

### Announcement

• HW #3 out today (start early!!!)

• HW #3 short presentation on Thursday (share your panorama!)

HW #2 grading will be done by Friday

Paper selection by next Tuesday (Feb 28)

# Camera Calibration via Vanishing Points





## **Multiview Camera Calibration**



## **Multiview Camera Calibration**



# **Insight: Known Common 3D Points**



# of unknowns:  $3 (\mathbf{K}) + 6n (\mathbf{R})$  and  $\mathbf{t}$ )

*n*: the number of images

*p*: the number of points

# of equations: 2np

We can solve for **K**, **R**, **t** if 3 + 6n < 2 nm

: Knowns

: Unknowns



$$\lambda \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_{x} \\ f & p_{y} \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 0 \\ 1 \end{bmatrix}$$



$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} f & p_x \\ \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$



$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} f & p_x \\ f & p_y \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \end{bmatrix}$$



Points in 2D plane are mapped to an image with homography:

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

1. Compute homography

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$



$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

$$H = K$$









Upper triangle matrix

Othogonal matrix







QR decomposition:









Upper triangle matrix

Otriogoriai matri

#### QR decomposition:



MATLAB [Q R] = qr(A)





#### QR decomposition:



MATLAB [Q R] = qr(A)

HW: How to convert **QR** to **RQ**?

## **Recall: Vanishing Points**



$$\lambda \mathbf{v}_{\mathbf{x}_{\infty}} = \begin{bmatrix} f & \rho_{\mathbf{x}} \\ f & \rho_{\mathbf{y}} \\ 1 \end{bmatrix} \mathbf{R} \mathbf{X}_{\infty} \quad \lambda \mathbf{v}_{\mathbf{z}_{\infty}} = \begin{bmatrix} f & \rho_{\mathbf{x}} \\ f & \rho_{\mathbf{y}} \\ 1 \end{bmatrix} \mathbf{R} \mathbf{Z}_{\infty} \quad \lambda \mathbf{v}_{\mathbf{y}_{\infty}} = \begin{bmatrix} f & \rho_{\mathbf{x}} \\ f & \rho_{\mathbf{y}} \\ 1 \end{bmatrix} \mathbf{R} \mathbf{Y}_{\infty}$$

$$\lambda \mathbf{K}^{-1} \mathbf{v}_{\mathbf{y}_{\infty}} = \mathbf{R} \mathbf{X}_{\infty} \qquad \lambda \mathbf{K}^{-1} \mathbf{v}_{\mathbf{y}_{\infty}} = \mathbf{R} \mathbf{Z}_{\infty}$$

$$\lambda \mathbf{K}^{-1} \mathbf{v}_{\mathbf{y}_{\infty}} = \mathbf{R} \mathbf{Z}_{\infty}$$

Note that the camera extrinsic is still unknown (**R** and **t**).

Known property of points at infinity:

$$(\mathbf{X}_{\infty})^{\mathsf{T}} (\mathbf{Y}_{\infty}) = 0$$

$$(\mathbf{R}\mathbf{X}_{\infty})^{\mathsf{T}} (\mathbf{R}\mathbf{Y}_{\infty}) = 0$$

$$(\mathbf{R}\mathbf{Y}_{\infty})^{\mathsf{T}} (\mathbf{R}\mathbf{Z}_{\infty}) = 0$$

$$(\mathbf{R}\mathbf{Y}_{\infty})^{\mathsf{T}} (\mathbf{R}\mathbf{Z}_{\infty}) = 0$$

$$(\mathbf{R}\mathbf{Z}_{\infty})^{\mathsf{T}} (\mathbf{R}\mathbf{X}_{\infty}) = 0$$

$$\left( \mathbf{K}^{-1} \mathbf{v}_{X\infty} \right)^{\mathsf{T}} \left( \mathbf{K}^{-1} \mathbf{v}_{Y\infty} \right) = \left( \mathbf{K}^{-1} \mathbf{v}_{Y\infty} \right)^{\mathsf{T}} \left( \mathbf{K}^{-1} \mathbf{v}_{Z\infty} \right) = \left( \mathbf{K}^{-1} \mathbf{v}_{Z\infty} \right)^{\mathsf{T}} \left( \mathbf{K}^{-1} \mathbf{v}_{X\infty} \right) = 0$$

: 3 unknowns and 3 equations

: Knowns

Homography factorization:

: Unknowns



$$\begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

: Knowns

: Unknowns

Homography factorization:





: Knowns

Homography factorization:

: Unknowns



$$\begin{bmatrix}
f & p_x \\
f & p_y \\
1
\end{bmatrix} \begin{bmatrix}
\mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3
\end{bmatrix} = \begin{bmatrix}
\mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t}
\end{bmatrix}$$

$$\mathbf{r}_1 = \mathbf{K}^{-1} \mathbf{h}_1$$
  $\mathbf{r}_2 = \mathbf{K}^{-1} \mathbf{h}_2$   $\mathbf{r}_3 = \mathbf{K}^{-1} \mathbf{h}_3$ 

$$r_3 = K^{-1} h_3$$



$$\mathbf{r}_1 = \mathbf{K}^{-1} \mathbf{h}_1$$

$$\mathbf{r}_1 = \mathbf{K}^{-1} \mathbf{h}_1$$
  $\mathbf{r}_2 = \mathbf{K}^{-1} \mathbf{h}_2$   $\mathbf{r}_3 = \mathbf{K}^{-1} \mathbf{h}_3$ 

