
1

Vampire attacks:
Draining life from wireless ad-hoc sensor networks

Eugene Y. Vasserman∗ and Nicholas Hopper
Kansas State University University of Minnesota

eyv@ksu.edu hopper@cs.umn.edu
∗Work performed while at the University of Minnesota

Abstract—Ad-hoc low-power wireless networks are an exciting
research direction in sensing and pervasive computing. Prior
security work in this area has focused primarily on denial of
communication at the routing or medium access control levels.
This paper explores resource depletion attacks at the routing
protocol layer, which permanently disable networks by quickly
draining nodes’ battery power. These “Vampire” attacks are not
specific to any specific protocol, but rather rely on the properties
of many popular classes of routing protocols. We find that all
examined protocols are susceptible to Vampire attacks, which
are devastating, difficult to detect, and are easy to carry out
using as few as one malicious insider sending only protocol-
compliant messages. In the worst case, a single Vampire can
increase network-wide energy usage by a factor of O(N), where
N in the number of network nodes. We discuss methods to
mitigate these types of attacks, including a new proof-of-concept
protocol that provably bounds the damage caused by Vampires
during the packet forwarding phase.

Index Terms—Denial of service, security, routing, ad-hoc net-
works, sensor networks, wireless networks.

I. INTRODUCTION

Ad-hoc wireless sensor networks (WSNs) promise excit-
ing new applications in the near future, such as ubiqui-
tous on-demand computing power, continuous connectivity,
and instantly-deployable communication for military and first
responders. Such networks already monitor environmental
conditions, factory performance, and troop deployment, to
name a few applications. As WSNs become more and more
crucial to the everyday functioning of people and organi-
zations, availability faults become less tolerable — lack of
availability can make the difference between business as usual
and lost productivity, power outages, environmental disasters,
and even lost lives; thus high availability of these networks
is a critical property, and should hold even under malicious
conditions. Due to their ad-hoc organization, wireless ad-hoc
networks are particularly vulnerable to denial of service (DoS)
attacks [75], and a great deal of research has been done to
enhance survivability [2, 5, 13, 14, 50, 75].

While these schemes can prevent attacks on the short-term
availability of a network, they do not address attacks that
affect long-term availability — the most permanent denial
of service attack is to entirely deplete nodes’ batteries. This
is an instance of a resource depletion attack, with battery
power as the resource of interest. In this paper we consider
how routing protocols, even those designed to be secure, lack
protection from these attacks, which we call Vampire attacks,

since they drain the life from networks nodes. These attacks
are distinct from previously-studied DoS, reduction of quality
(RoQ), and routing infrastructure attacks as they do not disrupt
immediate availability, but rather work over time to entirely
disable a network. While some of the individual attacks are
simple, and power-draining and resource exhaustion attacks
have been discussed before [53, 59, 68], prior work has been
mostly confined to other levels of the protocol stack, e.g.
medium access control (MAC) or application layers, and to our
knowledge there is little discussion, and no thorough analysis
or mitigation, of routing-layer resource exhaustion attacks.

Vampire attacks are not protocol-specific, in that they do not
rely on design properties or implementation faults of particular
routing protocols, but rather exploit general properties of
protocol classes such as link-state, distance-vector, source
routing, and geographic and beacon routing. Neither do these
attacks rely on flooding the network with large amounts of
data, but rather try to transmit as little data as possible to
achieve the largest energy drain, preventing a rate limiting
solution. Since Vampires use protocol-compliant messages,
these attacks are very difficult to detect and prevent.

Contributions. This paper makes three primary contri-
butions. First, we thoroughly evaluate the vulnerabilities of
existing protocols to routing layer battery depletion attacks.
We observe that security measures to prevent Vampire attacks
are orthogonal to those used to protect routing infrastructure,
and so existing secure routing protocols such as Ariadne [29],
SAODV [78], and SEAD [28] do not protect against Vampire
attacks. Existing work on secure routing attempts to ensure that
adversaries cannot cause path discovery to return an invalid
network path, but Vampires do not disrupt or alter discovered
paths, instead using existing valid network paths and protocol-
compliant messages. Protocols that maximize power efficiency
are also inappropriate, since they rely on cooperative node
behavior and cannot optimize out malicious action. Second,
we show simulation results quantifying the performance of
several representative protocols in the presence of a single
Vampire (insider adversary). Third, we modify an existing
sensor network routing protocol to provably bound the damage
from Vampire attacks during packet forwarding.

A. Classification

The first challenge in addressing Vampire attacks is defining
them — what actions in fact constitute an attack? DoS attacks

mailto:eyv@ksu.edu
mailto:hopper@cs.umn.edu


2

in wired networks are frequently characterized by amplifica-
tion [52,54]: an adversary can amplify the resources it spends
on the attack, e.g. use one minute of its own CPU time to cause
the victim to use ten minutes. However, consider the process of
routing a packet in any multi-hop network: a source composes
and transmits it to the next hop toward the destination, which
transmits it further, until the destination is reached, consuming
resources not only at the source node but also at every node the
message moves through. If we consider the cumulative energy
of an entire network, amplification attacks are always possible,
given that an adversary can compose and send messages which
are processed by each node along the message path. So, the act
of sending a message is in itself an act of amplification, leading
to resource exhaustion, as long as the aggregate cost of routing
a message (at the intermediate nodes) is lower than the cost
to the source to compose and transmit it. So, we must drop
amplification as our definition of maliciousness and instead
focus on the cumulative energy consumption increase that a
malicious node can cause while sending the same number of
messages as an honest node.

We define a Vampire attack as the composition and trans-
mission of a message that causes more energy to be consumed
by the network than if an honest node transmitted a message of
identical size to the same destination, although using different
packet headers. We measure the strength of the attack by the
ratio of network energy used in the benign case to the energy
used in the malicious case, i.e. the ratio of network-wide power
utilization with malicious nodes present to energy usage with
only honest nodes when the number and size of packets sent
remains constant. Safety from Vampire attacks implies that this
ratio is 1. Energy use by malicious nodes is not considered,
since they can always unilaterally drain their own batteries.

B. Protocols and assumptions

In this paper we consider the effect of Vampire attacks on
link-state, distance-vector, source routing, and geographic and
beacon routing protocols, as well as a logical ID-based sensor
network routing protocol proposed by Parno et al. [53]. While
this is by no means an exhaustive list of routing protocols
which are vulnerable to Vampire attacks, we view the covered
protocols as an important subset of the routing solution space,
and stress that our attacks are likely to apply to other protocols.

All routing protocols employ at least one topology discovery
period, since ad-hoc deployment implies no prior position
knowledge. Limiting ourselves to immutable but dynamically-
organized topologies, as in most wireless sensor networks,
we further differentiate on-demand routing protocols, where
topology discovery is done at transmission time, and static
protocols, where topology is discovered during an initial setup
phase, with periodic re-discovery to handle rare topology
changes. Our adversaries are malicious insiders and have
the same resources and level of network access as honest
nodes. Furthermore, adversary location within the network is
assumed to be fixed and random, as if an adversary corrupts
a number of honest nodes before the network was deployed,
and cannot control their final positions. Note that this is far
from the strongest adversary model; rather this configuration

represents the average expected damage from Vampire attacks.
Intelligent adversary placement or dynamic node compromise
would make attacks far more damaging.

While for the rest of this paper we will assume that a node
is permanently disabled once its battery power is exhausted,
let us briefly consider nodes that recharge their batteries in the
field, using either continuous charging or switching between
active and recharge cycles. In the continuous charging case,
power-draining attacks would be effective only if the adversary
is able to consume power at least as fast as nodes can recharge.
Assuming that packet processing drains at least as much
energy from the victims as from the attacker, a continuously-
recharging adversary can keep at least one node permanently
disabled at the cost of its own functionality. However, recall
that sending any packet automatically constitutes amplifica-
tion, allowing few Vampires to attack many honest nodes. We
will show later that a single Vampire may attack every network
node simultaneously, meaning that continuous recharging does
not help unless Vampires are more resource-constrained than
honest nodes. Dual-cycle networks (with mandatory sleep and
awake periods) are equally vulnerable to Vampires during
active duty as long as the Vampire’s cycle switching is in
sync with other nodes. Vampire attacks may be weakened by
using groups of nodes with staggered cycles: only active-duty
nodes are vulnerable while the Vampire is active; nodes are
safe while the Vampire sleeps. However, this defense is only
effective when duty cycle groups outnumber Vampires, since
it only takes one Vampire per group to carry out the attack.

C. Overview

In the remainder of this paper, we present a series of
increasingly damaging Vampire attacks, evaluate the vulner-
ability of several example protocols, and suggest how to
improve resilience. In source routing protocols, we show
how a malicious packet source can specify paths through the
network which are far longer than optimal, wasting energy
at intermediate nodes who forward the packet based on the
included source route. In routing schemes where forwarding
decisions are made independently by each node (as opposed to
specified by the source), we suggest how directional antenna
and wormhole attacks [30] can be used to deliver packets to
multiple remote network positions, forcing packet processing
at nodes that would not normally receive that packet at all, and
thus increasing network-wide energy expenditure. Lastly, we
show how an adversary can target not only packet forwarding
but also route and topology discovery phases — if discovery
messages are flooded, an adversary can, for the cost of a single
packet, consume energy at every node in the network.

