Dolly Zoom

VERTIGO (1958)

Exercise

Exercise

$h_{p}=f_{m} \frac{\gamma_{p}}{p}$

$$
h_{p}=f_{n} \frac{Y_{n}}{L_{n}}
$$

Where am I with Dolly Zoom?

Where am I with Dolly Zoom?

How far I need to step back with zoom factor x2?
How will h_{2} change?

Where am I with Dolly Zoom?

How far I need to step back with zoom factor x2?
How will h_{2} change?

Where am I with Dolly Zoom?

Unknowns: f, d

How far I need to step back with zoom factor x 2 ?
How will h2 change?

Where am I with Dolly Zoom?

Unknowns: f, di, $\Delta \mathrm{d}$

How far I need to step back with zoom factor x 2 ?
How will h2 change?

Equations:

Where am I with Dolly Zoom?
 $h_{1}=f \frac{H_{1}}{d_{1}}$

Unknowns: f, di, $\Delta \mathrm{d}$

How far I need to step back with zoom factor $\times 2$?
How will h_{2} change?

Equations:

Where am I with Dolly Zoom?
 $h_{1}=f \frac{H_{1}}{d_{1}}$ $h_{1}=2 f \frac{H_{1}}{\Delta \mathrm{~d}+\mathrm{d}_{1}}$

How far I need to step back with zoom factor $\times 2$?
How will h2 change?

Equations:

Where am I with Dolly Zoom?

 $h_{1}=2 f \frac{H_{1}}{\Delta d+d_{1}} \longrightarrow \Delta d=d_{1}$

Unknowns: f, di, $\Delta \mathrm{d}$

How far I need to step back with zoom factor $\mathbf{x 2}$?
How will h2 change?

Equations:

Where am I with Dolly Zoom?

$h_{1}=f \frac{H_{1}}{d_{1}}$ $h_{1}=2 f \frac{H_{1}}{\Delta d+d_{1}} \longrightarrow \Delta d=d_{1}$ $h_{2}=f \frac{H_{2}}{d_{1}+d}$

Unknowns: f, di, $\Delta \mathrm{d}$

How far I need to step back with zoom factor $\times 2$? How will h2 change?

Equations:

Where am I with Dolly Zoom?

$h_{1}=f \frac{H_{1}}{d_{1}}$
$\mathrm{h}_{1}=2 \mathrm{f} \frac{\mathrm{H}_{1}}{\Delta \mathrm{~d}+\mathrm{d}_{1}} \longrightarrow \Delta \mathrm{~d}=\mathrm{d}_{1}$
$h_{2}=f \frac{H_{2}}{d_{1}+d}$

Top view

Unknowns: f, di, $\Delta \mathrm{d}$

$$
\mathrm{h}_{2}=120 \text { pix } \rightarrow \mathrm{h}_{2}^{\prime}=200 \text { pix }
$$

Equations:

Where am I with Dolly Zoom?

$h_{1}=f \frac{H_{1}}{d_{1}}$
$\mathrm{h}_{1}=2 \mathrm{f} \frac{\mathrm{H}_{1}}{\Delta \mathrm{~d}+\mathrm{d}_{1}} \longrightarrow \Delta \mathrm{~d}=\mathrm{d}_{1}$
$h_{2}=f \frac{H_{2}}{d_{1}+d}$

Top view

Unknowns: f, di, $\Delta \mathrm{d}$

$$
h_{2}=120 \text { pix } \rightarrow h_{2}^{\prime}=200 \text { pix }
$$

Equations:

Where am I with Dolly Zoom?

$h_{1}=f \frac{H_{1}}{d_{1}}$ $\mathrm{h}_{1}=2 \mathrm{f} \frac{\mathrm{H}_{1}}{\Delta \mathrm{~d}+\mathrm{d}_{1}}$
$h_{2}=f \frac{H_{2}}{d_{1}+d}$

$$
h_{2}^{\prime}=2 f \frac{H_{2}}{\Delta d+d_{1}+d}
$$

Unknowns: f, di, $\Delta \mathrm{d}$

How far I need to step back with zoom factor x2?
How will h2 change?

Equations:

Where am I with Dolly Zoom?