$$\mathbf{r}_3 = \mathbf{K}^{-1} \mathbf{h}_3$$

$$\mathbf{r}_1^{\mathsf{T}}\mathbf{r}_2 = 0$$
  $\|\mathbf{r}_1\| = 1$   $\|\mathbf{r}_2\| = 1$ 



$$\mathbf{r}_1 = \mathbf{K}^{-1}\mathbf{h}_1$$
  $\mathbf{r}_2 = \mathbf{K}^{-1}\mathbf{h}_2$   $\mathbf{r}_3 = \mathbf{K}^{-1}\mathbf{h}_3$ 

$$\mathbf{r}_1^{\mathsf{T}}\mathbf{r}_2 = 0$$
  $\|\mathbf{r}_1\| = 1$   $\|\mathbf{r}_2\| = 1$ 

$$\longrightarrow \left(\mathbf{K}^{-1}\mathbf{h}_{1}\right)^{\mathsf{T}}\left(\mathbf{K}^{-1}\mathbf{h}_{2}\right) = \mathbf{h}_{1}^{\mathsf{T}}\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-1}\mathbf{h}_{2} = 0$$



$$\mathbf{r}_{1} = \mathbf{K}^{-1}\mathbf{h}_{1}$$
  $\mathbf{r}_{2} = \mathbf{K}^{-1}\mathbf{h}_{2}$   $\mathbf{r}_{3} = \mathbf{K}^{-1}\mathbf{h}_{3}$ 

$$\mathbf{r}_1^{\mathsf{T}}\mathbf{r}_2 = 0$$
  $\|\mathbf{r}_1\| = 1$   $\|\mathbf{r}_2\| = 1$ 

$$(\mathbf{K}^{-1}\mathbf{h}_{1})^{\mathsf{T}}(\mathbf{K}^{-1}\mathbf{h}_{2}) = \mathbf{h}_{1}^{\mathsf{T}}\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-\mathsf{1}}\mathbf{h}_{2} = 0$$

$$\|\mathbf{K}^{-\mathsf{1}}\mathbf{h}_{1}\| = \|\mathbf{K}^{-\mathsf{1}}\mathbf{h}_{2}\| \quad \text{or, } \mathbf{h}_{1}^{\mathsf{T}}\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-\mathsf{1}}\mathbf{h}_{1} = \mathbf{h}_{2}^{\mathsf{T}}\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-\mathsf{1}}\mathbf{h}_{2}$$



$$\mathbf{r}_{1} = \mathbf{K}^{-1}\mathbf{h}_{1}$$
  $\mathbf{r}_{2} = \mathbf{K}^{-1}\mathbf{h}_{2}$   $\mathbf{r}_{3} = \mathbf{K}^{-1}\mathbf{h}_{3}$ 

$$\mathbf{r}_1^{\mathsf{T}}\mathbf{r}_2 = 0$$
  $\|\mathbf{r}_1\| = 1$   $\|\mathbf{r}_2\| = 1$ 

$$(\mathbf{K}^{-1}\mathbf{h}_{1})^{\mathsf{T}}(\mathbf{K}^{-1}\mathbf{h}_{2}) = \mathbf{h}_{1}^{\mathsf{T}}\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-\mathsf{1}}\mathbf{h}_{2} = 0$$

$$\|\mathbf{K}^{-1}\mathbf{h}_{1}\| = \|\mathbf{K}^{-1}\mathbf{h}_{2}\| \quad \text{or, } \mathbf{h}_{1}^{\mathsf{T}}\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-\mathsf{1}}\mathbf{h}_{1} = \mathbf{h}_{2}^{\mathsf{T}}\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-\mathsf{1}}\mathbf{h}_{2}$$

$$\mathbf{K}^{\text{-}\mathsf{T}}\mathbf{K}^{\text{-}\mathsf{1}} =$$



$$\mathbf{r}_{1} = \mathbf{K}^{-1}\mathbf{h}_{1}$$
  $\mathbf{r}_{2} = \mathbf{K}^{-1}\mathbf{h}_{2}$   $\mathbf{r}_{3} = \mathbf{K}^{-1}\mathbf{h}_{3}$ 

$$\mathbf{r}_1^{\mathsf{T}}\mathbf{r}_2 = 0$$
  $\|\mathbf{r}_1\| = 1$   $\|\mathbf{r}_2\| = 1$ 

$$(K^{-1}\mathbf{h}_{1})^{\mathsf{T}} (K^{-1}\mathbf{h}_{2}) = \mathbf{h}_{1}^{\mathsf{T}} K^{-\mathsf{T}} K^{-\mathsf{T}} \mathbf{h}_{2} = 0$$

$$||K^{-1}\mathbf{h}_{1}|| = ||K^{-1}\mathbf{h}_{2}|| \quad \text{or, } \mathbf{h}_{1}^{\mathsf{T}} K^{-\mathsf{T}} K^{-\mathsf{T}} \mathbf{h}_{1} = \mathbf{h}_{2}^{\mathsf{T}} K^{-\mathsf{T}} K^{-\mathsf{T}} \mathbf{h}_{2}$$