In our first attack, an adversary composes packets with
purposely introduced routing loops. We call it the carousel
attack, since it sends packets in circles as shown in Fig-
ure 1(a). It targets source routing protocols by exploiting the
limited verification of message headers at forwarding nodes,
allowing a single packet to repeatedly traverse the same set
of nodes. Brief mentions of this attack can be found in
other literature [10, 53], but no intuition for defense nor any
evaluation is provided. In our second attack, also targeting



3

(a) An honest route would exit the loop immediately from
node E to Sink, but a malicious packet makes its way
around the loop twice more before exiting.

(b) Honest route is dotted while malicious route is
dashed. The last link to the sink is shared.

Fig. 1. Malicious route construction attacks on source routing: carousel attack (a) and stretch attack (b).

source routing, an adversary constructs artificially long routes,
potentially traversing every node in the network. We call
this the stretch attack, since it increases packet path lengths,
causing packets to be processed by a number of nodes that is
independent of hop count along the shortest path between the
adversary and packet destination. An example is illustrated
in Figure 1(b). Results show that in a randomly-generated
topology, a single attacker can use a carousel attack to increase
energy consumption by as much as a factor of 4, while stretch
attacks increase energy usage by up to an order of magnitude,
depending on the position of the malicious node. The impact
of these attacks can be further increased by combining them,
increasing the number of adversarial nodes in the network, or
simply sending more packets. Although in networks that do not
employ authentication or only use end-to-end authentication,
adversaries are free to replace routes in any overheard packets,
we assume that only messages originated by adversaries may
have maliciously-composed routes.

We explore numerous mitigation methods to bound the
damage from Vampire attacks, and find that while the carousel
attack is simple to prevent with negligible overhead, the stretch
attack is far more challenging. The first protection mechanism
we consider is loose source routing, where any forwarding
node can reroute the packet if it knows a shorter path to the
destination. Unfortunately, this proves to be less efficient than
simply keeping global network state at each node, defeating
the purpose of source routing. In our second attempt, we
modify the protocol from [53] to guarantee that a packet
makes progress through the network. We call this the no-
backtracking property, since it holds if and only if a packet is
moving strictly closer to its destination with every hop, and it
mitigates all mentioned Vampire attacks with the exception of
malicious flooded discovery, which is significantly harder to
detect or prevent. We propose a limited topology discovery
period (“the night,” since this is when vampires are most
dangerous), followed by a long packet forwarding period
during which adversarial success is provably bounded. We also
sketch how to further modify the protocol to detect Vampires
during topology discovery and evict them after the network
converges (at “dawn”).

II. RELATED WORK

We do not imply that power draining itself is novel, but
rather that these attacks have not been rigorously defined,
evaluated, or mitigated at the routing layer. A very early
mention of power exhaustion can be found in [68], as “sleep
deprivation torture.” As per the name, the proposed attack
prevents nodes from entering a low-power sleep cycle, and
thus deplete their batteries faster. Newer research on “denial-
of-sleep” only considers attacks at the medium access control
(MAC) layer [59]. Additional work mentions resource exhaus-
tion at the MAC and transport layers [60, 75], but only offers
rate limiting and elimination of insider adversaries as potential
solutions. Malicious cycles (routing loops) have been briefly
mentioned [10, 53], but no effective defenses are discussed
other than increasing efficiency of the underlying MAC and
routing protocols or switching away from source routing.

Even in non-power-constrained systems, depletion of re-
sources such as memory, CPU time, and bandwidth may
easily cause problems. A popular example is the SYN flood
attack, wherein adversaries make multiple connection requests
to a server, which will allocate resources for each connection
request, eventually running out of resources, while the ad-
versary, who allocates minimal resources, remains operational
(since he does not intend to ever complete the connection
handshake). Such attacks can be defeated or attenuated by
putting greater burden on the connecting entity (e.g. SYN
cookies [7], which offload the initial connection state onto the
client, or cryptographic puzzles [4, 48, 73]). These solutions
place minimal load on legitimate clients who only initiate a
small number of connections, but deter malicious entities who
will attempt a large number. Note that this is actually a form
of rate limiting, and not always desirable as it punishes nodes
who produce bursty traffic but may not send much total data
over the lifetime of the network. Since Vampire attacks rely on
amplification, such solutions may not be sufficiently effective
to justify the excess load on legitimate nodes.

There is also significant past literature on attacks and
defenses against quality of service (QoS) degradation, or
reduction of quality (RoQ) attacks, that produce long-term
degradation in network performance [23,26,41,42,44,71,76].
The focus of this work is on the transport layer rather



4

than routing protocols, so these defenses are not applicable.
Moreover, since Vampires do not drop packets, the quality
of the malicious path itself may remain high (although with
increased latency).

Other work on denial of service in ad-hoc wireless net-
works has primarily dealt with adversaries who prevent route
setup, disrupt communication, or preferentially establish routes
through themselves to drop, manipulate, or monitor pack-
ets [14, 28, 29, 36, 78]. The effect of denial or degradation
of service on battery life and other finite node resources has
not generally been a security consideration, making our work
tangential to the research mentioned above. Protocols that
define security in terms of path discovery success, ensuring
that only valid network paths are found, cannot protect against
Vampire attacks, since Vampires do not use or return illegal
routes or prevent communication in the short term.

Current work in minimal-energy routing, which aims to
increase the lifetime of power-constrained networks by using
less energy to transmit and receive packets (e.g. by minimizing
wireless transmission distance) [11, 15, 19, 63], is likewise
orthogonal: these protocols focus on cooperative nodes and not
malicious scenarios. Additional on power-conserving medium
access control (MAC), upper-layer protocols, and cross-layer
cooperation [24, 34, 43, 45, 66, 67, 69, 77]. However, Vampires
will increase energy usage even in minimal-energy routing
scenarios and when power-conserving MAC protocols are
used; these attacks cannot be prevented at the MAC layer or
through cross-layer feedback. Attackers will produce packets
which traverse more hops than necessary, so even if nodes
spend the minimum required energy to transmit packets, each
packet is still more expensive to transmit in the presence
of Vampires. Our work can be thought of attack-resistant
minimal-energy routing, where the adversary’s goal includes
decreasing energy savings.

Deng et al. discuss path-based DoS attacks and defenses
in [13], including using one-way hash chains to limit the
number of packets sent by a given node, limiting the rate at
which nodes can transmit packets. While this strategy may pro-
tect against traditional DoS, where the malefactor overwhelms
honest nodes with large amounts of data, it does not protect
against “intelligent” adversaries who use a small number of
packets or do not originate packets at all. As an example of
the latter, Aad et al. show how protocol-compliant malicious
intermediaries using intelligent packet-dropping strategies can
significantly degrade performance of TCP streams traversing
those nodes [2]. Our adversaries are also protocol-compliant in
the sense that they use well-formed routing protocol messages.
However, they either produce messages when honest nodes
would not, or send packets with protocol headers different
from what an honest node would produce in the same situation.

Another attack that can be thought of as path-based is the
wormhole attack, first introduced in [30]. It allows two non-
neighboring malicious nodes with either a physical or virtual
private connection to emulate a neighbor relationship, even in
secure routing systems [3]. These links are not made visible
to other network members, but can be used by the colluding
nodes to privately exchange messages. Similar tricks can be
played using directional antennas. These attacks deny service

Fig. 2. Node energy distribution under various attack scenarios. The network
is composed of 30 nodes and a single randomly-positioned Vampire. Results
shown are based on a single packet sent by the attacker.

by disrupting route discovery, returning routes that traverse the
wormhole and may have artificially low associated cost metrics
(such as number of hops or discovery time, as in rushing
attacks [31]). While the authors propose a defense against
wormhole and directional antenna attacks (called “Packet
Leashes” [30]), their solution comes at a high cost and is
not always applicable. First, one flavor of Packet Leashes
relies on tightly synchronized clocks, which are not used in
most off-the-shelf devices. Second, the authors assume that
packet travel time dominates processing time, which may not
be borne out in modern wireless networks, particularly low-
power wireless sensor networks.

III. ATTACKS ON STATELESS PROTOCOLS

Here we present simple but previously neglected attacks on
source routing protocols, such as DSR [35]. In these systems,
the source node specifies the entire route to a destination
within the packet header, so intermediaries do not make
independent forwarding decisions, relying rather on a route
specified by the source. To forward a message, the intermediate
node finds itself in the route (specified in the packet header)
and transmits the message to the next hop. The burden is on the
source to ensure that the route is valid at the time of sending,
and that every node in the route is a physical neighbor of
the previous route hop. This approach has the advantage of
requiring very little forwarding logic at intermediate nodes,
and allows for entire routes to be sender-authenticated using
digital signatures, as in Ariadne [29].

We evaluated both the carousel and stretch attacks (Fig-
ure 1(a)) in a randomly-generated 30-node topology and a
single randomly-selected malicious DSR agent, using the ns-
2 network simulator [1]. Energy usage is measured for the
minimum number of packets required to deliver a single mes-
sage, so sending more messages increases the strength of the
attack linearly until bandwidth saturation.1 We independently
computed resource utilization of honest and malicious nodes
and found that malicious nodes did not use a disproportionate
amount of energy in carrying out the attack. In other words,
malicious nodes are not driving down the cumulative energy of
the network purely by their own use of energy. Nevertheless,

1Energy is debited from nodes only for packet transmission, and not for
reception or processing, so the number of neighbors of the malicious node is
not a confounding variable.



5

malicious node energy consumption data is omitted for clarity.
The attacks are carried out by a randomly-selected adversary
using the least intelligent attack strategy to obtain average
expected damage estimates. More intelligent adversaries using
more information about the network would be able to increase
the strength of their attack by selecting destinations designed
to maximize energy usage.

