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Projective Camera Model

1.1 Projection in Metric Space

Consider a point light emitted from the top of the Eiffel tower as shown in
Figure 1.1. The light is located at located at Xc = (Xc, Yc, Zc)T where the
coordinate system is aligned with the camera optical axis, i.e., the origin
is at the camera center (pinhole), and Z axis is the camera look-out vector
(perpendicular to the CCD sensor plane). While the light travels over all
directions, a particular light passes through the pinhole of the camera and
is projected onto the camera’s CCD plane. The CCD plane is centered at
Zscreen = − fm where fm is focal length of the camera, e.g., iPhone 7 camera
has 29mm focal length.

With the projected point in the CCD plane, it forms two similar triangles:

tan θx =
Xc

Zc
=

uccd
fm

, (1.1)

where θx is the vertical angle (opposite angles made by two intersecting
lines), and uccd is the x-coordinate of the projected point. Similarly, the
y-coordinate can be written as:

tan θy =
Yc

Zc
=

vccd
fm

. (1.2)

This is called perspective projection where a 3D point (Xc, Yc, Zc)T ∈ R3 is
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Figure 1.1: A 3D point (Xc, Yc, Zc)T is
projected onto the CCD plane at fm to form
(uccd, vccd)

T. One dimension (depth) is lost
during this metric projection. To simplify
the representation, we will use the mirror
image of the CCD plane.
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mapped to a 2D point (uccd, vccd)
T ∈ R2 using the following equations:[

uccd

vccd

]
= − fm

[
tan θx

tan θy

]
= − fm

Zc

[
Xc

Yc

]
. (1.3)

Note 1.1. This projection produces an upside-down image due to the negative
sign.

Note 1.2. There is one dimensional information loss (R3 → R2) due to the
projection.

Figure 1.2: Camera obscura sketched by
Leonardo da Vinci in Codex Atlanticus
(1515), preserved in Biblioteca Ambrosiana,
Milan (Italy).

This projection is equivalent to the projection onto the virtual screen in
front of the pinhole at fm, which can drop the negative sign and correct the
upside-down image: [

uccd

vccd

]
=

fm

Zc

[
Xc

Yc

]
. (1.4)

This representation is similar to da Vinci’s camera obscura sketch as shown in
Figure 1.2 illustrating a perspective painting tool.

Example 1.1 (Subject size). Consider a person (1.8m height) at 4m away
from a photographer using an iPhone 7. How big does this person appear in
the image?
Answer iPhone 7 has 3.99mm focal length1 and 1/3 inch sensor size 1 28mm with 7.21 crop factor in 35mm

equivalent focal length.(4.8mm×3.6mm). The person will occupy the half of the image because:

vccd = 3.99mm× 1.8m
4m

≈ 1.8mm,

which is a half of the CCD sensor’s height (3.6mm).

1.2 Projection in Pixel Space

Equation (1.4) is the projection of a 3D point onto the CCD plane in met-
ric scale. As a result of the projection, the light intensity is recorded in a
form of an image represented by pixels, i.e., the CCD contains an array of
photo-receptors where each receptor corresponds to a pixel in the image. The
projected location in the CCD plane is directly related with the pixel location
in the image: the relative locations in the CCD sensor with respect to the
sensor size and in the image with respect to the image size are the same:

uimg

Wimg
=

uccd
Wccd

,
vimg

Himg
=

vccd
Hccd

(1.5)

where (Wccd, Hccd) is width and height of the CCD sensor, e.g., (4.8mm×3.6mm)
for iPhone 7, and (Wimg, Himg) is width and height of the image, e.g., (4k
pix×3k pix). (uimg, vimg)

T is the equivalent location of (uccd, vccd)
T in the

image as shown in Figure 1.2.
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Figure 1.3: Photoreceptive sensors in CCD
plane (metric space) is mapped to generate
an image (pixel space).