$$\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-\mathsf{1}} = \begin{bmatrix} 1/f & & & \\ & 1/f & & \\ -p_{x}/f & -p_{y}/f & 1 \end{bmatrix} \begin{bmatrix} 1/f & & -p_{x}/f \\ & 1/f & -p_{y}/f \\ & & 1 \end{bmatrix}$$



$$\mathbf{r}_{1} = \mathbf{K}^{-1}\mathbf{h}_{1}$$
  $\mathbf{r}_{2} = \mathbf{K}^{-1}\mathbf{h}_{2}$   $\mathbf{r}_{3} = \mathbf{K}^{-1}\mathbf{h}_{3}$ 

$$\mathbf{r}_1^{\mathsf{T}}\mathbf{r}_2 = 0$$
  $\|\mathbf{r}_1\| = 1$   $\|\mathbf{r}_2\| = 1$ 

$$(K^{-1}\mathbf{h}_{1})^{\mathsf{T}} (K^{-1}\mathbf{h}_{2}) = \mathbf{h}_{1}^{\mathsf{T}} K^{-\mathsf{T}} K^{-\mathsf{T}} \mathbf{h}_{2} = 0$$

$$||K^{-1}\mathbf{h}_{1}|| = ||K^{-1}\mathbf{h}_{2}|| \quad \text{or, } \mathbf{h}_{1}^{\mathsf{T}} K^{-\mathsf{T}} K^{-\mathsf{T}} \mathbf{h}_{1} = \mathbf{h}_{2}^{\mathsf{T}} K^{-\mathsf{T}} K^{-\mathsf{T}} \mathbf{h}_{2}$$

$$\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-1} = \begin{bmatrix} 1/f & & & \\ & 1/f & & \\ -\rho_{x}/f & -\rho_{y}/f & 1 \end{bmatrix} \begin{bmatrix} 1/f & & -\rho_{x}/f \\ & 1/f & -\rho_{y}/f \\ & & 1 \end{bmatrix} = \begin{bmatrix} b_{1} & b_{2} \\ & b_{1} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{bmatrix}$$

where 
$$b_1 = \frac{1}{f^2}$$
,  $b_2 = -\frac{p_x}{f^2}$ ,  $b_3 = -\frac{p_y}{f^2}$ ,  $b_4 = \frac{p_x^2}{f^2} + \frac{p_y^2}{f^2} + 1$ 



$$\mathbf{r}_{1} = \mathbf{K}^{-1}\mathbf{h}_{1}$$
  $\mathbf{r}_{2} = \mathbf{K}^{-1}\mathbf{h}_{2}$   $\mathbf{r}_{3} = \mathbf{K}^{-1}\mathbf{h}_{3}$ 

$$\mathbf{r}_1^{\mathsf{T}}\mathbf{r}_2 = 0$$
  $\|\mathbf{r}_1\| = 1$   $\|\mathbf{r}_2\| = 1$ 

$$\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-1} = \begin{bmatrix} 1/f & & & \\ & 1/f & & \\ -p_{x}/f & -p_{y}/f & 1 \end{bmatrix} \begin{bmatrix} 1/f & & -p_{x}/f \\ & 1/f & -p_{y}/f \\ & & 1 \end{bmatrix} = \begin{bmatrix} b_{1} & & b_{2} \\ & b_{1} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{bmatrix}$$

where 
$$b_1 = \frac{1}{f^2}$$
,  $b_2 = -\frac{p_x}{f^2}$ ,  $b_3 = -\frac{p_y}{f^2}$ ,  $b_4 = \frac{p_x^2}{f^2} + \frac{p_y^2}{f^2} + 1$ 

Linear in **B**: 
$$\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2} = 0$$
  $\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{1} = \mathbf{h}_{2}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2}$ 



$$\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2} = \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_{1} & b_{2} \\ b_{1} & b_{3} \\ b_{2} & b_{3} \\ b_{4} \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix} = 0$$



$$\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2} = \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_{1} & b_{2} \\ b_{1} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix} = 0$$



$$\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2} = \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_{1} & b_{2} \\ b_{1} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix} = 0$$

$$\begin{array}{lll}
\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{1} &= \mathbf{h}_{2}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2} \\
\begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_{1} & b_{2} \\ b_{1} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix} = \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_{1} & b_{2} \\ h_{22} \\ h_{32} \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix} \\
\begin{bmatrix} h_{11}h_{12} + h_{21}h_{22} & h_{11} + h_{12} & h_{21} + h_{22} & 1 \\ h_{11} - h_{12}^{2} + h_{21}^{2} - h_{22}^{2} & 2(h_{11} - h_{12}) & 2(h_{21} - h_{22}) & 0 \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix} = \mathbf{0}
\end{array}$$



$$\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2} = \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_{1} & b_{2} \\ b_{1} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix} = 0$$

$$\mathbf{h}_1^{\mathsf{T}}\mathbf{B}\mathbf{h}_1 = \mathbf{h}_2^{\mathsf{T}}\mathbf{B}\mathbf{h}_2$$

$$\begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_1 & b_2 \\ b_1 & b_3 \\ b_2 & b_3 & b_4 \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix} = \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_1 & b_2 \\ b_1 & b_1 \\ b_2 & b_3 & b_4 \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix}$$

$$\begin{bmatrix} h_{11}h_{12} + h_{21}h_{22} & h_{11} + h_{12} & h_{21} + h_{22} & 1 \\ h_{11}^2 - h_{12}^2 + h_{21}^2 - h_{22}^2 & 2(h_{11} - h_{12}) & 2(h_{21} - h_{22}) & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \mathbf{0}$$

$$2 \times 4$$

$$p_{x} = -\frac{b_{2}}{b_{1}}, \quad p_{y} = -\frac{b_{3}}{b_{1}}, \quad f = \sqrt{\frac{b_{4}}{b_{1}} - (p_{x}^{2} + p_{y}^{2})}$$



$$\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2} = \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_{1} & b_{2} \\ b_{1} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix} = 0$$