Per-node energy usage under both attacks is shown in
Figure 2. As expected, the carousel attack causes excessive
energy usage for a few nodes, since only nodes along a shorter
path are affected. In contrast, the stretch attack shows more
uniform energy consumption for all nodes in the network,
since it lengthens the route, causing more nodes to process the
packet. While both attacks significantly network-wide energy
usage, individual nodes are also noticeably affected, with some
losing almost 10% of their total energy reserve per message.
Figure 3(a) diagrams the energy usage when node 0 sends a
single packet to node 19 in an example network topology with
only honest nodes. Black arrows denote the path of the packet.

Carousel attack. In this attack, an adversary sends a packet
with a route composed as a series of loops, such that the same
node appears in the route many times. This strategy can be
used to increase the route length beyond the number of nodes
in the network, only limited by the number of allowed entries
in the source route.2 An example of this type of route is in
Figure 1(a). In Figure 3(b), malicious node 0 carries out a
carousel attack, sending a single message to node 19 (which
does not have to be malicious). Note the drastic increase in
energy usage along the original path.3 Assuming the adversary
limits the transmission rate to avoid saturating the network,
the theoretical limit of this attack is an energy usage increase
factor of O(λ), where λ is the maximum route length.

Overall energy consumption increases by up to a factor of
3.96 per message. On average, a randomly-located carousel
attacker in our example topology can increase network energy
consumption by a factor of 1.48 ± 0.99. The reason for this
large standard deviation is that the attack does not always
increase energy usage — the length of the adversarial path is
a multiple of the honest path, which is in turn, affected by the
position of the adversary in relation to the destination, so the
adversary’s position is important to the success of this attack.

Stretch attack. Another attack in the same vein is the
stretch attack, where a malicious node constructs artificially
long source routes, causing packets to traverse a larger than
optimal number of nodes. An honest source would select the
route Source → F → E → Sink, affecting four nodes
including itself, but the malicious node selects a longer route,
affecting all nodes in the network. These routes cause nodes
that do not lie along the honest route to consume energy by
forwarding packets they would not receive in honest scenarios.
An example of this type of route is in Figure 1(b). The
outcome becomes clearer when we examine Figure 3(c) and
compare to the carousel attack. While the latter uses energy
at the nodes who were already in the honest path, the former
extends the consumed energy “equivalence lines” to a wider

2The ns-2 DSR implementation arbitrarily limits the route length to 16.
3Energy usage is greatest at node 10 likely due to its distance from its

nearest neighbors.

(a) Honest scenario: node 0 sends a single message to node 19.

(b) Carousel attack (malicious node 0): the nodes traversed by the
packet are the same as in (a), but the loop over all forwarding nodes
roughly triples the route length (the packet traverses the loop more
than once). Note the drastically increased energy consumption among
the forwarding nodes.

(c) Stretch attack (malicious node 0): the route diverts from the
optimal path between source and destination, roughly doubling in
length. Note that while the per-node energy consumption increase is
not as drastic as in (b), the region of increased energy consumption
is larger. Overall energy consumption is greater than in the carousel
attack, but spread more evenly over more network nodes.

Fig. 3. Energy map of the network in terms of fraction of energy consumed
per node. Black arrows show the packet path through the network. Each dotted
line represents an “energy equivalence zone,” similar to an area of equal
elevation on a topological chart. Each line is marked with the energy loss by
a node as a fraction of total original charge.



6

(a) A malicious node transmitting 1, 10, 100, 1,000, and 10,000
messages with artificially long paths.

(b) Zoomed Figure (a), displaying only the 1 and 10-message data.

Fig. 4. Effects of a single-node stretch attacker on a network of 30 nodes
after removal of source route length limits. Maliciousness is measured in terms
of the induced stretch of the optimal route, in number of hops.

section of the network. Energy usage is less localized around
the original path, but more total energy is consumed.

The theoretical limit of the stretch attack is a packet that tra-
verses every network node, causing an energy usage increase
of factor O(min(N,λ)), where N is the number of nodes
in the network and λ is the maximum path length allowed.
This attack is potentially less damaging per packet than the
carousel attack, as the number of hops per packet is bounded
by the number of network nodes. However, adversaries can
combine carousel and stretch attacks to keep the packet in
the network longer: the resulting “stretched cycle” could be
traversed repeatedly in a loop. Therefore, even if stretch attack
protection is not used, route loops should still be detected
and removed to prevent the combined attack. In our example
topology, we see an increase in energy usage by as much as a
factor of 10.5 per message over the honest scenario, with an
average increase in energy consumption of 2.67±2.49. As with
the carousel attack, the reason for the large standard deviation
is that the position of the adversarial node affects the strength
of the attack. Not all routes can be significantly lengthened,
depending on the location of the adversary. Unlike the carousel
attack, where the relative positions of the source and sink are
important, the stretch attack can achieve the same effectiveness
independent of the attacker’s network position relative to the
destination, so the worst-case effect is far more likely to occur.

The true significance of the attack becomes evident in
Figure 4(a), which shows network-wide energy consumption in
the presence of a single randomly-selected Vampire in terms of
the “maliciousness” of the adversary, or the induced stretch of
the optimal route in number of hops. (Increasing maliciousness
beyond 9 has no effect due to the diameter of our test

topology.) Network links become saturated at 10,000 messages
per second (even without the stretch attack), but the adversary
can achieve the same effects by sending an order of magnitude
fewer messages at a stretch attack maliciousness level of 8
or greater. This reduces cumulative network energy by 3%,
or almost the entire lifetime of a single node. Therefore, the
stretch attack increases the effectiveness of an adversary by
an order of magnitude, reducing its energy expenditure to
compose and transmit messages. With 100 messages, the result
is less severe, but still pronounced: the network loses 1% of
its total energy, or 9% of the lifetime of a single node. The
effect becomes less visible when we look at 10 messages or
fewer in Figure 4(b), but is still noticeable.

Since DSR uses hop count as a cost metric, constructing
longer source routes could in fact decrease the amount of per-
hop energy spent on sending packets if energy minimization
protocols were used since shorter physical distances decrease
required sending power, and thus battery drain. We construct
long routes greedily, assuming global topology knowledge,4

but attacks can be further optimized to consume more energy
by considering relative node distances — given enough in-
formation, our adversary could construct not just longer but
maximum-energy paths. Forwarding nodes using minimum-
energy routing [15, 63, 66] could replace long distance trans-
missions with a number of shorter-distance hops, but the attack
still works since the malicious path is longer, independent of
in-network optimizations applied to it.

These attacks would be less effective in hierarchical net-
works, where nodes send messages to aggregators, who in turn
sends it to other aggregators, which route it to a monitoring
point. The described attacks are only valid within the network
“neighborhood” of the adversarial node. If an adversary cor-
rupts nodes intelligently or controls a small but non-trivial per-
centage of nodes, it can execute these attacks within individual
network neighborhoods: a single adversary per neighborhood
would disable the entire network. We discuss the notion of
neighborhoods in more detail in Section VIII.

A. Mitigation methods

The carousel attack can be prevented entirely by having
forwarding nodes check source routes for loops. While this
adds extra forwarding logic and thus more overhead, we can
expect the gain to be worthwhile in in malicious environments.
The ns-2 DSR protocol does implement loop detection, but
confusingly does not use it to check routes in forwarded
packets.5 When a loop is detected, the source route could be
corrected and the packet sent on, but one of the attractive
features of source routing is that the route can itself be signed
by the source [29]. Therefore, it is better to simply drop
the packet, especially considering that the sending node is
likely malicious (honest nodes should not introduce loops). An
alternate solution is to alter how intermediate nodes process
the source route. To forward a message, a node must determine

4This can be obtained by probing routes to every host in the network.
5Routes are not discarded after they have been used, but are stored in a

local cache in case the same destination will be used in the near future. Routes
retrieved from the local cache are checked for loops before use.



7

the next hop by locating itself in the source route. If a node
searches for itself from the destination backward instead from
the source forward, any loop that includes the current node
will be automatically truncated (the last instance of the local
node will be found in the source route rather than the first).
No extra processing is required for this defense, since a node
must perform this check anyway — we only alter the way the
check is done.

The stretch attack is more challenging to prevent. Its success
rests on the forwarding node not checking for optimality of
the route. If we call the no-optimization case “strict” source
routing, since the route is followed exactly as specified in the
header, we can define loose source routing, where intermediate
nodes may replace part or all of the route in the packet header
if they know of a better route to the destination. This makes
it necessary for nodes to discover and cache optimal routes
to at least some fraction of other nodes, partially defeating
the as-needed discovery advantage. Moreover, caching must
be done carefully lest a maliciously suboptimal route be
introduced. We simulated the loose source routing defense
using random-length suboptimal paths in randomly-generated
network topologies of up to 1,000,000 nodes, with diameter
10–14. Results (Figure 5) demonstrate that the amount of
node-local storage required to achieve reasonable levels of
mitigation approaches global topology knowledge, defeating
the purpose of using source routing. The dashed trendline
represents the expected path length of rerouted packets if each
node stores logN network paths, where N is the number
of network nodes, while the solid trendline represents the
majority of actual network paths in a loose source-routing
setup. The number of nodes traversed by loose source-routed
packets is suboptimal by at least a factor of 10, with some
routes approaching a factor of 50. Only a few messages
encountered a node with a better path to the destination
than the originally-assigned long source route. Therefore we
conclude that loose source routing is worse than keeping
global state at every node.