In machine vision convention, the left top corner of an image has been
used for the origin (0, 0)T. This differs from the metric representation in
Equation (1.4) where the center of the CCD plane is used for the origin, i.e.,
the pixel coordinate needs to be shifted. This results in introducing a notion
of image center called principal point in pixel (px, py)T that can change the
pixel coordinate as follows:

uimg − px

Wimg
=

uccd
Wccd

,
vimg − py

Himg
=

vccd
Hccd

(1.6)

Note 1.3. The principal point is often located near the center of an image,
i.e., (640, 480)T for 1280×960 size image, as it is the origin of the CCD
sensor where the CCD plane and Z axis intersect.

By combining Equation (1.4) and (1.6), the projection of a 3D point can be
represented in pixel:

uimg = fm
Wimg

Wccd

Xc

Zc
+ px = fx

Xc

Zc
+ px

vimg = fm
Himg

Hccd

Yc

Zc
+ py = fy

Yc

Zc
+ py (1.7)

where

fx = fm
Wimg

Wccd
, fy = fm

Himg

Hccd
. (1.8)

fx and fy are focal lengths in pixel. If the aspect ratio of CCD is consistent

with that of image,
Wimg
Wccd

=
Himg
Hccd

, then, fx = fy.
Equation (1.7) directly relates a 3D point in metric space with 2D projec-

tion in pixel space bypassing CCD mapping. In a matrix form, Equation (1.7)
can be re-written as:

Zc

 uimg

vimg

1

 =

 fx 0 px

0 fy py

0 0 1


 Xc

Yc

Zc

 ,

or, Zc

[
uimg

1

]
= KXc, (1.9)
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where uimg = (uimg, vimg)
T and Xc = (Xc, Yc, Zc)T. K is called the

camera’s intrinsic parameter that transforms Xc in metric space to uimg in
pixel space. It includes focal length and principal point in pixel.

Zc is the depth of the 3D point with respect to the camera, which is often
unknown due to loss of dimension. We represent the unknown depth factor
using λ:

λ

[
uimg

1

]
= KXc (1.10)

where λ is an unknown scalar.

250 pix

670 pix

(a) Image

50mf mm=

boyZ

boyh

eifh

eifZ

(b) Geometry

Figure 1.4: It is possible to predict the
location of the boy (where am I?) with
respect to the Eiffel Tower.

Example 1.2 (Where was I?). Consider an old picture in Figure 1.4(a) taken
from a film camera with approximately 50mm focal length. The 4 years old
boy appears 250 pixels in the image where the height of image is 1280 pixels
while the Eiffel Tower appears 670 pixels. Where was the boy?
Answer In an old day, 35mm film has been widely used. The distance from
the photographer to the boy (average height of 4 year old male: hboy =102.3cm)
is:

himg
boy = fm

Himg

Hccd

hboy

Zboy

Zboy = 50mm× 1280pix
35mm

× 1.023m
250pix

= 7.48m.

800 m

Figure 1.5: We verify the distance prediction
using Google Streetview, which is similar to
Figure 1.4(a).

Similarly, the distance from the photographer to the Eiffel Tower (324m)
is:

himg
eif = fm

Himg

Hccd

heif
Zeif

Zeif = 50mm× 1280pix
35mm

× 324m
670pix

= 884.2m.
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The distance from the boy to the Eiffel Tower is approximately 877m. Fig-
ure 1.5 shows a Google Streetview image taken a similar location, which is
approximately 800m away from the Eiffel Tower.

1.3 Property of Intrinsic Parameter

The focal length of a camera defines the field of view and zoom factor. Larger
focal length makes the pixel coordinate larger in Equation (1.7), resulting in
zooming in and reducing field of view as shown in Figure 1.8 and 1.3. This
also makes an object appeared relatively flat because the camera focuses on
large distant objects (Z � 0) where the object’s thickness ∆d is relatively
smaller as shown in Figure 1.6:

Z d∆

Figure 1.6: For large focal length, objects in
the image are seen relatively flat.

uimg = fx
X

Z + ∆d
+ px ≈ fx

Xc

Z
+ px (1.11)

if Z � ∆d. Conversely, smaller focal length produces wide field of view and
generates greater perspective sensation.