Each image produces 2 equations and therefore, **x** can be computed with minimum 2 images.



$$\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2} = \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix} \begin{bmatrix} b_{1} & b_{2} \\ b_{1} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix} = 0$$

$$\mathbf{h}_1^{\mathsf{T}}\mathbf{B}\mathbf{h}_1 = \mathbf{h}_2^{\mathsf{T}}\mathbf{B}\mathbf{h}_2$$

$$\begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_1 & b_2 \\ b_1 & b_3 \\ b_2 & b_3 & b_4 \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix} = \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_1 & b_2 \\ b_1 & b_3 \\ b_2 & b_3 & b_4 \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix}$$

$$\begin{bmatrix} h_{11}h_{12} + h_{21}h_{22} & h_{11} + h_{12} & h_{21} + h_{22} & 1 \\ h_{11}^2 - h_{12}^2 + h_{21}^2 - h_{22}^2 & 2(h_{11}^2 + h_{12}^2) & 2(h_{21} - h_{22}^2) & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ h_2 \\ b_3 \\ b_4 \end{bmatrix} = \mathbf{0}$$

$$p_{x} = -\frac{b_{2}}{b_{1}}, \quad p_{y} = -\frac{b_{3}}{b_{1}}, \quad f = \sqrt{\frac{b_{4}}{b_{1}} - (p_{x}^{2} + p_{y}^{2})}$$



$$\mathbf{h}_{1}^{\mathsf{T}}\mathbf{B}\mathbf{h}_{2} = \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix} \begin{bmatrix} b_{1} & b_{2} \\ b_{1} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix} = 0$$

$$\mathbf{h}_1^{\mathsf{T}}\mathbf{B}\mathbf{h}_1 = \mathbf{h}_2^{\mathsf{T}}\mathbf{B}\mathbf{h}_2$$

$$\begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_1 & b_2 \\ b_1 & b_3 \\ b_2 & b_3 & b_4 \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{21} \\ h_{31} \end{bmatrix} = \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b_1 & b_2 \\ b_1 & b_3 \\ b_2 & b_3 & b_4 \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix}$$

$$\begin{bmatrix} h_{11}h_{12} + h_{21}h_{22} & h_{11} + h_{12} & h_{21} + h_{22} & 1 \\ h_{11}^2 - h_{12}^2 + h_{21}^2 - h_{22}^2 & 2(h_{11}^2 + h_{12}) & 2(h_{21} - h_{22}) & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \mathbf{0}$$

$$p_{x} = -\frac{b_{2}}{b_{1}}, \quad p_{y} = -\frac{b_{3}}{b_{1}}, \quad f = \sqrt{\frac{b_{4}}{b_{1}} - (p_{x}^{2} + p_{y}^{2})}$$



: Knowns

: Unknowns

#### Homography factorization:

$$\begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix}$$

$$\mathbf{r}_1 = \mathbf{K}^{-1} \mathbf{h}_1$$
  $\mathbf{r}_2 = \mathbf{K}^{-1} \mathbf{h}_2$   $\mathbf{r}_3 = \mathbf{K}^{-1} \mathbf{h}_3$ 

$$r_3 = K^{-1} h_3$$



$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$









$$\mathbf{r}_1 = \mathbf{K}^{-1} \mathbf{h}_1$$
  $\mathbf{r}_2 = \mathbf{K}^{-1} \mathbf{h}_2$   $\mathbf{r}_3 = \mathbf{K}^{-1} \mathbf{h}_3$ 

$$\mathbf{r}_{1} = \frac{\mathbf{K}^{-1}\mathbf{h}_{1}}{\|\mathbf{K}^{-1}\mathbf{h}_{1}\|}, \quad \mathbf{r}_{2} = \frac{\mathbf{K}^{-1}\mathbf{h}_{2}}{\|\mathbf{K}^{-1}\mathbf{h}_{1}\|}, \quad \mathbf{t} = \frac{\mathbf{K}^{-1}\mathbf{h}_{3}}{\|\mathbf{K}^{-1}\mathbf{h}_{1}\|}, \quad \mathbf{r}_{3} = \mathbf{r}_{1} \times \mathbf{r}_{2}$$

Divided by constant factor



#### MATLAB Calibration Toolbox Demo

https://www.vision.caltech.edu/bouguetj/calib\_doc/











Click four corner in the following order:

- 1. Top left
- 2. Top right
- 3. Bottom right
- 4. Bottom left



**Default mode (press Enter)** 

Set grid size (27mm)







Need of an initial guess for distortion? ([]=no, other=yes)



Processing image 27...

