Projective Line

MLPS-St. Paul International Airport

BURGER

Indoor point at infinity

Parallel lines in 3D converge to a point in the image.

1000

-

. . . .

N

3D Parallel Line Projection

Camera plane

Ground plane

Ground plane

3D Parallel Line Projection

Vanishing line for horizon

Vanishing point

What can vanishing line tell us about me?

Vanishing line for horizon

Vanishing point

What can vanishing line tell us about me?

• Horizon

Vanishing line for horizon

Vanishing point

What can vanishing line tell us about me?

- Horizon
- Camera pitch angle (looking down)

Keller Hall

Keller Hall

Vanishing line for horizon

Vanishing point

What can vanishing line tell us about me?

- Horizon
- Camera pitch angle (looking down)
- Camera roll angle (tilted toward right)

Celestial Navigation

Two points at infinity (vanishing points) tells us about where I am.

Parallel 3D planes share the vanishing line.

Different plane produces different vanishing line.

Different plane produces different vanishing line.

How to compute a vanishing point?

Different plane produces different vanishing line.

Point-Line in Image

A 2D line passing through 2D point (u, v): au + bv + c = 0

Line parameter: (a,b,c)

Point-Line in Image

A 2D line passing through 2D point (u, v): au + bv + c = 0

Line parameter: (a,b,c)

$$au + bv + c = 0 \longrightarrow \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = I^{\mathsf{T}} \mathbf{x} = 0$$

Point-Line in Image

A 2D line passing through 2D point (u, v): au + bv + c = 0

Line parameter: (a,b,c)

$$au + bv + c = 0 \longrightarrow \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = I^{\mathsf{T}} \mathsf{x} = 0$$

where $\mathsf{x} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$ and $I = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

2D point Line parameter

A 2D line passing through two 2D points: $au_1 + bv_1 + c = 0$ $au_2 + bv_2 + c = 0$

A 2D line passing through two 2D points: $au_1 + bv_1 + c = 0$ $au_2 + bv_2 + c = 0$ $x_1^T I = 0$ $x_2^T I = 0$

		$\begin{bmatrix} U_1 \end{bmatrix}$		$\begin{bmatrix} U_2 \end{bmatrix}$		$\begin{bmatrix} a \end{bmatrix}$
where	$X_1 =$	V_1	$X_{2} =$	V_2	=	b
		_ 1 _		1_		С

A 2D line passing through two 2D points: $au_1 + bv_1 + c = 0$ $au_2 + bv_2 + c = 0$ $x_1^T I = 0$ $x_2^T I = 0$

		$\begin{bmatrix} U_1 \end{bmatrix}$		U_2		[<i>a</i>]
where	$X_1 =$	V_1	$X_{2} =$	V_2	=	b
		1		1_		С

A 2D line passing through two 2D points: $au_1 + bv_1 + c = 0$ $au_2 + bv_2 + c = 0$ $x_1^T I = 0$ $x_2^T I = 0$

where $X_1 = \begin{bmatrix} U_1 \\ V_1 \\ 1 \end{bmatrix}$ $X_2 = \begin{bmatrix} U_2 \\ V_2 \\ 1 \end{bmatrix}$ $I = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

x1 = [1804;934;1]; x2 = [1052;1323;1];

GetLineFromTwoPoints.m

- x1 = [1804;934;1]; x2 = [1052;1323;1];
- I = Vec2Skew(x1)*x2; Cross product
Point-Point in Image

GetLineFromTwoPoints.m

- x1 = [1804;934;1]; x2 = [1052;1323;1];
- I = Vec2Skew(x1)*x2; Cross product

| =

-389 -752 1404124

Point-Point in Image

GetLineFromTwoPoints.m

x1 = [1804;934;1]; x2 = [1052;1323;1];

I = Vec2Skew(x1)*x2; Cross product

| =

-389 -752 1404124

Cross product with skew-symmetric matrix representation:

$$a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$
 Vec2Skew.m
function skew = Vec2Skew(v)
skew = [0 -v(3) v(2);
v(3) 0 -v(1);
-v(2) v(1) 0];
$$= \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = [a]_x b$$

Two 2D lines in an image intersect at a 2D point:

 $a_1 u + b_1 v + c_1 = 0$ $a_2 u + b_2 v + c_2 = 0$

Two 2D lines in an image intersect at a 2D point:

 $a_1 u + b_1 v + c_1 = 0$ $a_2 u + b_2 v + c_2 = 0$ $I_1^T x = 0$ $I_2^T x = 0$

Two 2D lines in an image intersect at a 2D point:

 $a_1 u + b_1 v + c_1 = 0$ $a_2 u + b_2 v + c_2 = 0$ $I_1^T x = 0$ $I_2^T x = 0$

GetPointFromTwoLines.m

l1 = [-398;-752;1404124]; l2 = [310;-924;303790]; x = Vec2Skew(l1)*l2; x = x/x(3)

x =

1779.0	similar to (1804,934
925.6	
1	

The 2D line joining two points:

 $I = X_1 \times X_2$

The intersection between two lines:

 $\mathbf{X} = \mathbf{I}_1 \times \mathbf{I}_2$

Given any formula, we can switch the meaning of point and line to get another formula.

