have an efficiently sampleable channel C,
and will make use of the “deterministic encoding” routine shown in figure 3.
This algorithm works in a similar manner to the HashRS.Encode algorithm, with
the exception that the randomness for sampling is an explicit argument. Thus
for a given sequence of lk random inputs, this routine has exactly one possible
encoding for any message c ∈ {0, 1}l. Thus if an l-bit, non-malleable, ciphertext
can determine the lk bits of sampling randomness to be used in its encoding, we



Procedure DEncode:
Input: bits c1, . . . , cl, history h, bound k, randomness r1, . . . rlk ∈ {0, 1}k
Let ι = 0; for i = 1 . . . l do

Let j = 0; repeat:
compute si = channel((h, s1...i−1), rι); increment j, ι

until f(si) = ci OR (j > k)
Output: s1, s2, . . . , sl

Fig. 3. Deterministic Encode

Procedure Encode:
Input: m ∈ {0, 1}`, h, PK
Choose r ← Uk

Let c = EPK(r‖m)
Let r = G(r)
Output: DEncode(c, h, k, r)

Procedure Decode:
Input: s1, . . . , sl, h, SK
Let c = f(s1)‖ · · · ‖f(sl)
Let r‖km = DSK(c).
Set r = G(r).
If s 6= DEncode(c, h, k, r) return ⊥.
Output: m

Fig. 4. SCCA Stegosystem

can prevent replay attacks. One way to do this is to apply a random oracle to
the randomness used in producing the ciphertext; this approach was used by [1].
We instead use a pseudorandom generator to expand an k-bit seed into an lk-bit
sequence and then include this seed in the plaintext. Proving the security of this
approach requires some additional care, because now it is conceivable that the
sampling algorithm could leak information about the plaintext.

We now formally describe our construction. We will assume that E is a public-
key IND$-CCA secure encryption scheme, and (PK, SK) ← E .G(1k). Further-
more, we assume that for any l, Pr[DSK(Ul) 6=⊥] ≤ ν(k) for some negligible
ν. Thus, valid ciphertexts, which do not decrypt to ⊥, have negligible density.
For convenience, we assume that for all m, |EPK(m)| = `(|m|), for some poly-
nomial `. We will also assume that G : {0, 1}k → {0, 1}k×lk is a pseudorandom
generator. The final scheme SCCA is shown in Figure 4.

Theorem 2. Let f ← F and let ε = maxh∈H

{
2−H∞(Ck

h)/2
}

= 2−Ω(k) . Then

InSecscca
SCCA,C(t, q, µ, l, k) ≤ InSeccca

E (t′, q, µ, l, k)+ν(k)+`(l+k)ε+InSecprg
G (t′, k),

where t′ ≤ t + O(lk).

Proof. Choose an arbitrary W ∈ W(t, q, µ, l); let (PK, SK) ← G(1k) and let
(m∗, h∗) ← WSDSK (PK). We will bound Advscca

W,SCCA,C(k) by considering the
following sequence of hybrid distributions:

– D1: C`(l+k)
h∗

– D2: DEncode(U`(l+k), h
∗, k, Uk×lk)

– D3: DEncode(U`(l+k), h
∗, k,G(Uk))

– D4: DEncode(EPK(r‖m∗), h∗, k, G(r)), where r ← Uk

Clearly D4 perfectly simulates the stegotext distribution, and likewise D1 per-
fectly simulates the covertext distribution. For convenience, we will define the



quantity Advi
W (k) =

∣∣Pr[WSD(PK, Di+1) = 1]− Pr[WSD(PK, Di) = 1]
∣∣, and

note that

Advscca
W,SCCA,C(k) =

∣∣Pr[WSD(PK, D4) = 1]− Pr[WSD(PK, D1) = 1]
∣∣

≤ Adv1
W (k) + Adv2

W (k) + Adv3
W (k).

Thus we proceed to bound Advi
W (k) for i ∈ {1, 2, 3}.

Lemma 1. Adv1
W (k) ≤ `(l + k)ε

Proof. This follows because ‖f(Ch) − U1‖ ≤ ε, and no (nonuniform) efficient
process can increase statistical distance.

Lemma 2. Adv2
W (k) ≤ InSecprg

G (t′, k)

Proof. We will construct a PRG adversary A for G such that Advprg
A,G(k) =

Adv2
W (k). A works as follows: first, A picks a key pair (PK, SK) ← G(1k)

to use in responding to the queries W makes to SD. A is given as input a
string r ∈ {0, 1}k×lk and asked to decide whether r ← Uk×lk or r ← G(Uk).
Then A can achieve advantage precisely Adv2

W (k) by emulating W , responding
to its decoding queries using SK, and responding to the challenge hiddentext
(m∗, h∗) by drawing c← U`(l+k) and giving the response s = DEncode(c, h, k, r).
If r ← Uk×lk, then s← D1, and if r ← G(Uk), then s← D2. Thus A’s advantage
in distinguishing G(Uk) and Uk×lk is exactly:

Advprg
A,G(k) = |Pr[A(G(Uk)) = 1]− Pr[A(Uk×lk) = 1]|

=
∣∣Pr[WSD(D2) = 1]− Pr[WSD(D1) = 1]

∣∣
= Adv2

W (k)

Lemma 3. Adv3
W (k) ≤ InSeccca

E (t′, q,µ, k) + ν(k)

Proof. We will construct an adversary A that plays the chosen-ciphertext attack
game against E with advantage Advcca

A,E(k) ≥ Adv3
W (k).