Figure 1.7: An image with larger focal
length produces zoom-in effect.

Figure 1.8: The larger focal length, the
smaller field of view.

As noted earlier, the principal point (px, py)T in the intrinsic parameter
is often aligned with the center of image. However, the mechanical mis-
alignment can occur due to lens and sensor geometric configuration where
the center of lens is shifted with a few pixels caused by errors in camera
manufacturing. Also physical force applied to modern cameras mounted on
cellphone, laptop, and tablet can result in mis-alignment.

In some case where the sensor and lens are not parallel, a skewed image
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can be produced:

Zc

 uimg

vimg

1

 =

 fx s px

0 fy py

0 0 1


 Xc

Yc

Zc

 , (1.12)

where s is the skew parameter that x-coordinate of image is dependent on Yc.
Equation (1.12) is the general linear projective camera model, which can be
calibrated in Section ??.

1.4 Dolly Zoom

Dolly-zoom or Vertigo effect is an in-camera visual effect that produces a 3D
sensation. The camera moves along with a dolly where the focal length of the
camera is precisely controlled to keep the size of the subject constant. This
induces background motion while the foreground stationary, which produces
various perceptual experiences. Alfred Hitchcock first introduced the dolly-
zoom effect in his thriller movie, Vertigo (1958) to convey the dizziness of
the actor, and many subsequent modern films such as Pycho (1960), Jaws
(1975), and Goodfellas (1990) have employed this effect.

Figure 1.9: Alfred Hitchcock’s movie,
Vertigo (1958)

The key insight of the dolly-zoom effect is to describe the focal length, fm,
as a function of the depth, Zc, using Equation (1.7):

himg = f
ho

Zo
= f ∗

ho

Zo + ∆Z
, (1.13)

where himg is the size (height or width) of the focused subject in an image,
ho is the size of the focused object in metric space at Zo distant from the
camera. ∆Z is the distance that the camera moves along the dolly and f ∗m
is the controlled focal length. Note that himg needs to keep constant as ∆Z
changes. The controlled focal length is

f ∗ = f
Zo + ∆Z

Zo
. (1.14)

Note that the size of the subject is canceled.

Example 1.3 (Dolly zoom effect). Consider foreground object A (hA =4m)
and background object B (hB =6m) where the distance between them is
d =2m as shown in Figure 1.3. They appear himg

A =400 pix and himg
B =120

pix, respectively, as shown in Figure 1.11. How far does the camera need
to step back to create a dolly zoom effect where ×2 zoom factor is applied?
How high will the background object be after the dolly zoom?
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2md =ZAZ∆

Pinhole

Projection plane

hA hB

Figure 1.10: Dolly zoom geometry.

img =400pixhA

img =120pixhB

Figure 1.11: Image at ZA.

Solution From Equation (1.13), the foreground object A appears constant:

himg
A = f

hA
ZA

= 2 f
hA

ZA + ∆Z
, (1.15)

⇒ ∆Z = ZA.

Also, background object B satisfies the following:

himg
B = f

hA
ZA + d

. (1.16)

ZA and f are unknown. From Equation (1.15) and (1.16),

ZA =
d

himg
A

himg
B

hB
hA
− 1

= 0.5m,

and therefore, ∆Z =0.5m. f can be computed by back-substitution, which is
50pix.

Finally, the background object B will appear:

ĥimg
B = 2 f

hB
ZA + ∆Z + d

= 100pix.