The 2D line joining two points:

 $I = X_1 \times X_2$

The intersection between two lines:

 $\mathbf{X} = \mathbf{I}_1 \times \mathbf{I}_2$

Given any formula, we can switch the meaning of point and line to get another formula.

 $X_2 = TX_1 \leftrightarrow I_2 = T^{-T}I_1$ T: Transformation

The 2D line joining two points:

 $I = X_1 \times X_2$

The intersection between two lines:

 $\mathbf{X} = \mathbf{I}_1 \times \mathbf{I}_2$

Given any formula, we can switch the meaning of point and line to get another formula. $x_2 = Tx_1 \leftrightarrow I_2 = T^{-T}I_1 \qquad T: \text{Transformation}$ $\because I_1^T X_1 = 0$

The 2D line joining two points:

 $I = X_1 \times X_2$

The intersection between two lines:

 $\mathbf{X} = \mathbf{I}_1 \times \mathbf{I}_2$

Given any formula, we can switch the meaning of point and line to get another formula. $x_{2} = Tx_{1} \leftrightarrow I_{2} = T^{-T}I_{1} \qquad \text{T: Transformation}$ $\because I_{1}^{T}x_{1} = (I_{1}^{T}T^{-1})(Tx_{1}) = 0$

The 2D line joining two points:

 $I = X_1 \times X_2$

The intersection between two lines:

 $\mathbf{X} = \mathbf{I}_1 \times \mathbf{I}_2$

Given any formula, we can switch the meaning of point and line to get another formula. $X_2 = TX_1 \leftrightarrow I_2 = T^{-T}I_1 \qquad T: \text{Transformation}$

 $:: I_{1}^{\mathsf{T}} \mathsf{X}_{1} = (I_{1}^{\mathsf{T}} \mathsf{T}^{-1})(\mathsf{T} \mathsf{X}_{1}) = (\mathsf{T}^{-\mathsf{T}} \mathsf{I}_{1})^{\mathsf{T}}(\mathsf{T} \mathsf{X}_{1}) = \mathsf{I}_{2}^{\mathsf{T}} \mathsf{X}_{2}$

The 2D line joining two points:

 $I = X_1 \times X_2$

The intersection between two lines:

 $\mathbf{X} = \mathbf{I}_1 \times \mathbf{I}_2$

Given any formula, we can switch the meaning of point and line to get another formula. $X_2 = TX_1 \leftrightarrow I_2 = T^{-T}I_1 \qquad T: \text{Transformation}$ $\cdots I^T X_1 = (I^T T^{-1})(TX_1) = (T^{-T}I_1)^T (TX_1) = I$

: $I_1^T X_1 = (I_1^T T^{-1})(TX_1) = (T^{-T}I_1)^T (TX_1) = I_2^T X_2$

 $\mathbf{x}_{2} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}_{1} \longleftrightarrow ?$

The 2D line joining two points:

 $I = X_1 \times X_2$

The intersection between two lines:

 $\mathbf{X} = \mathbf{I}_1 \times \mathbf{I}_2$

Given any formula, we can switch the meaning of point and line to get another formula.

 $\mathbf{X}_{2} = \mathbf{T}\mathbf{X}_{1} \leftrightarrow \mathbf{I}_{2} = \mathbf{T}^{-\mathsf{T}}\mathbf{I}_{1} \qquad \text{T: Transformation}$ $\because \mathbf{I}_{1}^{\mathsf{T}}\mathbf{X}_{1} = (\mathbf{I}_{1}^{\mathsf{T}}\mathbf{T}^{-1})(\mathbf{T}\mathbf{X}_{1}) = (\mathbf{T}^{-\mathsf{T}}\mathbf{I}_{1})^{\mathsf{T}}(\mathbf{T}\mathbf{X}_{1}) = \mathbf{I}_{2}^{\mathsf{T}}\mathbf{X}_{2}$

 $\mathbf{X}_{2} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{X}_{1} \longleftrightarrow \mathbf{I}_{2} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-T} \mathbf{I}_{1} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{I}_{1}$

 $\hat{\mathbf{u}} = \mathbf{K}^{-1}\mathbf{u}$

 $\hat{u}_1 = K^{-1}u_1$ $\hat{u}_2 = K^{-1}u_2$

$$\hat{u}_1 = K^{-1}u_1$$
 $\hat{u}_2 = K^{-1}u_2$

$$\longrightarrow \hat{\mathbf{l}} = \hat{\mathbf{u}}_1 \times \hat{\mathbf{u}}_2$$
where $\hat{\mathbf{l}} = ?$

 $\hat{u}_1 = K^{-1}u_1$ $\hat{u}_2 = K^{-1}u_2$

$$\rightarrow \hat{\mathbf{I}} = \hat{\mathbf{u}}_1 \times \hat{\mathbf{u}}_2$$
where $\hat{\mathbf{I}} = (\mathbf{K}^{-1})^{-T} \mathbf{I} = \mathbf{K}^{T} \mathbf{I}$ due to duality

