Dolly Zoom

Exercise

$$h_{\rm p} = f_{\rm m} \frac{Y_{\rm p}}{Z_{\rm p}}$$

Exercise

$$h_{\rm p} = f_{\rm m} \frac{Y_{\rm p}}{Z_{\rm p}}$$

$$h_{\rm p} = f_n \frac{\gamma_n}{Z_{\rm p}}$$

Unknowns: f, d1

Unknowns: f, d_1 , Δd

How far I need to step back with zoom factor x2? How will h2 change?

Equations:

$$h_1 = f \frac{H_1}{d_1}$$

Unknowns: f, d_1 , Δd

Equations:

$$h_1 = f \frac{H_1}{d_1}$$

$$h_1 = 2f \frac{H_1}{\Delta d + d_1}$$

Unknowns: f, d_1 , Δd

Equations:

$$h_1 = f \frac{H_1}{d_1}$$

$$h_1 = 2f \frac{H_1}{\Delta d + d_1} \longrightarrow \Delta d = d_1$$

Unknowns: f, d_1 , Δd

$$h_1 = f \frac{H_1}{d_1}$$

$$h_2 = f \frac{H_2}{d_1 + d_2}$$

$$h_1 = 2f \frac{H_1}{\Delta d + d_1} \longrightarrow \Delta d = d_1$$

Unknowns: f, d_1 , Δd

Equations:

$$h_1 = f \frac{H_1}{d_1}$$

$$h_2 = f \frac{H_2}{d_1 + d}$$

$$h_1 = 2f \frac{H_1}{\Delta d + d_1} \longrightarrow \Delta d = d_1$$

$$d_1 = \frac{1}{1 - \frac{h_2 H_1}{h_1 H_2}} d = 2.5 \text{m}$$

$$\Delta d = 2.5 \text{ m}$$

$$h_2 = 120 \,\text{pix}$$
 \longrightarrow $h_2' = 200 \,\text{pix}$

Unknowns: f, d_1 , Δd

$$h_2 = 120 \,\text{pix} \longrightarrow h_2' = 200 \,\text{pix}$$

Equations:

$$h_1 = f \frac{H_1}{d_1}$$

$$h_2 = f \frac{H_2}{d_1 + d_2}$$

$$h_1 = 2f \frac{H_1}{\Delta d + d_1}$$

$$h_2' = 2f \frac{H_2}{\Delta d + d_1 + d}$$

Unknowns: f, d_1 , Δd

Equations:

$$h_1 = f \frac{H_1}{d_1}$$

$$h_2 = f \frac{H_2}{d_1 + d}$$

$$h_1 = 2f \frac{H_1}{\Delta d + d_1}$$

$$h_2' = 2f \frac{H_2}{\Delta d + d_1 + d} = 429 \text{ pix}$$

Unknowns: f_1 , d_1 , Δd

$$f = 2017.43 \, \text{pix}$$
 $H_1 = 1.6 \, \text{m}$

$$f = 2017.43 \,\mathrm{pix}$$
 $H_1 = 1.6 \,\mathrm{m}$ $d_1 = 3.99 \,\mathrm{m}$

$$f = 2017.43 \, \text{pix} \ H_2 = 1.71 \, \text{m}$$

$$f = 2017.43 \,\text{pix}$$
 $H_2 = 1.71 \,\text{m}$ $d_2 = 7.77 \,\text{m}$

- 1) Take a photo of two persons
- 2) Take another photo of them after moving back

 $f = 2017.43 \, \text{pix}$ $H_1 = 1.6 \, \text{m}$

- 1) Take a photo of two persons
- 2) Take another photo of them after moving back

$$f = 2017.43 \,\mathrm{pix}$$
 $H_1 = 1.6 \,\mathrm{m}$ $\Delta d + d_1 = 12.6 \,\mathrm{m}$ $\Delta d + d_2 = 16.38 \,\mathrm{m}$

- 1) Take a photo of two persons
- 2) Take another photo of them after moving back
- 3) Scale up and crop the second image such that h1 remains the same.
- 4) Predict h₂

$$f_2 = 2017.43 \frac{810}{256} = 6383.27 \text{ pix}$$

$$\Delta d + d_2 = 16.38 \text{m}$$

$$H_2 = 1.71$$
m

- 1) Take a photo of two persons
- 2) Take another photo of them after moving back
- 3) Scale up and crop the second image such that h1 remains the same.
- 4) Predict h₂

$$f_2 = 2017.43 \frac{810}{256} = 6383.27 \text{ pix}$$

$$\Delta d + d_2 = 16.38 \text{m}$$

$$H_2 = 1.71$$
m

$$h_2 = 666.3 \, \text{pix}$$

- 1) Take a photo of two persons
- 2) Take another photo of them after moving back
- 3) Scale up and crop the second image such that h1 remains the same.
- 4) Predict h₂

$$f_2 = 2017.43 \frac{810}{256} = 6383.27 \text{ pix}$$

$$\Delta d + d_2 = 16.38 \text{m}$$

$$H_2 = 1.71$$
m

$$h_2 = 666.3 \, \text{pix}$$

- 1) Take a photo of two persons
- 2) Take another photo of them after moving back
- 3) Scale up and crop the second image such that h1 remains the same.
- 4) Predict h₂

$$f_2 = 2017.43 \frac{810}{256} = 6383.27 \text{ pix}$$

$$\Delta d + d_2 = 16.38 \text{m}$$

$$H_2 = 1.71$$
m

$$h_2 = 666.3 \, \text{pix}$$