A starts by emulating W to get a challenge hiddentext, responding to decod-
ing queries as follows: on query (s1, . . . , sl, h), A computes c = f(s1)‖ · · · ‖f(sl);
A then uses its decryption oracle to compute r‖km = DSK(c). If c 6=⊥ and
s = DEncode(c, h, k,G(r)), A returns m, otherwise A returns ⊥.

When W generates challenge (m∗, h∗), A chooses r∗ ← Uk and outputs
the challenge r∗‖m∗. A is given the challenge ciphertext c∗ and returns s∗ =
DEncode(c∗, h∗, k,G(r∗)) to W .

A continues to emulate W , responding to queries as before, except that on
decoding query (s1, . . . , sl, h), A first checks whether f(s1)‖ · · · ‖f(sl) = c∗; if so,
A returns ⊥ rather than querying DSK(c∗).

In other words, A simulates running SCCA.Decode with its DSK oracle, ex-
cept that because A is playing the IND$-CCA game, he is not allowed to query
DSK on the challenge value c∗: thus a decoding query that has the same under-
lying ciphertext c∗ must be dealt with specially.



Notice that when A is given an encryption of r∗‖m∗, he perfectly simulates
D4 to W , so that Pr[ADSK (PK, EPK(r∗‖m∗) = 1] = Pr[WSD(PK, D4) = 1].
This is because when c∗ = EK(r∗‖m∗) then the test s = DEncode(c, h, k,G(r))
would fail anyways. Likewise, when A is given a random string, he perfectly
simulates D3 to W , given that c∗ is not a valid ciphertext. Let us denote the
event that c∗ is a valid ciphertext by V, and the event that a sample from D3

encodes a valid ciphertext by U; notice that by construction Pr[U] = Pr[V]. We
then have that

Pr[AD(PK, U`)=1] = Pr[AD(PK, U`)=1|V] Pr[V]+Pr[AD(PK, U`)=1|V] Pr[V]

≤ Pr[WSD(PK, D3) = 1|U] Pr[U] + Pr[V]

≤ Pr[WSD(PK, D3) = 1] + Pr[V]

≤ Pr[WSD(PK, D3) = 1] + ν(k) ,

since Pr[V] ≤ ν(k) by assumption on E . Combining the cases, we find that

Advcca
A,E(k) = Pr[ADSK (PK, EPK(r∗‖m∗) = 1]− Pr[ADSK (PK, U`) = 1]

= Pr[WSD(PK, D4) = 1]− Pr[ADSK (PK, U`) = 1]

≥ Pr[WSD(PK, D4) = 1]− Pr[WSD(PK, D3) = 1]− ν(k)

= Adv3
W (k)− ν(k)

Remark. As described, the stegosystem SCCA requires the decoder to know the
algorithm channel used by the encoder to sample from C. This can be avoided by
changing the encoder to append a canonical encoding of this algorithm to the
hiddentext before encrypting; the decoder then recovers this algorithm before
running the final DEncode check. Since the length of the algorithm is constant,
the security bounds for the resulting scheme are essentially unchanged.

6 Conclusion and open problems

We have argued for the importance of a SS-CCA-secure stegosystem in the bare
public key model, and given the first construction which meets this criterion.
This resolves an open question posed by Backes and Cachin [3]. Furthermore, our
construction relies on a public-key cryptosystem which is pseudorandom against
chosen-ciphertext attack in the standard model. The existence of a cryptosystem
satisfying this notion was an open problem posed by von Ahn and Hopper [1].
Because replay attacks are a realistic possibility, this represents an important
advance over previous work.

One interesting direction for future work is to investigate the relationship
between efficiently sampleable channels and the probabilistic channel oracle no-
tion of earlier work. Designing a SS-CCA stegosystem in this setting seems to
be a challenging problem. Another important notion of security against active
attacks is robustness — the property that an attacker is unable to “remove” the
hiddentext from a message. Hopper et al [13] define a weak notion of robustness
and give a robust construction in the private key case. To our knowledge, there is



no provably secure construction satisfying this definition in the public-key case.
It is interesting to note that SS-CCA and robustness are inherently contradic-
tory, since robustness requires that a replay attack is possible. Thus it is also
an interesting question whether some notion of robustness with decoding oracles
can be achieved, even in the private key case.
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