Alternatively, we can bound the damage of carousel and
stretch attackers by limiting the allowed source route length
based on the expected maximum path length in the network,
but we would need a way to determine the network diameter.6

While there are suitable algorithms [40, 74], there has been
very little work on whether they could yield accurate results
in the presence of adversaries. If the number of nodes is
known ahead of time, graph-theoretic techniques can be used
to estimate the diameter.

Rate limiting may initially seem to be a good defense,but
upon closer examination we see it is not ideal. It limits
malicious sending rate, potentially increasing network lifetime,
but that increase becomes the maximum expected lifetime,
since adversaries will transmit at the maximum allowed rate.
Moreover, sending rate is already limited by the size of nodes’
receive queues in rate-unlimited networks (as seen in the
10,000 message scenario in Figure 4(a)). Rate limiting also
potentially punishes honest nodes that may transmit large

6Packet time to live (TTL) also limits route length, but it is set by the
malicious sender. Intermediate nodes may able to reset it to a “reasonable”
value, but it is unclear how to discover that value.

Fig. 5. Loose source routing performance compared to optimal, in a network
with diameter slightly above 10. The dashed trendline represents expected path
length when nodes store logN local state, and the solid trendline shows actual
observed performance.

amounts of time-critical (bursty) data, but will send little data
over the network lifetime.

IV. ATTACKS ON STATEFUL PROTOCOLS

We now move on to stateful routing protocols, where
network nodes are aware of the network topology and its state,
and make local forwarding decisions based on that stored state.
Two important classes of stateful protocols are link-state and
distance-vector. In link-state protocols, such as OLSR [12],
nodes keep a record of the up-or-down state of links in the
network, and flood routing updates every time a link goes
down or a new link is enabled. Distance-vector protocols like
DSDV [55] keep track of the next hop to every destination,
indexed by a route cost metric, e.g. the number of hops. In
this scheme, only routing updates that change the cost of a
given route need to be propagated.

Routes in link-state and distance-vector networks are built
dynamically from many independent forwarding decisions, so
adversaries have limited power to affect packet forwarding,
making these protocols immune to carousel and stretch attacks.
In fact, any time adversaries cannot specify the full path, the
potential for Vampire attack is reduced. However, malicious
nodes can still mis-forward packets, forcing packet forwarding
by nodes who would not normally be along packet paths. For
instance, an adversary can forward packets either back toward
the source if the adversary is an intermediary, or to a non-
optimal next hop if the adversary is either an intermediary or
the source. While this may seem benign in a dense obstacle-
free topology,worst-case bounds are no better than in the case
of the stretch attack on DSR. For instance, consider the special
case of a ring topology: forwarding a packet in the reverse
direction causes it to traverse every node in the network (or
at least a significant number, assuming the malicious node
is not the packet source but rather a forwarder), increasing
our network-wide energy consumption by a factor of O(N).
While ring topologies are extremely unlikely to occur in
practice, they do help us reason about worst-case outcomes.
This scenario can also be generalized to routing around any
network obstacle along a suboptimal path.

Directional antenna attack. Vampires have little control
over packet progress when forwarding decisions are made
independently by each node, but they can still waste energy
by restarting a packet in various parts of the network. Using



8

a directional antenna adversaries can deposit a packet in
arbitrary parts of the network, while also forwarding the packet
locally. This consumes the energy of nodes that would not
have had to process the original packet, with the expected
additional honest energy expenditure of O(d), where d is the
network diameter, making d

2 the expected length of the path to
an arbitrary destination from the furthest point in the network.
This attack can be considered a half-wormhole attack [30],
since a directional antenna constitutes a private communication
channel, but the node on the other end is not necessarily
malicious.7 It can be performed more than once, depositing
the packet at various distant points in the network, at the
additional cost to the adversary for each use of the directional
antenna. Packet Leashes cannot prevent this attack since they
are not meant to protect against malicious message sources,
only intermediaries [30].

Malicious discovery attack. Another attack on all
previously-mentioned routing protocols (including stateful and
stateless) is spurious route discovery. In most protocols, every
node will forward route discovery packets (and sometimes
route responses as well), meaning it is possible to initiate
a flood by sending a single message. Systems that perform
as-needed route discovery, such as AODV and DSR, are
particularly vulnerable, since nodes may legitimately initiate
discovery at any time, not just during a topology change. A
malicious node has a number of ways to induce a perceived
topology change: it may simply falsely claim that a link is
down, or claim a new link to a non-existent node. Security
measures, such as those proposed by Raffo et al. in [58] may
be sufficient to alleviate this particular problem. Further, two
cooperating malicious nodes may claim the link between them
is down. However, nearby nodes might be able to monitor
communication to detect link failure (using some kind of
neighborhood update scheme). Still, short route failures can
be safely ignored in networks of sufficient density. More
serious attacks become possible when nodes claim that a long-
distance route has changed. This attack is trivial in open
networks with unauthenticated routes, since a single node
can emulate multiple nodes in neighbor relationships [16],
or falsely claim nodes as neighbors. Therefore, let us as-
sume closed (Sybil-resistant) networks where link states are
authenticated, similar to route authentication in Ariadne [29]
or path-vector signatures in [70]. Now our adversary must
present an actually changed route in order to execute the
attack. To do this, two cooperating adversaries communicating
through a wormhole could repeatedly announce and withdraw
routes that use this wormhole, causing a theoretical energy
usage increase of a factor of O(N) per packet. Adding more
malicious nodes to the mix increases the number of possible
route announce/withdrawal pairs. Packet Leashes [30] cannot
prevent this attack, with the reasoning being similar to the
directional antenna attack — since the originators are them-
selves malicious, they would forward messages through the
wormhole, and return only seemingly valid (and functional)
routes in response to discovery. This problem is similar to

7The attack is not very effective when using virtual wormholes (encrypted
connections), since adversaries sending packets to each other would accom-
plish the same goal.

route flapping in BGP [72], but while Internet paths are
relatively stable [25, 61] paths change frequently in wireless
ad-hoc networks, where nodes may move in and out of each
other’s range, or suffer intermittent environmental effects.
Since there may be no stable routes in WSNs (hence the need
for ad-hoc protocols), this solution would not be applicable.

A. Coordinate and beacon-based protocols

Some recent routing research has moved in the direction
of coordinate- and beacon-based routing, such as GPSR and
BVR [21, 37], which use physical coordinates or beacon
distances for routing, respectively. In GPSR, a packet may
encounter a dead end, which is a localized space of minimal
physical distance to the target, but without the target actually
being reachable (e.g. the target is separated by a wall or
obstruction). The packet must then be diverted (in GPSR, it
follows the contour of the barrier that prevents it from reaching
the target) until a path to the target is available. In BVR,
packets are routed toward the beacon closest to the target
node, and then move away from the beacon to reach the target.
Each node makes independent forwarding decisions, and thus
a Vampire is limited in the distance it can divert the packet.
These protocols also fall victim to directional antenna attacks
in the same way as link-state and distance-vector protocols
above, leading to energy usage increase factor of O(d) per
message, where d is the network diameter. Moreover, GPSR
does not take path length into account when routing around
local obstructions, and so malicious mis-routing may cause up
to a factor of O(c) energy loss, where c is the circumference
of the obstruction, in hops.

V. CLEAN-SLATE SENSOR NETWORK ROUTING

In this section we show that a clean-slate secure sensor
network routing protocol by Parno, Luk, Gaustad, and Perrig
(“PLGP” from here on) [53] can be modified to provably
resist Vampire attacks during the packet forwarding phase.
The original version of the protocol, although designed for
security, is vulnerable to Vampire attacks. PLGP consists of
a topology discovery phase, followed by a packet forwarding
phase, with the former optionally repeated on a fixed schedule
to ensure that topology information stays current. (There is no
on-demand discovery.) Discovery deterministically organizes
nodes into a tree that will later be used as an addressing
scheme. When discovery begins, each node has a limited view
of the network — the node knows only itself. Nodes discover
their neighbors using local broadcast, and form ever-expanding
“neighborhoods,” stopping when the entire network is a single
group. Throughout this process, nodes build a tree of neighbor
relationships and group membership that will later be used for
addressing and routing.

At the end of discovery, each node should compute the same
address tree as other nodes. All leaf nodes in the tree are
physical nodes in the network, and their virtual addresses cor-
respond to their position in the tree (see Figure 6). All nodes
learn each others’ virtual addresses and cryptographic keys.
The final address tree is verifiable after network convergence,
and all forwarding decisions can be independently verified.



9

Furthermore, assuming each legitimate network node has a
unique certificate of membership (assigned before network de-
ployment), nodes who attempt to join multiple groups, produce
clones of themselves in multiple locations, or otherwise cheat
during discovery can be identified and evicted.

Topology discovery. Discovery begins with a time-limited
period during which every node must announce its presence
by broadcasting a certificate of identity, including its public
key (from now on referred to as node ID), signed by a
trusted offline authority. Each node starts as its own group
of size one, with a virtual address 0. Nodes who overhear
presence broadcasts form groups with their neighbors. When
two individual nodes (each with an initial address 0) form
a group of size two, one of them takes the address 0, and
the other becomes 1. Groups merge preferentially with the
smallest neighboring group, which may be a single node. We
may think of groups acting as individual nodes, with decisions
made using secure multiparty computation. Like individual
nodes, each group will initially choose a group address 0,
and will choose 0 or 1 when merging with another group.
Each group member prepends the group address to their own
address, e.g. node 0 in group 0 becomes 0.0, node 0 in group
1 becomes 1.0, and so on. Each time two groups merge, the
address of each node is lengthened by one bit. Implicitly,
this forms a binary tree of all addresses in the network, with
node addresses as leaved. Note that this tree is not a virtual
coordinate system, as the only information coded by the tree
are neighbor relationships among nodes.