Using (wintx, winty) = (30, 30) - Window size = 61x61 (Note: To reset the window size, run sc Click on the four extreme corners of the rectangular complete pattern (the first clicked corne Size of each square along the X direction: dX=27mm Size of each square along the Y direction: dY=27mm (Note: To reset the size of the squares,



### Cf) calibration with vanishing points



### Extrinsic parameters (world-centered)











### **Radial Distortion Model**

Assumption: Lens distortion is a function of distance from the principal point.



$$\overline{\mathbf{u}}_{\text{distorted}} = \mathbf{K}^{-1} \mathbf{u}_{\text{distorted}}, \quad \overline{\mathbf{u}}_{\text{undistorted}} = \mathbf{K}^{-1} \mathbf{u}_{\text{undistorted}}$$

### **Radial Distortion Model**

Assumption: Lens distortion is a function of distance from the principal point.



$$\overline{\mathbf{u}}_{\mathrm{distorted}} = \mathbf{K}^{-1}\mathbf{u}_{\mathrm{distorted}}, \quad \overline{\mathbf{u}}_{\mathrm{undistorted}} = \mathbf{K}^{-1}\mathbf{u}_{\mathrm{undistorted}}$$

$$\overline{\mathbf{u}}_{\mathrm{distorted}} = \mathcal{L}(\boldsymbol{\rho})\overline{\mathbf{u}}_{\mathrm{undistorted}}$$

where 
$$ho = \left\| \mathbf{K}^{\text{-1}} \overline{\mathbf{u}}_{\text{distorted}} \right\|$$

$$L(\rho) = 1 + k_1 \rho^2 + k_2 \rho^4 + \cdots$$

### Radial Distortion Parameter Estimation (2<sup>nd</sup> order)



$$\overline{\mathbf{u}}_{\text{distorted}} = \mathbf{K}^{\text{-1}}\mathbf{u}_{\text{distorted}}, \quad \overline{\mathbf{u}}_{\text{undistorted}} = \mathbf{K}^{\text{-1}}\mathbf{u}_{\text{undistorted}}$$

$$\overline{\mathbf{u}}_{\text{distorted}} = (1 + k_1 \boldsymbol{\rho}^2 + k_2 \boldsymbol{\rho}^4) \overline{\mathbf{u}}_{\text{undistorted}}$$

### Radial Distortion Parameter Estimation (2<sup>nd</sup> order)



$$\overline{\mathbf{u}}_{\text{distorted}} = \mathbf{K}^{-1}\mathbf{u}_{\text{distorted}}, \quad \overline{\mathbf{u}}_{\text{undistorted}} = \mathbf{K}^{-1}\mathbf{u}_{\text{undistorted}}$$

$$\overline{\mathbf{u}}_{\text{distorted}} = (1 + k_1 \boldsymbol{\rho}^2 + k_2 \boldsymbol{\rho}^4) \overline{\mathbf{u}}_{\text{undistorted}}$$

$$\begin{bmatrix} \boldsymbol{\rho}^2 \overline{\mathbf{u}}_{\text{undistorted}}^1 & \boldsymbol{\rho}^4 \overline{\mathbf{u}}_{\text{undistorted}}^1 \\ \vdots & \vdots \\ \boldsymbol{\rho}^2 \overline{\mathbf{u}}_{\text{undistorted}}^m & \boldsymbol{\rho}^4 \overline{\mathbf{u}}_{\text{undistorted}}^m \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{u}}_{\text{distorted}}^1 - \overline{\mathbf{u}}_{\text{undistorted}}^1 \\ \vdots \\ \overline{\mathbf{u}}_{\text{undistorted}}^m - \overline{\mathbf{u}}_{\text{undistorted}}^m \end{bmatrix} m: \text{# of points}$$

### Radial Distortion Parameter Estimation (2<sup>nd</sup> order)



$$\overline{\mathbf{u}}_{\text{distorted}} = \mathbf{K}^{\text{-1}}\mathbf{u}_{\text{distorted}}, \quad \overline{\mathbf{u}}_{\text{undistorted}} = \mathbf{K}^{\text{-1}}\mathbf{u}_{\text{undistorted}}$$

$$\overline{\mathbf{u}}_{\text{distorted}} = (1 + k_1 \boldsymbol{\rho}^2 + k_2 \boldsymbol{\rho}^4) \overline{\mathbf{u}}_{\text{undistorted}}$$















# Where am I via Homography?

### Recall: Camera Calibration from Multiple Imags



# of unknowns:  $3 (\mathbf{K}) + 6n (\mathbf{R})$  and  $\mathbf{t}$ ) n: the number of images

# of equations: 2nm (X)

m: the number of known 3D points

We can solve for **K**, **R**, **t** if 3 + 6n < 2 nm

: Knowns



Points in 2D plane are mapped to an image with homography:

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{r}_3 &$$

: Knowns



Points in 2D plane are mapped to an image with homography:

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$
$$\mathbf{K} \qquad \mathbf{Q} \qquad \frac{1}{3x3}$$

: Knowns



Points in 2D plane are mapped to an image with homography:

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$
$$\mathbf{K} \qquad \mathbf{Q} \qquad \frac{-}{3x3}$$

: Knowns



Points in 2D plane are mapped to an image with homography:

$$\mathbf{K}^{-1}\mathbf{H} = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