1.5 First Person Camera in World Coordinate System

The coordinate of the 3D world point, Xc in Equation (1.10) aligns with
the first person camera. If the camera moves, the point representation also
changes as the camera coordinate system moves although it is stationary
point. Alternatively, it can be represented by the fixed world coordinate, Xw

with an Euclidean transform to the camera:

Xc = RXw + t, (1.17)

where R ∈ SO(3) is a rotation matrix which is orthogonal, i.e., RTR =

RRT = I3 and det(R) = 1, that transforms the third person world coordi-
nate to first person camera coordinate. t ∈ R3 is a translation vector which
is the world origin seen from the camera coordinate system at the camera
origin, i.e., t is represented in the camera coordinate.
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Equivalently, the Euclidean transformation can be written as:

Xc = R (Xw − C) , (1.18)

where C is the camera origin seen from the world coordinate where C =

−RTt. Note that Equation (1.17) translates after the rotation while Equa-
tion (1.18) translates before the rotation.

By combining Equation (1.10) and (1.17),

λ

[
uimg

1

]
= K

[
R t

] [ Xw

1

]
(1.19)

= KR
[

I −C
] [ Xw

1

]
(1.20)

= P

[
Xw

1

]
, (1.21)

where P ∈ R3×4 is called camera projection matrix that maps a 3D world
coordinate to the first person image (metric space to pixel space). It includes
intrinsic parameter (focal length and principal point) and extrinsic parameter
(rotation and translation).

MATLAB 1.1 (Orbiting camera). Draw 3D polygons such as cubics similar
to Figure 1.12 and animate the sequence of images while the camera orbiting
around the polygon.

θ

r

r

Figure 1.12: Camera motion orbiting around
a cubic.

Answer The camera motion can be written as:

C =

 r cos θ

r sin θ

0

 , R =

 − sin θ cos θ 0
0 0 −1

− cos θ − sin θ 0

 (1.22)

RotateCamera.m

1 K = [200 0 100;

2 0 200 100;

3 0 0 1];

4 r = 5;

5 theta = 0:0.02:2*pi;

6 for i = 1 : length(theta)

7 C = [r*cos(theta(i)); r*sin(theta(i)); 0];

8 R = [-cos(theta(i)) -sin(theta(i)) 0;

9 0 0 -1;

10 -sin(theta(i)) cos(theta(i)) 0];

11 P = K * R * [eye(3) -C];

12 proj = [];

13 for j = 1 : size(sqaure_point,1)

14 u = P * [sqaure_point(j,:)’;1];

15 proj(j,:) = u’/u(3);

16 end

17 end



WHERE AM I?: MOBILE CAMERA GEOMETRY 9

1.6 Inverse Projection

Can we predict the location of a 3D world point Xw given a 2D point uimg in
image? Without an assumption about the scene, it is impossible because of
dimensional loss of projection, i.e., depth is unknown. Then, what does the
2D point mean in 3D?

A 2D point in in an image is equivalent to a 3D ray L emitted from the
pinhole passing through the 2D point in the projection plane:

L = λK−1

 uimg

vimg

1

 , for λ ≥ 0. (1.23)

This ray also passes through the 3D point, i.e., Xc ∈ L.
For the world coordinate representation,

Xw ∈ RTL + C, (1.24)

or, Xw = λRTK−1

 uimg

vimg

1

+ C, for some λ. (1.25)

The RHS of Equation (1.25) transforms the ray L in the camera coordinate to
the world coordinate, i.e., it is emitted from the optical center of the camera
and oriented to L with respect to the camera orientation.

1.7 Geometric Interpretation of Projection Matrix

We introduce a camera projection matrix P that encapsulates intrinsic and
extrinsic parameters. The 12 elements in the matrix have physical meaning.

First, the columns of the projection matrix, P =
[

p1 p2 p3 p4

]
indicate the projection of the world origin and directions of X, Y, and Z axes
onto the image.

3D world

31
Zλ  

= 
 

u
p

11
Xλ  

= 
 

u
p

21
Yλ  

= 
 

u
p

41
Oλ  

= 
 

u
p

Figure 1.13: The columns of the camera
projection matrix represents 3D world
coordinate system.