Nodes will request to join with the smallest group in their
vicinity, with ties broken by group IDs, which are computed
cooperatively by the entire group as a deterministic function
of individual member IDs. When larger groups merge, they
both broadcast their group IDs (and the IDs of all group
members) to each other, and proceed with a merge protocol
identical to the two-node case. Groups that have grown large
enough that some members are not within radio range of other
groups will communicate through “gateway nodes,” which are
within range of both groups. Each node stores the identity of
one or more nodes through which it heard an announcement
that another group exists. That node may have itself heard
the information second-hand, so every node within a group
will end up with a next-hop path to every other group, as in
distance-vector. Topology discovery proceeds in this manner
until all network nodes are members of a single group. By the
end of topology discovery, each node learns every other node’s
virtual address, public key, and certificate, since every group
members knows the identities of all other group members and
the network converges to a single group.

Packet forwarding. During the forwarding phase, all deci-
sions are made independently by each node. When receiving
a packet, a node determines the next hop by finding the most
significant bit of its address that differs from the message
originator’s address (see Figure 6). Thus every forwarding
event (except when a packet is moving within a group in
order to reach a gateway node to proceed to the next group)
shortens the logical distance to the destination, since node
addresses should be strictly closer to the destination (see

Fig. 6. The final address tree for a fully-converged 6-node network. Leaves
represent physical nodes, connected with solid lines if within radio range.
The dashed line is the progress of a message through the network. Note that
non-leaf nodes are not physical nodes but rather logical group identifiers.

Function forward_packet).8

A. PLGP in the presence of Vampires

In PLGP, forwarding nodes do not know what path a packet
took, allowing adversaries to divert packets to any part of
the network, even if that area is logically further away from
the destination than the malicious node. This makes PLGP
vulnerable to Vampire attacks. Consider for instance the now-
familiar directional antenna attack: a receiving honest node
may be farther away from the packet destination than the
malicious forwarding node, but the honest node has no way
to tell that the packet it just received is moving away from
the destination; the only information available to the honest
node is its own address and the packet destination address, but
not the address of the previous hop (who can lie). Thus, the
Vampire can move a packet away from its destination without
being detected. This packet will traverse at most logN logical
hops, with O(

√
2i) physical hops at the ith logical hop, giving

us a theoretical maximum energy increase of O(d), where d
is the network diameter and N the number of network nodes.
The situation is worse if the packet returns to the Vampire
in the process of being forwarded — it can now be rerouted
again, causing something similar to the carousel attack. Recall
that the damage from the carousel attack is bounded by
the maximum length of the source route, but in PLGP the
adversary faces no such limitation, so the packet can cycle
indefinitely. Nodes may sacrifice some local storage to retain
a record of recent packets to prevent this attack from being
carried out repeatedly with the same packet. Random direction
vectors, as suggested in PLGP, would likewise alleviate the
problem of indefinite cycles by avoiding the same malicious
node during the subsequent forwarding round.

VI. PROVABLE SECURITY AGAINST VAMPIRE ATTACKS

Here we modify the forwarding phase of PLGP to provably
avoid the above-mentioned attacks. First we introduce the no-
backtracking property, satisfied for a given packet if and only

8Since all node addresses are unique, every logical hop either takes a
message strictly closer to, or further from, its destination.



10

Function forward_packet(p)
s← extract_source_address(p);
c← closest_next_node(s);
if is_neighbor(c) then forward(p, c);
else

r ← next_hop_to_non_neighbor(c);
forward(p, r);

Function secure_forward_packet(p)
s← extract_source_address(p);
a← extract_attestation(p);
if (not verify_source_sig(p)) or
(empty(a) and not is_neighbor(s)) or
(not saowf_verify(a)) then

return ; /* drop(p) */
foreach node in a do

prevnode← node;
if (not are_neighbors(node, prevnode)) or
(not making_progress(prevnode, node)) then

return ; /* drop(p) */

c← closest_next_node(s);
p′ ← saowf_append(p);
if is_neighbor(c) then forward(p′, c);
else forward(p′, next_hop_to_non_neighbor(c));

if it consistently makes progress toward its destination in the
logical network address space. More formally:

Definition 1. No-backtracking is satisfied if every packet
p traverses the same number of hops whether or not an
adversary is present in the network. (Maliciously-induced
route stretch is bounded to a factor of 1.)

This does not imply that every packet in the network
must travel the same number of hops regardless of source
or destination, but rather that a packet sent to node D by a
malicious node at location L will traverse the same number
of hops as a packet sent to D by a node at location L that is
honest. If we think of this in terms of protocol execution traces,
no-backtracking implies that for each packet in the trace, the
number of intermediate honest nodes traversed by the packet
between source and destination is independent of the actions
of malicious nodes. Equivalently, traces that include malicious
nodes should show the same network-wide energy utilization
by honest nodes as traces of a network with no malicious
actors. The only notable exceptions are when adversaries drop
or mangle packets en route, but since we are only concerned
with packets initiated by adversaries, we can safely ignore this
situation: “pre-mangled” packets achieve the same result —
they will be dropped by an honest intermediary or destination.

No-backtracking implies Vampire resistance. It is not
immediately obvious why no-backtracking prevents Vampire
attacks in the forwarding phase. Recall the reason for the
success of the stretch attack: intermediate nodes in a source
route cannot check whether the source-defined route is opti-
mal, or even that it makes progress toward the destination.
When nodes make independent routing decisions such as
in link-state, distance-vector, coordinate-based, or beacon-
based protocols, packets cannot contain maliciously composed

routes. This already means the adversary cannot perform
carousel or stretch attacks — no node may unilaterally specify
a suboptimal path through the network. However, a sufficiently
clever adversary may still influence packet progress. We can
prevent this interference by independently checking on packet
progress: if nodes keep track of route “cost” or metric and,
when forwarding a packet, communicate the local cost to
the next hop, that next hop can verify that the remaining
route cost is lower than before, and therefore the packet
is making progress toward its destination. (Otherwise we
suspect malicious intervention and drop the packet.) If we can
guarantee that a packet is closer to its destination with every
hop, we can bound the potential damage from an attacker as
a function of network size. (A more desirable property is to
guarantee good progress, such as logarithmic path length, but
both allow us to obtain an upper bound on attack success.)

PLGP does not satisfy no-backtracking. In non-source
routing protocols, routes are dynamically composed of for-
warding decisions made independently by each node. PLGP
differs from other protocols in that packets paths are further
bounded by a tree, forwarding packets along the shortest route
through the tree that is allowed by the physical topology. In
other words, packet paths are constrained both by physical
neighbor relationships and the routing tree. Since the tree
implicitly mirrors the topology (two nodes have the same
parent if and only if they are physical neighbors, and two
nodes sharing an ancestor have a network path to each other),
and since every node holds an identical copy of the address
tree, every node can verify the optimal next logical hop.
However, this is not sufficient for no-backtracking to hold,
since nodes cannot be certain of the path previously traversed
by a packet. Communicating a local view of route cost is not as
easy as it seems, since adversaries can always lie about their
local metric, and so PLGP is still vulnerable to directional
antenna/wormhole attacks, which allow adversaries to divert
packets to any part of the network.

To preserve no-backtracking, we add a verifiable path his-
tory to every PLGP packet, similar to route authentications
in Ariadne [29] and path-vector signatures in [70]. The re-
sulting protocol, PLGP with attestations (PLGPa) uses this
packet history together with PLGP’s tree routing structure
so every node can securely verify progress, preventing any
significant adversarial influence on the path taken by any
packet which traverses at least one honest node. Whenever
node n forwards packet p, it this by attaching a non-replayable
attestation (signature). These signatures form a chain attached
to every packet, allowing any node receiving it to validate
its path. Every forwarding node verifies the attestation chain
to ensure that the packet has never travelled away from
its destination in the logical address space. See Function
secure_forward_packet for the modified protocol.

PLGPa satisfies no-backtracking. To show that our modi-
fied protocol preserves the no-backtracking property, we define
a network as a collection of nodes, a topology, connectivity
properties, and node identities, borrowing the model used
by Poturalski et al. in [57]. Honest nodes can broadcast
and receive messages, while malicious nodes can also use
directional antennas to transmit to (or receive from) any node



11

in the network without being overheard by any other node.
Honest nodes can compose, forward, accept, or drop messages,
and malicious nodes can also arbitrarily transform them. Our
adversary is assumed to control m nodes in an N -node
network (with their corresponding identity certificates and
other secret cryptographic material) and has perfect knowledge
of the network topology. Finally, the adversary cannot affect
connectivity between any two honest nodes.

Since all messages are signed by their originator, messages
from honest nodes cannot be arbitrarily modified by malicious
nodes wishing to remain undetected. Rather, the adversary can
only alter packet fields that are changed en route (and so are
not authenticated), so only the route attestation field can be
altered, shortened, or removed entirely. To prevent truncation,
which would allow Vampires to hide the fact that they are
moving a packet away from its destination, we use Saxena
and Soh’s one-way signature chain construction [64], which
allow nodes to add links to an existing signature chain, but
not remove links, making attestations append-only.