: Knowns



Points in 2D plane are mapped to an image with homography:

$$\mathbf{K}^{-1}\mathbf{H} = \mathbf{K}^{-1}\begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

$$ightharpoonup \mathbf{r}_1 = \frac{\mathbf{K}^{-1}\mathbf{h}_1}{\left\|\mathbf{K}^{-1}\mathbf{h}_1\right\|}, \quad \mathbf{r}_2 = \frac{\mathbf{K}^{-1}\mathbf{h}_2}{\left\|\mathbf{K}^{-1}\mathbf{h}_1\right\|}, \quad \mathbf{t} = \frac{\mathbf{K}^{-1}\mathbf{h}_3}{\left\|\mathbf{K}^{-1}\mathbf{h}_1\right\|}$$

Common denominator



Points in 2D plane are mapped to an image with homography:

$$\mathbf{K}^{-1}\mathbf{H} = \mathbf{K}^{-1}\begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}$$

$$ightharpoonup \mathbf{r}_1 = \frac{\mathbf{K}^{-1}\mathbf{h}_1}{\left\|\mathbf{K}^{-1}\mathbf{h}_1\right\|}, \quad \mathbf{r}_2 = \frac{\mathbf{K}^{-1}\mathbf{h}_2}{\left\|\mathbf{K}^{-1}\mathbf{h}_1\right\|}, \quad \mathbf{t} = \frac{\mathbf{K}^{-1}\mathbf{h}_3}{\left\|\mathbf{K}^{-1}\mathbf{h}_1\right\|}$$

Common denominator

$$\rightarrow$$
  $\mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_2$ 

### **Geometric Ambiguity**



Two configurations



### ComputeCameraFromHomography.m

function ComputeCameraFromHomography

```
f = 1300;
K = [f \ 0 \ size(im, 2)/2;
   0 f size(im, 1)/2;
   001];
m11 = [2145;2120;1];m12 = [2566;1191;1];
m13 = [1804;935;1];m14 = [1050;1320;1];
u = [m11(1:2)'; m12(1:2)'; m13(1:2)'; m14(1:2)'];
X = [0 \ 0; 1 \ 0; 1 \ 1; 0 \ 1];
X = [X ones(4,1)]; % homogeneous coordinate
H = ComputeHomography(u, X)
denom = norm(inv(K)*H(:,1));
r1 = inv(K)*H(:,1)/denom;
r2 = inv(K)*H(:,2)/denom;
t = inv(K)*H(:,3)/denom;
r3 = Vec2Skew(r1)*r2;
```







ŀ

-H

# **Plane Representation**



## **Plane Representation**





Plane equation:

$$aX + bY + cZ + d = 0$$

Surface normal:

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$



Plane equation:

$$aX + bY + cZ + d = 0$$

Surface normal:

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$aX + bY + cZ + d = 0$$



Plane equation:

$$aX + bY + cZ + d = 0$$

Surface normal:

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$aX_1 + bY_1 + cZ_1 + d = 0$$

$$aX_2 + bY_2 + cZ_2 + d = 0$$

$$aX_3 + bY_3 + cZ_3 + d = 0$$



Plane equation:

$$aX + bY + cZ + d = 0$$

Surface normal:

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 \\ X_2 & Y_2 & Z_2 & 1 \\ X_3 & Y_3 & Z_3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$



Plane equation:

$$aX + bY + cZ + d = 0$$

Surface normal:

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 \\ X_2 & Y_2 \triangle Z_2 & 1 \\ X_3 & Y_3 & Z_3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ C \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$



$$a_1 X + b_1 Y + c_1 Z + d_1 = 0$$



$$a_1X + b_1Y + c_1Z + d_1 = 0$$

$$a_1X + b_1Y + c_1Z + d_1 = 0$$
  
 $a_2X + b_2Y + c_2Z + d_2 = 0$ 



$$a_1 X + b_1 Y + c_1 Z + d_1 = 0$$

$$a_2X + b_2Y + c_2Z + d_2 = 0$$
  
 $a_3X + b_3Y + c_3Z + d_3 = 0$ 

$$a_3X + b_3Y + c_3Z + d_3 = 0$$



$$a_1 X + b_1 Y + c_1 Z + d_1 = 0$$

$$a_2 X + b_2 Y + c_2 Z + d_2 = 0$$

$$a_3X + b_3Y + c_3Z + d_3 = 0$$

$$\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$



$$a_1 X + b_1 Y + c_1 Z + d_1 = 0$$

$$a_2X + b_2Y + c_2Z + d_2 = 0$$

$$a_3X + b_3Y + c_3Z + d_3 = 0$$

$$\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

#### **Recall: 2D Point and Line Duality**





The 2D line joining two points:

$$\mathbf{I} = \mathbf{X}_1 \times \mathbf{X}_2$$

The intersection between two lines:

$$\mathbf{X} = \mathbf{I}_1 \times \mathbf{I}_2$$

Given any formula, we can switch the meaning of point and line to get another formula.

$$\mathbf{X}_2 = \mathbf{T}\mathbf{X}_1 \longleftrightarrow \mathbf{I}_2 = \mathbf{T}^{-\mathsf{T}}\mathbf{I}_1$$
 T: Transformation



$$\begin{bmatrix} A_1 \\ b_1 \\ c_1 \\ d_1 \end{bmatrix} \qquad \begin{bmatrix} X_1 & Y_1 & Z_1 & 1 \\ X_2 & Y_2 & Z_2 & 1 \\ X_3 & Y_3 & Z_3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Given any formula, we can switch the meaning of point and plane to get another formula.