$h_{1}=f \frac{H_{1}}{d_{1}}$

$$
\mathrm{h}_{1}=2 \mathrm{f} \frac{\mathrm{H}_{1}}{\Delta \mathrm{~d}+\mathrm{d}_{1}}
$$

$h_{2}=f \frac{H_{2}}{d_{1}+d}$

$$
h_{2}^{\prime}=2 f \frac{H_{2}}{\Delta d+d_{1}+d}=429 \text { pix }
$$

Unknowns: f, di, $\Delta \mathrm{d}$

How far I need to step back with zoom factor x2?
How will h2 change?

HW \#l Camera Obscura and Dolly Zoom

HW \#1 Camera Obscura and Dolly Zoom

1) Take a photo of two persons

HW \#l Camera Obscura and Dolly Zoom

1) Take a photo of two persons

$$
f=2017.43 \text { pix } \quad H_{1}=1.6 \mathrm{~m} \quad d_{1}=3.99 \mathrm{~m}
$$

HW \#1 Camera Obscura and Dolly Zoom

1) Take a photo of two persons

HW \#1 Camera Obscura and Dolly Zoom

$$
f=2017.43 \text { pix } H_{2}=1.71 \mathrm{~m} \quad d_{2}=7.77 \mathrm{~m}
$$

HW \#1 Camera Obscura and Dolly Zoom

1) Take a photo of two persons
2) Take another photo of them after moving back

$$
f=2017.43 \text { pix } \quad H_{1}=1.6 \mathrm{~m}
$$

HW \#1 Camera Obscura and Dolly Zoom

1) Take a photo of two persons
2) Take another photo of them after moving back

$$
\begin{array}{ll}
f=2017.43 \text { pix } \quad H_{1}=1.6 \mathrm{~m} & \Delta d+d_{1}=12.6 \mathrm{~m} \\
& \Delta d+d_{2}=16.38 \mathrm{~m}
\end{array}
$$

HW \#1 Camera Obscura and Dolly Zoom

1) Take a photo of two persons

$$
\begin{aligned}
& \mathrm{f}_{2}=2017.43 \frac{810}{256}=6383.27 \mathrm{pix} \\
& \Delta \mathrm{~d}+\mathrm{d}_{2}=16.38 \mathrm{~m} \\
& \mathrm{H}_{2}=1.71 \mathrm{~m}
\end{aligned}
$$

2) Take another photo of them after moving back
3) Scale up and crop the second image such that h_{1} remains the same.
4) Predict h_{2}

HW \#1 Camera Obscura and Dolly Zoom

1) Take a photo of two persons
2) Take another photo of them after moving back
3) Scale up and crop the second image such that h_{1} remains the same.
4) Predict h_{2}

$$
\begin{aligned}
& \mathrm{f}_{2}=2017.43 \frac{810}{256}=6383.27 \text { pix } \\
& \Delta \mathrm{d}+\mathrm{d}_{2}=16.38 \mathrm{~m} \\
& \mathrm{H}_{2}=1.71 \mathrm{~m} \\
& \mathrm{~h}_{2}=666.3 \text { pix }
\end{aligned}
$$

HW \#1 Camera Obscura and Dolly Zoom

1) Take a photo of two persons
2) Take another photo of them after moving back
3) Scale up and crop the second image such that h_{1} remains the same.
4) Predict h_{2}

$$
\begin{aligned}
& \mathrm{f}_{2}=2017.43 \frac{810}{256}=6383.27 \mathrm{pix} \\
& \Delta \mathrm{~d}+\mathrm{d}_{2}=16.38 \mathrm{~m} \\
& \mathrm{H}_{2}=1.71 \mathrm{~m} \\
& \mathrm{~h}_{2}=666.3 \mathrm{pix}
\end{aligned}
$$

HW \#1 Camera Obscura and Dolly Zoom

1) Take a photo of two persons
2) Take another photo of them after moving back
3) Scale up and crop the second image such that h_{1} remains the same.
4) Predict h_{2}

$$
\begin{aligned}
& \mathrm{f}_{2}=2017.43 \frac{810}{256}=6383.27 \mathrm{pix} \\
& \Delta \mathrm{~d}+\mathrm{d}_{2}=16.38 \mathrm{~m} \\
& \mathrm{H}_{2}=1.71 \mathrm{~m} \\
& \mathrm{~h}_{2}=666.3 \mathrm{pix}
\end{aligned}
$$