For the purposes of Vampire attacks, we are unconcerned
about packets with arbitrary hop counts that are never received
by honest nodes but rather are routed between adversaries only,
so we define the hop count of a packet as follows:

Definition 2. The hop count of packet p, received or forwarded
by an honest node, is no greater than the number of entries
in p’s route attestation field, plus 1.

When any node receives a message, it checks that every
node in the path attestation 1) has a corresponding entry
in the signature chain, and 2) is logically closer to the
destination than the previous hop in the chain (see Function
secure_forward_packet). This way, forwarding nodes
can enforce the forward progress of a message, preserving
no-backtracking. If no attestation is present, the node checks
to see if the originator of the message is a physical neighbor.
Since messages are signed with the originator’s key, malicious
nodes cannot falsely claim to be the origin of a message, and
therefore do not benefit by removing attestations.

Theorem 1. A PLGPa packet p satisfies no-backtracking in
the presence of an adversary controlling m < N − 3 nodes if
p passes through at least one honest node.

Proof:
Consider two arbitrary PLGPa protocol traces H and M

of the same N -node network, in which node S sends packet
p to node D. Constrain H such that all nodes are honest,
and constrain M such that m < N − 3 are malicious. Let p
reach an arbitrary honest node I along the protocol-defined
packet path in h hops in H, but in h + δ hops for δ > 0
in M (no-backtracking is not satisfied in the latter). Since
PLGPa is deterministic, the difference δ must be attributable
to a malicious node. Further, since the hop count of p when
it arrives at I is greater in M than in H, p’s route attestation
chain must be δ longer in M. Recall that every node has
a unique virtual address, and no packet may be forwarded
between any two nodes without moving either backward or
forward through the virtual address space, so p must have

moved backward in the coordinate space by at least one hop.9

Consider the following three scenarios: 1) I is a neighbor
of S and the next hop of p; 2) I is a neighbor of D and the
last hop of p before the destination; and 3) I is a forwarding
node of the packet, but is neither a neighbor of S nor D. If I
forwards a packet with h+ δ hops in its route attestation, the
adversary must have succeeded in at least one of the following:

• causing honest node I to forward p with non-null at-
testation, over a route that backtracked, violating the
assumption that honest nodes correctly follow PLGPa;10

• causing honest node I to forward p with a non-null attes-
tation, from source S who is I’s direct neighbor, violating
the assumption that honest nodes correctly follow PLGPa;

• truncating the route attestation, violating the security of
chain signatures.

Finally, if I forwards p with a null attestation, it is either
a neighbor of S or the adversary has broken the signature
scheme used by the sender to attest to the packet’s invariant
fields — an honest I would not forward a packet with no
attestation if the packet source is not a neighbor.11 Since
each possible adversarial action which results in backtracking
violates an assumption, the proof is complete.

Since no-backtracking guarantees packet progress, and
PLGPa preserves no-backtracking, it is the only protocol
discussed so far that provably bounds the ratio of energy used
in the adversarial scenario to that used with only honest nodes
to 1, and by the definition of no-backtracking PLGPa resists
Vampire attacks. This is achieved because packet progress is
securely verifiable. Note that we cannot guarantee that a packet
will reach its destination, since it can always be dropped.
Guaranteed delivery is beyond the scope of this paper.

In strictly enforced no-backtracking, topology changes that
may eliminate all protocol-level paths to a node that do not re-
quire backtracking, even though network-level paths still exist
(e.g. the GPSR “dead end” scenario). To deal with such situ-
ations we can allow for limited backtracking (α-backtracking,
as opposed to our original 0-backtracking scheme), which
provides some leeway in the way no-backtracking is verified,
allowing a certain amount of total backtracking per packet
within the security parameter α. The extended security proof
by induction on α is trivial.

VII. PERFORMANCE CONSIDERATIONS

PLGP imposes increased setup cost over BVR [21], but
compares favorably to in terms of packet forwarding overhead.
While path stretch increases by a factor of 1.5–2, message
delivery success without resorting to localized flooding is im-
proved: PLGP never floods, while BVR must flood 5–10% of
packets depending on network size and topology [53]. PLGP
also demonstrates more equitable routing load distribution and
path diversity than BVR. Since the forwarding phase should

9Malicious nodes who choose to not update route attestations may pass p
indefinitely between themselves, but this does not increase the hop count as
defined (malicious nodes would only be draining their own battery).

10This case subsumes a malicious source and non-null packet attestation.
11A malicious source transmitting the packet with a null attestation is

allowed without loss of generality.



12

last considerably longer than setup, PLGP offers performance
comparable to BVR in the average case.

PLGPa includes path attestations, increasing the size of
every packet, incurring penalties in terms of bandwidth use,
and thus radio power. Adding extra packet verification re-
quirements for intermediate nodes also increases processor
utilization, requiring time and additional power. Of course
there is nothing to be gained in completely non-adversarial
environments, but in the presence of even a small number of
malicious nodes, the increased overhead becomes worthwhile
when considering the potential damage of Vampire attacks.

The bandwidth overhead of our attestation scheme is min-
imal, as chain signatures are compact (less than 30 bytes).
Comparatively, a minimum-size DSR route request packet with
no route, payload, or additional options is 12 bytes [35]; we
used 512-byte data packets in our simulations. The additional
bandwidth, therefore, is not significant, increasing per-packet
transmit power by about 4.8µJ , plus roughly half for addi-
tional power required to receive [66].

Energy expenditure for cryptographic operations at inter-
mediate hops is, unfortunately, much greater than transmit or
receive overhead, and much more dependent on the specific
chipset used to construct the sensor. However, we can make an
educated guess about expected performance and power costs.
Highly-optimized software-only implementations of AES-128,
a common symmetric cryptographic primitive, require about 10
to 15 cycles per byte of data on modern 32-bit x86 processors
without AES-specific instruction sets or cryptographic co-
processors [6]. Due to the rapid growth in the mobile space
and increased awareness of security requirements, there has
been significant recent work in evaluating symmetric and
asymmetric cryptographic performance on inexpensive and
low-power devices. Bos et al. report AES-128 performance
on 8-bit microcontrollers of 124.6 and 181.3 CPU cycles per
byte [9], and Feldhofer et al.report just over 1000 cycles
per byte using low-power custom circuits [20]. Surprisingly,
although asymmetric cryptography is generally up to two
orders of magnitude slower than symmetric, McLoone and
Robshaw demonstrate a fast and low-power implementation of
an asymmetric cryptosystem for use in RFID tags [47]. Their
circuitry uses 400 to 800 cycles per round (on 8- and 16-bit
architectures, respectively) in the high-current configuration
(comparable in terms of clock cycles to AES for RFID [20],
but with half to one-tenth the gates and vastly less power),
and 1088 cycles when using about 6 times less current.

Chain signatures are a somewhat more exotic construction,
and require bilinear maps, potentially requiring even more
costly computation than other asymmetric cryptosystems. Bi-
linear maps introduce additional difficulties in estimating over-
head due to the number of “pairings”from which implementers
can choose. Kawahara et al. use Tate pairings, which are
almost universally accepted as the most efficient [22], and
show that their Java implementation has similar mobile phone
performance as 1024-bit RSA [62] or 160-bit elliptic curve
(ECC) [8] cryptosystems [38]. Scott et al. show that modern
32-bit smartcards can compute Tate pairings in as little as
150ms — comparable efficiency to symmetric cryptogra-
phy [65]. Furthermore, English et al. show how to construct

hardware to perform bilinear map operations in about 75,000
cycles at 50MHz (1.5ms) using 5.79µJ [18].12 When using
specialized hardware for bilinear map computation, power
requirements for chain signature-compatible cryptographic op-
erations are roughly equivalent to for transmission of the
30-byte chain signature. Assuming a node performs both
signature verification as well as a signature append operation,
adding attestations to PLGP introduces roughly the same
overhead as increasing packet sizes by 90 bytes, taking into
account transmit power and cryptographic operations. Without
specialized hardware, we estimate cryptographic computation
overhead, and thus increased power utilization, of a factor of
2–4 per packet on 32-bit processors, but mostly independent
of the route length or the number of nodes in the network:
while the hop record and chain signature do grow, their size
increase is negligible. In other words, the overhead is constant
(O(1)) for a given network configuration (maximum path
length), and cannot be influenced by an adversary. Fortunately,
hardware cryptographic accelerators are increasingly common
and inexpensive to compensate for increased security demands
on low-power devices, which lead to increased computational
load and reduced battery life [17, 18, 20, 33, 39, 46, 47, 49, 56].

In total, the overhead on the entire network of PLGPa (over
PLGP) when using 32-bit processors or dedicated crypto-
graphic accelerator is the energy equivalent of 90 additional
bytes per packet, or a factor O(xλ), where λ is the path length
between source and destination and x is 1.2–7.5, depending
on average packet size (512 and 12 bytes, respectively). Even
without dedicated hardware, the cryptographic computation
required for PLGPa is tractable even on 8-bit processors,
although with up to a factor of 30 performance penalty, but
this hardware configuration is increasingly uncommon.

VIII. SECURING THE DISCOVERY PHASE

Without fully solving the problem of malicious topology
discovery, we can still mitigate it by forcing synchronous dis-
covery and ignoring discovery messages during the intervening
periods. This can lead to some nodes being separated from
the network for a period of time, and is essentially a form
of rate limiting. Although we rejected rate limiting before, it
is acceptable here since discovery should consume a small
fraction of running time compared to packet forwarding. We
can enforce rate limits in a number of ways, such as neighbor
throttling [35] or one-way hash chains [14]. We can also
optimize discovery algorithms [32] to minimize our window
of vulnerability. If a network survives the high-risk discovery
period, it is unlikely to suffer serious damage from Vampires
during normal packet forwarding.