How to parametrize a point in the plane?

$$aX + bY + cZ + d = 0$$

$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

3D0F



How to parametrize a point in the plane?

$$aX + bY + cZ + d = 0$$

$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{c} + \mathbf{c}$$

3D0F



How to parametrize a point in the plane?

$$aX + bY + cZ + d = 0$$

$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{c} + \mu_1 \mathbf{B}_1 + \mu_2 \mathbf{B}_2$$
Basis
3DOF



How to parametrize a point in the plane?

$$aX + bY + cZ + d = 0$$

$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{c} + \mu_1 \mathbf{B}_1 + \mu_2 \mathbf{B}_2 = \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$
3DOF
$$\mathbf{Basis}$$
2DOF



How to parametrize a point in the plane?

$$aX + bY + cZ + d = 0$$

$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{c} + \mu_1 \mathbf{B}_1 + \mu_2 \mathbf{B}_2 = \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$
3DOF
$$2DOF$$

Plane projection:

$$\lambda \mathbf{u} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$
$$= \mathbf{K} \begin{bmatrix} \mathbf{R} \mathbf{B}_1 & \mathbf{R} \mathbf{B}_2 & \mathbf{R} \mathbf{c} + \mathbf{t} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$



#### HW #3 Tour into your photo











Ground plane



How can I make my image upright?

→ Y axis of camera // Surface normal of ground plane



Ground plane



How can I make my image upright?

→ Y axis of camera // Surface normal of ground plane

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

$$\mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_2$$

Camera pose from homography



Ground plane



How can I make my image upright?

→ Y axis of camera // Surface normal of ground plane

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

$$\mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_2$$

Camera pose from homography

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Image rotation



Ground plane



How can I make my image upright?

→ Y axis of camera // Surface normal of ground plane

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

$$\mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_2$$

Camera pose from homography

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \longrightarrow \qquad \widetilde{\mathbf{R}} = \begin{bmatrix} \tilde{\mathbf{r}}_{x} \\ 0 & 0 & -1 \\ \tilde{\mathbf{r}}_{z} \end{bmatrix}$$

Image rotation



Ground plane



$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \longrightarrow \tilde{\mathbf{R}} = \begin{bmatrix} \tilde{\mathbf{r}}_{x} \\ 0 & 0 & -1 \\ \tilde{\mathbf{r}}_{z} \end{bmatrix}$$

Image rotation



$$\tilde{\mathbf{r}}_{x} = \frac{\mathbf{r}_{x} - \left(\mathbf{r}_{x} \cdot \tilde{\mathbf{r}}_{y}\right) \tilde{\mathbf{r}}_{y}}{\left\|\mathbf{r}_{x} - \left(\mathbf{r}_{x} \cdot \tilde{\mathbf{r}}_{y}\right) \tilde{\mathbf{r}}_{y}\right\|}$$



Ground plane



$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \longrightarrow \tilde{\mathbf{R}} = \begin{bmatrix} \tilde{\mathbf{r}}_{\chi} \\ 0 & 0 & -1 \\ \tilde{\mathbf{r}}_{z} \end{bmatrix}$$

Image rotation





Ground plane



$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \longrightarrow \tilde{\mathbf{R}} = \begin{bmatrix} \tilde{\mathbf{r}}_{\chi} \\ 0 & 0 & -1 \\ \tilde{\mathbf{r}}_{z} \end{bmatrix}$$

Image rotation



$$\mathcal{A}\widetilde{R}^{\mathsf{T}}K^{\mathsf{-1}}\widetilde{u} = R^{\mathsf{T}}K^{\mathsf{-1}}u \longrightarrow \mathcal{A}\widetilde{u} = K\widetilde{R}R^{\mathsf{T}}K^{\mathsf{-1}}u$$



Ground plane







Ground plane





Same depth



Ground plane















## **Vanishing Point**





Vanishing point projection:

$$\lambda \mathbf{v}_{_{\infty}} = \mathbf{KZ}_{_{\infty}}$$

$$\rightarrow \lambda \mathbf{K}^{-1} \mathbf{v}_{\infty} = \mathbf{Z}_{\infty}$$





Vanishing point projection:

$$\lambda \mathbf{v}_{_{\infty}} = \mathbf{KZ}_{_{\infty}}$$

$$\longrightarrow \lambda \mathbf{K}^{-1} \mathbf{v}_{\infty} = \mathbf{Z}_{\infty}$$

Define the direction of the box





Vanishing point projection:

$$\lambda \mathbf{v}_{_{\infty}} = \mathbf{KZ}_{_{\infty}}$$

$$\longrightarrow \lambda \mathbf{K}^{\text{-1}} \mathbf{v}_{\infty} = \mathbf{Z}_{\infty}$$

$$\mathbf{U}_{11} = d\mathbf{K}^{-1}\mathbf{u}_{11}$$



Vanishing point projection:

$$\lambda \mathbf{v}_{_{\infty}} = \mathbf{KZ}_{_{\infty}}$$

$$\longrightarrow \lambda \mathbf{K}^{-1} \mathbf{v}_{\infty} = \mathbf{Z}_{\infty}$$

$$\mathbf{U}_{11} = d\mathbf{K}^{-1}\mathbf{u}_{11}$$

$$\mathbf{U}_{11} = d\mathbf{K}^{-1}\mathbf{u}_{11}$$
  $\mathbf{U}_{12} = d\mathbf{K}^{-1}\mathbf{u}_{12}$ 

: Same x coord.