Normalized coordinate:

$$\hat{u}_1 = K^{-1}u_1$$
 $\hat{u}_2 = K^{-1}u_2$

$$\rightarrow \hat{\mathbf{I}} = \hat{\mathbf{u}}_1 \times \hat{\mathbf{u}}_2$$
where $\hat{\mathbf{I}} = (\mathbf{K}^{-1})^{-T} \mathbf{I} = \mathbf{K}^{T} \mathbf{I}$ due to duality

A 2D line in an image defines to a 3D plane passing the camera center:

 $\hat{I} \rightarrow \pi$

Normalized coordinate:

$$\hat{u}_1 = K^{-1}u_1$$
 $\hat{u}_2 = K^{-1}u_2$

$$\rightarrow \hat{\mathbf{I}} = \hat{\mathbf{u}}_1 \times \hat{\mathbf{u}}_2$$
where $\hat{\mathbf{I}} = (\mathbf{K}^{-1})^{-T} \mathbf{I} = \mathbf{K}^{T} \mathbf{I}$ due to duality

A 2D line in an image defines to a 3D plane passing the camera center:

?

$$| \rightarrow \pi$$

Plane normal:

$$=\lambda \hat{I}$$

Normalized coordinate:

$$\hat{u}_1 = K^{-1}u_1$$
 $\hat{u}_2 = K^{-1}u_2$

$$\rightarrow \hat{\mathbf{I}} = \hat{\mathbf{u}}_1 \times \hat{\mathbf{u}}_2$$
where $\hat{\mathbf{I}} = (\mathbf{K}^{-1})^{-T} \mathbf{I} = \mathbf{K}^{T} \mathbf{I}$ due to duality

A 2D line in an image defines to a 3D plane passing the camera center:

$$\hat{I} \rightarrow \pi$$

Plane normal:

$$(\lambda_1 \hat{u}_1) \times (\lambda_2 \hat{u}_2) = \lambda \hat{l}$$

Normalized coordinate:

$$\hat{u}_1 = K^{-1}u_1$$
 $\hat{u}_2 = K^{-1}u_2$

$$\rightarrow \hat{\mathbf{I}} = \hat{\mathbf{u}}_1 \times \hat{\mathbf{u}}_2$$
where $\hat{\mathbf{I}} = (\mathbf{K}^{-1})^{-T} \mathbf{I} = \mathbf{K}^{T} \mathbf{I}$ due to duality

A 2D line in an image defines to a 3D plane passing the camera center:

$$\rightarrow \pi$$

Plane normal:

∴ **π** =

$$\lambda_1 \hat{\mathbf{u}}_1 \mathbf{)} \times (\lambda_2 \hat{\mathbf{u}}_2) = \lambda \hat{\mathbf{l}}$$

Π

Π

 $\mathbf{\Pi}_2$

2D lines in an image intersect a 2D point corresponding to a 3D ray:

$$\hat{\mathbf{U}} = \hat{\mathbf{l}}_1 \times \hat{\mathbf{l}}_2$$

Û Û Î2 Î 2D lines in an image intersect a 2D point corresponding to a 3D ray:

$$\hat{\mathbf{U}} = \hat{\mathbf{I}}_1 \times \hat{\mathbf{I}}_2$$

: the 3D ray is perpendicular to two plane normals.

 $I_{11} = U_4 \times U_3$ $I_{12} = U_1 \times U_2$

$$I_{11} = U_4 \times U_3$$
 $I_{12} = U_1 \times U_2$
 $I_{21} = U_4 \times U_1$ $I_{22} = U_3 \times U_4$

 $I_{11} = U_4 \times U_3$ $I_{12} = U_1 \times U_2$ $I_{21} = U_4 \times U_1$ $I_{22} = U_3 \times U_4$

Vanishing points:

$$X_1 = I_{11} \times I_{12}$$
 $X_2 = I_{21} \times I_{22}$

 $I_{11} = U_4 \times U_3$ $I_{12} = U_1 \times U_2$ $I_{21} = U_4 \times U_1$ $I_{22} = U_3 \times U_4$

Vanishing points:

$$V_1 = I_{11} \times I_{12}$$
 $V_2 = I_{21} \times I_{22}$

Vanishing line:

$$I = V_1 \times V_2$$

l11 = GetLineFromTwoPoints(m11,m12); l12 = GetLineFromTwoPoints(m13,m14);

l21 = GetLineFromTwoPoints(m21,m22); l22 = GetLineFromTwoPoints(m23,m24);

v1 = GetPointFromTwoLines(l11,l12); v2 = GetPointFromTwoLines(l21,l22);

vanishing_line = GetLineFromTwoPoints(x1, x2);

ComputeVanishingLine.m

Geometric Interpretation of Vanishing Line

Geometric Interpretation of Vanishing Line

Geometric Interpretation of Vanishing Line

Geometric Interpretation of Vanishing Line

Where was I (how high)?

Where was I (how high)?

Taken from my hotel room (6th floor)

Taken from beach

Where was I (how high)?

Taken from my hotel room (6th floor)

Taken from beach

First person video

Cylindrical projection