While PLGPa is not vulnerable to Vampire attacks during
the forwarding phase, we cannot make the same claim about
discovery. However, we can give some intuition as to how
to further modify PLGPa to bound damage from malicious
discovery. (The value of that bound in practice remains an
open problem.) The major issue is that malicious nodes can

12Even on 8-bit ATmega128 series microcontrollers commonly used in
Mica sensor “motes” [27], Tate pairings can be computed in under 31
seconds [51], and elliptic curve operations take less than a second [17].



13

use directional antennas to masquerade neighbors to any or all
nodes in the network, and therefore look like a group of size
one, with which other groups will try to preferentially merge.
Merge requests are composed of the requested group’s ID as
well as all the group members’ IDs, and the receiving node
will flood this request to other group members. Even assuming
groups generate signed tokens that cost no energy to verify,
a Vampire would be able to flood its group with every group
descriptor it knows, and use its directional antenna to snoop
on broadcasts outside their neighbor range, relaying merge
requests from entirely honest groups. Since each Vampire
will start as a group of one, other groups will issue merge
requests, which the Vampire can deny. In PLGP, denials are
only allowed if another merge is in progress, so if we modify
the reject message to include the ID of the group with which
the merge is in progress (and a signature for non-repudiation),
these messages can be kept and replayed at the end of the
topology discovery period, detecting and removing nodes
who incorrectly deny merge requests. Therefore, Vampires
reject legitimate merge requests at their own peril. Any group
containing a Vampire can be made to serially join with a
“group” composed only of each Vampire in the network (all
of them would have to advertise themselves as neighbors of
each group). Even wholly honest groups can be fooled using
directional antennas: Vampires could maintain the illusion that
it is a neighbor of a given group. Since join events require
multiparty computation and are flooded throughout the group,
this makes for a fairly effective attack. PLGP already provides
for the discovery of such subterfuge upon termination of
topology discovery: a node who is a member of multiple
groups will be detected once those groups join (and all groups
are guaranteed to merge by the end of the protocol).

Since PLGP offers the chance to detect active Vampires
once the network converges, successive re-discovery periods
become safer. This is more than can be said of other protocols,
where malicious behavior during discovery may go undetected,
or at least unpunished. However, the bound we can place
on malicious discovery damage in PLGPa is still unknown.
Moreover, if we can conclude that a single malicious node
causes a factor of k energy increase during discovery (and
is then expelled), it is not clear how that value scales under
collusion among multiple malicious nodes.

IX. CONCLUSION

In this paper we defined Vampire attacks, a new class
of resource consumption attacks that use routing protocols
to permanently disable ad-hoc wireless sensor networks by
depleting nodes’ battery power. These attacks do not depend
on particular protocols or implementations, but rather ex-
pose vulnerabilities in a number of popular protocol classes.
We showed a number of proof-of-concept attacks against
representative examples of existing routing protocols using
a small number of weak adversaries, and measured their
attack success on a randomly-generated topology of 30 nodes.
Simulation results show that depending on the location of the
adversary, network energy expenditure during the forwarding
phase increases from between 50 to 1,000 percent. Theoretical

worst-case energy usage can increase by as much as a factor of
O(N) per adversary per packet, where N is the network size.
We proposed defenses against some of the forwarding-phase
attacks and described PLGPa, the first sensor network routing
protocol that provably bounds damage from Vampire attacks
by verifying that packets consistently make progress toward
their destinations. We have not offered a fully satisfactory
solution for Vampire attacks during the topology discovery
phase, but suggested some intuition about damage limitations
possible with further modifications to PLGPa. Derivation of
damage bounds and defenses for topology discovery, as well
as handling mobile networks, is left for future work.

ACKNOWLEDGEMENTS

We would like to thank Hal Peterson, Tian He, Yongdae
Kim, Daniel Andresen, and our anonymous reviewers for their
very helpful comments on earlier drafts of this paper.

REFERENCES

[1] The network simulator — ns-2. http://www.isi.edu/nsnam/ns/.
[2] Imad Aad, Jean-Pierre Hubaux, and Edward W. Knightly, Denial of

service resilience in ad hoc networks, MobiCom, 2004.
[3] Gergely Acs, Levente Buttyan, and Istvan Vajda, Provably secure on-

demand source routing in mobile ad hoc networks, IEEE Transactions
on Mobile Computing 05 (2006), no. 11.

[4] Tuomas Aura, Dos-resistant authentication with client puzzles, Interna-
tional workshop on security protocols, 2001.

[5] John Bellardo and Stefan Savage, 802.11 denial-of-service attacks: real
vulnerabilities and practical solutions, USENIX security, 2003.

[6] Daniel Bernstein and Peter Schwabe, New AES software speed records,
INDOCRYPT, 2008.

[7] Daniel J. Bernstein, Syn cookies, 1996. http://cr.yp.to/syncookies.html.
[8] I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic curves in cryptography,

Vol. 265, Cambridge University Press, 1999.
[9] Joppe W. Bos, Dag Arne Osvik, and Deian Stefan, Fast implementations

of AES on various platforms, 2009.
[10] Haowen Chan and Adrian Perrig, Security and privacy in sensor net-

works, Computer 36 (2003), no. 10.
[11] Jae-Hwan Chang and Leandros Tassiulas, Maximum lifetime routing in

wireless sensor networks, IEEE/ACM Transactions on Networking 12
(2004), no. 4.

[12] Thomas H. Clausen and Philippe Jacquet, Optimized link state routing
protocol (OLSR), 2003.

[13] Jing Deng, Richard Han, and Shivakant Mishra, Defending against path-
based DoS attacks in wireless sensor networks, ACM workshop on
security of ad hoc and sensor networks, 2005.

[14] , INSENS: Intrusion-tolerant routing for wireless sensor net-
works, Computer Communications 29 (2006), no. 2.

[15] Sheetalkumar Doshi, Shweta Bhandare, and Timothy X. Brown, An on-
demand minimum energy routing protocol for a wireless ad hoc network,
ACM SIGMOBILE Mobile Computing and Communications Review 6
(2002), no. 3.

[16] John R. Douceur, The Sybil attack, International workshop on peer-to-
peer systems, 2002.

[17] Hans Eberle, Arvinderpal Wander, Nils Gura, Sheueling Chang-Shantz,
and Vipul Gupta, Architectural extensions for elliptic curve cryptography
over GF(2m) on 8-bit microprocessors, ASAP, 2005.

[18] T. English, M. Keller, Ka Lok Man, E. Popovici, M. Schellekens, and
W. Marnane, A low-power pairing-based cryptographic accelerator for
embedded security applications, SOCC, 2009.

[19] Laura M. Feeney, An energy consumption model for performance anal-
ysis of routing protocols for mobile ad hoc networks, Mobile Networks
and Applications 6 (2001), no. 3.

[20] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer,
Strong authentication for RFID systems using the AES algorithm, CHES,
2004.

[21] Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng T. Ee, David
Culler, Scott Shenker, and Ion Stoica, Beacon vector routing: Scalable
point-to-point routing in wireless sensornets, NSDI, 2005.

http://www.isi.edu/nsnam/ns/
http://cr.yp.to/syncookies.html


14

[22] Steven Galbraith, Keith Harrison, and David Soldera, Implementing the
tate pairing, Algorithmic number theory, 2002.

[23] Sharon Goldberg, David Xiao, Eran Tromer, Boaz Barak, and Jennifer
Rexford, Path-quality monitoring in the presence of adversaries, SIG-
METRICS, 2008.

[24] Andrea J. Goldsmith and Stephen B. Wicker, Design challenges for
energy-constrained ad hoc wireless networks, IEEE Wireless Communi-
cations 9 (2002), no. 4.

[25] R. Govindan and A. Reddy, An analysis of internet inter-domain
topology and route stability, INFOCOM, 1997.

[26] Mina Guirguis, Azer Bestavros, Ibrahim Matta, and Yuting Zhang,
Reduction of quality (RoQ) attacks on Internet end-systems, INFOCOM,
2005.

[27] J.L. Hill and D.E. Culler, Mica: a wireless platform for deeply embedded
networks, IEEE Micro 22 (2002), no. 6.

[28] Yih-Chun Hu, David B. Johnson, and Adrian Perrig, SEAD: secure
efficient distance vector routing for mobile wireless ad hoc networks,
IEEE workshop on mobile computing systems and applications, 2002.

[29] Yih-Chun Hu, Adrian Perrig, and David B. Johnson, Ariadne: A secure
on-demand routing protocol for ad hoc networks, MobiCom, 2002.

[30] , Packet leashes: A defense against wormhole attacks in wireless
ad hoc networks, INFOCOM, 2003.

[31] , Rushing attacks and defense in wireless ad hoc network routing
protocols, WiSE, 2003.

[32] Yangcheng Huang and Saleem Bhatti, Fast-converging distance vector
routing for wireless mesh networks, ICDCS, 2008.

[33] D. Hwang, Bo-Cheng Lai, P. Schaumont, K. Sakiyama, Yi Fan, Shenglin
Yang, A. Hodjat, and I. Verbauwhede, Design flow for HW/SW accel-
eration transparency in the thumbpod secure embedded system, Design
automation conference, 2003.