The projection of the world origin, (0, 0, 0)T, is

λ

[
uO

1

]
=

 | | | |
p1 p2 p3 p4

| | | |




0
0
0
1

 = p4. (1.26)

The projection of the direction of the world X axis, i.e., a point at infinity
along the X axis (∞, 0, 0)T, is:

λ

[
uX

1

]
= lim

Xw→∞

 | | | |
p1 p2 p3 p4

| | | |




Xw

Yw

Zw

1

 = p1 (1.27)
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Similarly, uY and uZ can be represented by p2 and p3, respectively, as
shown in Figure 1.13.

Yp

Xl

Xp

Zp

Yl

Figure 1.14: The rows of the camera
projection matrix represents the 3 planes of
camera axes.

Second, the rows of the projection matrix, P =
[

pT
X pT

Y pT
Z

]T
indicates the planes defined by the camera axes, i.e., YZ, ZX, and XY planes.

Among all world 3D points, Xw, particular points project onto the line lX

that aligns with the X axis of the image:

λ

 u
0
1

 =

 − pX −
− pY −
− pZ −

 [ Xw

1

]
, (1.28)

which indicates pYXw = 0, or pY1Xw + pY2Yw + pY3Zw + pY4 = 0
where pY = (pY1, pY2, pY3, pY4). Such points are the points on the plane
that passes the camera optical center and lX in 3D. This plane is represented
by pY, which is perpendicular to the camera’s Y axis (the plane spanned by
the camera’s X and Z axes). Similarly, pX represents the plane spanned by
the camera’s Y and Z axes as shown in Figure 1.14.

Notably, pZ represents the set of points in the line at infinity (see Sec-
tion ??), i.e.,

λ

[
uZ

0

]
=

 − pX −
− pY −
− pZ −

 [ Xw

1

]
. (1.29)

These points lie in the plane parallel to the projection plane at the camera
optical center. Therefore, pZ represents the plane spanned by X and Y axes
of the camera.

1.8 Approximated Camera Model

The dolly zoom effect in Section 1.4 can induce strong depth sensation as
controlling the focal length. For instance, in Figure 1.15, the depth sensation,
or perspectiveness in the left image is less stronger than the right image.
The left image was taken by farther away from the camera with larger focal
length. Strong perspectivenessWeak perspectiveness

Figure 1.15: The rows of the camera
projection matrix represents the 3 planes of
camera axes.

Two distances play a role: (1) distance, Z, between an object and camera;
(2) distance, d, between objects. If d/Z ≈ 0 where the camera is far from
the objects, the perspectiveness becomes less powerful, i.e., satellite image.
This creates a special instance of the projective camera called affine camera.
Consider an object X moves away from the camera along the camera’s optical
axis rTz , i.e., Xaffine = X + µrz. While moving away, the camera focal
length is adjusted as the dolly zoom effect such that it maintains the size of
the object faffine = f (d + µ)/d from Equation (1.14) where d and f are the
distance of X and focal length before moving, respectively.
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The affine projection of X can be written as:

uaffine = lim
µ→∞

f (µ + d)(rxX + tx) + px

d(rzX + tz + µ)

=
f
d
(rxX + tx) , (1.30)

where the subscript xy indicates the first two rows of matrix, i.e., Rxy =[
rTx rTy

]T
. Likewise, the Y coordinate of the affine projection can be

expressed, which results in:

uaffine =

[
f /d 0
0 f /d

] [
−rx− tx

−ry− ty

] [
X
1

]
(1.31)

= Kaffine
(
RxyX + txy

)
(1.32)

Note that this projection is linear, i.e., no scalar on LHS in Equation (1.32),
which simplifies the projective geometry yet a good approximation of objects
at far distance.

Figure 1.16: Orthographic camera

When the image coordinate is normalized by the intrinsic parameter, i.e.,
K−1

affineuaffine, it also produces a special instance of the affine camera called
orthographic camera:

uorth =

[
−rx− tx

−ry− ty

] [
X
1

]
(1.33)

=
(
RxyX + txy

)
. (1.34)

Note that the orthographic projection maps from metric to metric space where
there is no notion of pixel space as shown in Figure 1.16.
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