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K = [200 0 100; 
     0 200 100; 
     0 0 1]; 
 
radius = 5; 
  
theta = 0:0.02:2*pi; 
 
for i = 1 : length(theta) 
    camera_offset = [radius*cos(theta(i)); radius*sin(theta(i)); 0]; 
    camera_center = camera_offset + center_of_mass'; 
     
    rz = [-cos(theta(i)); -sin(theta(i)); 0]; 
    ry = [0 0 1]'; 
    rx = [-sin(theta(i)); cos(theta(i)); 0]; 
    R = [rx'; ry'; rz']; 
    C = camera_center; 
    P = K * R * [ eye(3) -C]; 
     
    proj = []; 
    for j = 1 : size(sqaure_point,1) 
        u = P * [sqaure_point(j,:)';1]; 
        proj(j,:) = u'/u(3); 
    end     
end 
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