[34] L. Iannone, R. Khalili, K. Salamatian, and S. Fdida, Cross-layer routing
in wireless mesh networks, International symposium on wireless com-
munication systems, 2004.

[35] David B. Johnson, David A. Maltz, and Josh Broch, DSR: the dynamic
source routing protocol for multihop wireless ad hoc networks, Ad hoc
networking, 2001.

[36] Chris Karlof and David Wagner, Secure routing in wireless sensor
networks: attacks and countermeasures, IEEE international workshop
on sensor network protocols and applications, 2003.

[37] Brad Karp and H.T. Kung, GPSR: Greedy perimeter stateless routing
for wireless networks, MobiCom, 2000.

[38] Y. Kawahara, T. Takagi, and E. Okamoto, Efficient implementation of
Tate pairing on a mobile phone using Java, International conference on
computational intelligence and security, 2006.

[39] Manuel Koschuch, Joachim Lechner, Andreas Weitzer, Johann Groschdl,
Alexander Szekely, Stefan Tillich, and Johannes Wolkerstorfer, Hard-
ware/software co-design of elliptic curve cryptography on an 8051
microcontroller, CHES, 2006.

[40] Alexander Kröller, Sándor P. Fekete, Dennis Pfisterer, and Stefan Fis-
cher, Deterministic boundary recognition and topology extraction for
large sensor networks, Annual ACM-SIAM symposium on discrete
algorithms, 2006.

[41] Aleksandar Kuzmanovic and Edward W. Knightly, Low-rate TCP-
targeted denial of service attacks: the shrew vs. the mice and elephants,
SIGCOMM, 2003.

[42] Yu-Kwong Kwok, Rohit Tripathi, Yu Chen, and Kai Hwang, HAWK:
Halting anomalies with weighted choking to rescue well-behaved TCP
sessions from shrew DDoS attacks, Networking and mobile computing,
2005.

[43] Xiaojun Lin, N.B. Shroff, and R. Srikant, A tutorial on cross-layer
optimization in wireless networks, Selected Areas in Communications,
IEEE Journal on 24 (2006), no. 8.

[44] Xiapu Luo and Rocky K. C. Chang, On a new class of pulsing denial-
of-service attacks and the defense, NDSS, 2005.

[45] Morteza Maleki, Karthik Dantu, and Massoud Pedram, Power-aware
source routing protocol for mobile ad hoc networks, ISLPED, 2002.

[46] Yusuke Matsuoka, Patrick Schaumont, Kris Tiri, and Ingrid Ver-
bauwhede, Java cryptography on kvm and its performance and security
optimization using hw/sw co-design techniques, CASES, 2004.

[47] M. McLoone and M. Robshaw, Public key cryptography and RFID tags,
CT-RSA, 2006.

[48] Timothy J. McNevin, Jung-Min Park, and Randolph Marchany, pTCP: A
client puzzle protocol for defending against resource exhaustion denial
of service attacks, Technical Report TR-ECE-04-10, Department of
Electrical and Computer Engineering, Virginia Tech, 2004.

[49] V.P. Nambiar, M. Khalil-Hani, and M.M.A. Zabidi, Accelerating the AES
encryption function in OpenSSL for embedded systems, ICED, 2008.

[50] Asis Nasipuri and Samir R. Das, On-demand multipath routing for
mobile ad hoc networks, International conference on computer commu-
nications and networks, 1999.

[51] L.B. Oliveira, D.F. Aranha, E. Morais, F. Daguano, J. Lopez, and R.
Dahab, TinyTate: Computing the Tate pairing in resource-constrained
sensor nodes, NCA, 2007.

[52] Kihong Park and Heejo Lee, On the effectiveness of probabilistic packet
marking for IP traceback under denial of service attack, INFOCOM,
2001.

[53] Bryan Parno, Mark Luk, Evan Gaustad, and Adrian Perrig, Secure sensor
network routing: A clean-slate approach, CoNEXT, 2006.

[54] Vern Paxson, An analysis of using reflectors for distributed denial-of-
service attacks, SIGCOMM Comput. Commun. Rev. 31 (2001), no. 3.

[55] Charles E. Perkins and Pravin Bhagwat, Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile computers, Con-
ference on communications architectures, protocols and applications,
1994.

[56] R. Potlapally, S. Ravi, A. Raghunathan, R.B. Lee, and N.K. Jha, Impact
of configurability and extensibility on IPSec protocol execution on
embedded processors, International conference on VLSI design, 2006.

[57] Marcin Poturalski, Panagiotis Papadimitratos, and Jean-Pierre Hubaux,
Secure neighbor discovery in wireless networks: Formal investigation of
possibility, ACM ASIACCS, 2008.

[58] Daniele Raffo, Cédric Adjih, Thomas Clausen, and Paul Mühlethaler,
An advanced signature system for OLSR, SASN, 2004.

[59] David R. Raymond, Randy C. Marchany, Michael I. Brownfield, and
Scott F. Midkiff, Effects of denial-of-sleep attacks on wireless sensor
network MAC protocols, IEEE Transactions on Vehicular Technology
58 (2009), no. 1.

[60] David R. Raymond and Scott F. Midkiff, Denial-of-service in wireless
sensor networks: Attacks and defenses, IEEE Pervasive Computing 7
(2008), no. 1.

[61] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang, BGP routing
stability of popular destinations, IMW, 2002.

[62] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM
21 (1978), no. 2.

[63] Volkan Rodoplu and Teresa H. Meng, Minimum energy mobile wireless
networks, IEEE Journal on Selected Areas in Communications 17 (1999),
no. 8.

[64] Amitabh Saxena and Ben Soh, One-way signature chaining: a new
paradigm for group cryptosystems, International Journal of Information
and Computer Security 2 (2008), no. 3.

[65] Michael Scott, Neil Costigan, and Wesam Abdulwahab, Implementing
cryptographic pairings on smartcards, CHES, 2006.

[66] Rahul C. Shah and Jan M. Rabaey, Energy aware routing for low energy
ad hoc sensor networks, WCNC, 2002.

[67] Suresh Singh, Mike Woo, and C. S. Raghavendra, Power-aware routing
in mobile ad hoc networks, MobiCom, 1998.

[68] Frank Stajano and Ross Anderson, The resurrecting duckling: security
issues for ad-hoc wireless networks, International workshop on security
protocols, 1999.

[69] Ivan Stojmenovic and Xu Lin, Power-aware localized routing in wireless
networks, IEEE Transactions on Parallel and Distributed Systems 12
(2001), no. 11.

[70] Lakshminarayanan Subramanian, Randy H. Katz, Volker Roth, Scott
Shenker, and Ion Stoica, Reliable broadcast in unknown fixed-identity
networks, Annual ACM SIGACT-SIGOPS symposium on principles of
distributed computing, 2005.

[71] Haibin Sun, John C. S. Lui, and David K. Y. Yau, Defending against
low-rate TCP attacks: dynamic detection and protection, ICNP, 2004.

[72] Curtis Villamizar, Ravi Chandra, and Ramesh Govindan, BGP route flap
damping, 1998.

[73] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford,
CAPTCHA: Using hard AI problems for security, Eurocrypt, 2003.

[74] Yue Wang, Jie Gao, and Joseph S.B. Mitchell, Boundary recognition in
sensor networks by topological methods, Annual international conference
on mobile computing and networking, 2006.

[75] Anthony D. Wood and John A. Stankovic, Denial of service in sensor
networks, Computer 35 (2002), no. 10.

[76] Guang Yang, M. Gerla, and M.Y. Sanadidi, Defense against low-rate
TCP-targeted denial-of-service attacks, ISCC, 2004.

[77] Jun Yuan, Zongpeng Li, Wei Yu, and Baochun Li, A cross-layer opti-
mization framework for multihop multicast in wireless mesh networks,
IEEE Journal on Selected Areas in Communications 24 (2006), no. 11.

[78] Manel Guerrero Zapata and N. Asokan, Securing ad hoc routing proto-
cols, WiSE, 2002.



15

Eugene Vasserman is an Assistant Professor of
Computing and Information Sciences at Kansas
State University. He received his Ph.D. and Master’s
degrees in Computer Science in 2010 and 2008,
respectively, University of Minnesota. His B.S. in
Biochemistry and Neuroscience with a Computer
Science minor, is also from the University of Min-
nesota (2003). He is interested in distributed network
security, privacy and anonymity, low-power and per-
vasive computing, peer-to-peer systems, and applied
cryptography.

Nicholas Hopper is an Associate Professor in the
department of Computer Science and Engineering,
University of Minnesota. He received a B.A. with
majors in Mathematics and Computer Science from
the University of Minnesota-Morris in 1999 and a
PhD in Computer Science from Carnegie Mellon
University in 2004. He received the NSF CAREER
award in 2006 and the Institute of Technology Stu-
dent Board “Professor of the Year” award in 2007
and the McKnight Land-Grant award in 2008. His
research interests include cryptography, anonymity,

and distributed systems security.


	Introduction
	Classification
	Protocols and assumptions
	Overview

	Related work
	Attacks on stateless protocols
	Mitigation methods

	Attacks on stateful protocols
	Coordinate and beacon-based protocols

	Clean-slate sensor network routing
	PLGP in the presence of Vampires

	Provable security against Vampire attacks
	Performance considerations
	Securing the discovery phase
	Conclusion
	Biographies
	Eugene Vasserman
	Nicholas Hopper