**U**<sub>12</sub>

Vanishing point projection:

$$\lambda \mathbf{v}_{\infty} = \mathbf{KZ}_{\infty}$$

$$\lambda \mathbf{K}^{-1} \mathbf{v}_{\infty} = \mathbf{Z}_{\infty}$$

$$\mathbf{U}_{11} = d\mathbf{K}^{-1}\mathbf{u}_{11} \qquad \mathbf{U}_{12} = d\mathbf{K}^{-1}\mathbf{u}_{12}$$

$$\mathbf{U}_{21} = d\mathbf{K}^{-1}\mathbf{u}_{21} \qquad \mathbf{U}_{22} = d\mathbf{K}^{-1}\mathbf{u}_{22}$$

: Same x coord.

$$J_{21} = dK^{-1}u_{21}$$
  $U_{22} = dK^{-1}u_{21}$ 

Same y coord.



Vanishing point projection:

$$\lambda \mathbf{v}_{_{\infty}} = \mathbf{KZ}_{_{\infty}}$$

$$\longrightarrow \ \, \lambda \mathbf{K}^{\text{-1}}\mathbf{v}_{\infty} = \mathbf{Z}_{\infty}$$

Depth of frontal surface?

$$\underline{\lambda_1} \mathbf{K}^{-1} \mathbf{v}_{11} = \mathbf{V}_{11}$$







Vanishing point projection:

$$\begin{array}{ccc} \lambda \mathbf{v}_{\infty} = \mathbf{KZ}_{\infty} \\ & & \\ \longrightarrow & \lambda \mathbf{K}^{\text{-1}} \mathbf{v}_{\infty} = \mathbf{Z}_{\infty} \end{array}$$

Depth of frontal surface?

$$\underline{\lambda_1} \mathbf{K}^{-1} \mathbf{v}_{11} = \mathbf{V}_{11}$$

Line between  $\mathbf{U}_{11}$  and  $\mathbf{V}_{11}$  is parallel to the vanishing point direction.

$$\lambda_{1}\mathbf{K}^{-1}\mathbf{v}_{11} + \lambda \mathbf{K}^{-1}\mathbf{v}_{\infty} = \mathbf{U}_{11} = d\mathbf{K}^{-1}\mathbf{u}_{11}$$

HW: express  $\lambda_1$  using d.





Vanishing point projection:

$$\lambda \mathbf{v}_{_{\infty}} = \mathbf{KZ}_{_{\infty}}$$

$$\rightarrow \lambda \mathbf{K}^{-1} \mathbf{v}_{\infty} = \mathbf{Z}_{\infty}$$

Depth of frontal surface?

$$\underline{\lambda_1} \mathbf{K}^{-1} \mathbf{v}_{11} = \mathbf{V}_{11}$$

Line between  $\mathbf{U}_{11}$  and  $\mathbf{V}_{11}$  is parallel to the vanishing point direction.

$$\lambda_{1}\mathbf{K}^{-1}\mathbf{v}_{11} + \lambda \mathbf{K}^{-1}\mathbf{v}_{\infty} = \mathbf{U}_{11} = d\mathbf{K}^{-1}\mathbf{u}_{11}$$

HW: express  $\lambda_1$  using d.



**U**<sub>12</sub>

Point in a plane:

$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$



Point in a plane:

$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{U}_{11} + \mu_1 \mathbf{B}_1 + \mu_2 \mathbf{B}_2$$
$$= \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$
$$2D0F$$

Homography mapping from 3D plane to image:

$$\lambda \mathbf{u} = \mathbf{K} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$



Homography mapping from 3D plane to image:

$$\lambda \mathbf{u} = \mathbf{K} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$

# **Texture Mapping**



### Homography



Homography mapping from 3D plane to image:

$$\lambda \mathbf{u} = \mathbf{K} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$

Homography mapping from 3D plane to target image:

$$\lambda \tilde{\mathbf{u}} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \\ 1 \end{bmatrix}$$

$$= \mathbf{K} \begin{bmatrix} \mathbf{R} \mathbf{B}_1 & \mathbf{R} \mathbf{B}_2 & \mathbf{R} \mathbf{c} + \mathbf{t} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix} = \mathbf{\tilde{H}} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$

### Homography



Homography mapping from 3D plane to image:

$$\lambda \mathbf{u} = \mathbf{K} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$

Homography mapping from 3D plane to target image:

$$\lambda \tilde{\mathbf{u}} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{c} \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \\ 1 \end{bmatrix}$$

$$= \mathbf{K} \begin{bmatrix} \mathbf{R} \mathbf{B}_1 & \mathbf{R} \mathbf{B}_2 & \mathbf{R} \mathbf{c} + \mathbf{t} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix} = \mathbf{\tilde{H}} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 1 \end{bmatrix}$$

$$\rightarrow \lambda \tilde{\mathbf{H}}^{-1} \tilde{\mathbf{u}} = \begin{vmatrix} \mu_1 \\ \mu_2 \\ 1 \end{vmatrix} = \lambda_1 \tilde{\mathbf{H}}^{-1} \mathbf{u} \longrightarrow \lambda \tilde{\mathbf{u}} = \tilde{\mathbf{H}} \tilde{\mathbf{H}}^{-1} \mathbf{u}$$

#### HW #3 Tour into your photo

