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Abstract
An efficient algorithmic solution to the classical five-point
relative pose problem is presented. The problem is to find
the possible solutions for relative camera motion between
two calibrated views given five corresponding points. The
algorithm consists of computing the coefficients of a tenth
degree polynomial and subsequently finding its roots. It is
the first algorithm well suited for numerical implementation
that also corresponds to the inherent complexity of the prob-
lem. The algorithm is used in a robust hypothesise-and-test
framework to estimate structure and motion in real-time.

1. Introduction
Reconstruction of camera positions and scene structure
based on images of scene features from multiple viewpoints
has been studied for over two centuries, first by the pho-
togrammetry community and more recently in computer vi-
sion. In the classical setting, the intrinsic parameters of the
camera, such as focal length, are assumed known a pri-
ori. This calibrated setting is where the five-point prob-
lem arises. Given the images of five unknown scene points
from two distinct unknown viewpoints, what are the possi-
ble solutions for the configuration of the points and cam-
eras? Clearly, only the relative positions of the points and
cameras can be recovered. Moreover, the overall scale of
the configuration can never be recovered solely from im-
ages. Apart from this ambiguity, the five-point problem was
proven by Kruppa [14] to have at most eleven solutions.
This was later improved upon [2, 3, 5, 16, 11], showing that
there are at most ten solutions and that there are ten solu-
tions in general (including complex ones). The ten solutions
correspond to the roots of a tenth degree polynomial. How-
ever, Kruppa’s method requires the non-trivial operation of
finding all intersections between two sextic curves and there
is no previously known practical method of deriving the
coefficients of the tenth degree polynomial in the general
case. A few algorithms suitable for numerical implemen-
tation have also been devised. In [28] a60 × 60 sparse
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matrix is built, which is subsequently reduced using linear
algebra to a20×20 non-symmetric matrix whose eigenval-
ues and eigenvectors encode the solution to the problem. In
[21] an efficient derivation is given that leads to a thirteenth
degree polynomial whose roots include the solutions to the
five-point problem. The solution presented in this paper is
a refinement of this. A better elimination that leads directly
in closed form to the tenth degree polynomial is used. Thus,
an efficient algorithm that corresponds exactly to the intrin-
sic degree of difficulty of the problem is obtained.

For the structure and motion estimation to be robust and
accurate in practice, more than five points have to be used.
The classical way of making use of many points is to min-
imise a least squares measure over all points, see for exam-
ple [13]. Our intended application for the five-point algo-
rithm is as a hypothesis generator within a random sample
consensus scheme (RANSAC) [6]. Many random samples
containing five point correspondences are taken. Each sam-
ple yields a number of hypotheses for the relative orienta-
tion that are scored by a robust statistical measure over all
points in two or more views. The best hypothesis is then
refined iteratively. Such a hypothesise-and-test architecture
has become the standard way of dealing with mismatched
point correspondences [26, 31, 10, 18] and has made auto-
matic reconstructions spanning hundreds of views possible
[1, 22, 19].

The requirement of prior intrinsic calibration was re-
laxed in the last decade [4, 9, 10], leading to higher flexibil-
ity and less complicated algorithms. So, why consider the
calibrated setting? Apart from the theoretical interest, one
answer to this question concerns stability and uniqueness
of solutions. Enforcing the intrinsic calibration constraints
often gives a crucial improvement of both the accuracy and
robustness of the structure and motion estimates. Currently,
the standard way of achieving this is through an initial un-
calibrated estimate followed by iterative refinement to bring
the estimate into agreement with the calibration constraints.
When the intrinsic parametersare known a priori, the five-
point algorithm is a more direct way of enforcing the cal-
ibration constraints exactly and obtaining a Euclidean re-
construction. The accuracy and robustness improvements
gained by enforcing the calibration constraints are particu-



larly significant for planar or near planar scenes and scenes
thatappear planar in the imagery. The uncalibrated meth-
ods fail when faced with coplanar scene points, since there
is then a continuum of possible solutions. It has been pro-
posed to deal with this degeneracy using model selection
[27, 23], switching between a homographic model and the
general uncalibrated model as appropriate. In the calibrated
setting, coplanar scene points only cause at most a two-fold
ambiguity [15, 17]. With a third view, the ambiguity is in
general resolved. In light of this, a RANSAC scheme that
uses the five-point algorithm over three or more views is
proposed. It applies to general structure but also continues
to operate correctlydespite scene planarity, without rely-
ing on or explicitly detecting the degeneracy. In essence,
the calibrated model can cover both the planar and general
structure cases seamlessly. This gives some hope of deal-
ing with the approximately planar cases, where neither the
planar nor the uncalibrated general structure model applies
well.

The rest of the paper is organised as follows. Section
2 establishes some notation and describes the constraints
used in the calibrated case. Section 3 presents the five-point
algorithm. Section 4 discusses planar degeneracy. Section
5 outlines the RANSAC schemes for two and three views.
Section 6 gives results and Section 7 concludes.

2. Preliminaries and Notation
Image points are represented by homogeneous 3-vectorsq
and q′ in the first and second view, respectively. World
points are represented by homogeneous 4-vectorsQ. A per-
spective view is represented by a3 × 4 camera matrixP
indicating the image projectionq ∼ PQ, where∼ denotes
equality up to scale. A view with a finite projection centre
can be factored intoP = K [R | t], whereK is a 3 × 3
upper triangular calibration matrix holding the intrinsic pa-
rameters andR is a rotation matrix. Let the camera matrices
for the two views beK1 [I | 0] andP = K2 [R | t]. Let [t]×
denote the skew symmetric matrix

[t]× =


 0 −t3 t2

t3 0 −t1
−t2 t1 0


 (1)

so that[t]× x = t×x for all x. Then the fundamental matrix
is

F ≡ K−�
2 [t]× RK−1

1 . (2)

The fundamental matrix encodes the well known copla-
narity, or epipolar constraint

q′�Fq = 0. (3)

If K1 andK2 are known, the cameras are said to be cali-
brated. In this case, we can always assume that the image
pointsq andq′ have been premultiplied byK−1

1 andK−1
2 ,

respectively, so that the epipolar constraint simplifies to

q′�Eq = 0, (4)

where the matrixE ≡ [t]× R is called the essential ma-
trix. Any rank-2 matrix is a possible fundamental matrix.
An essential matrix has the additional property that the two
non-zero singular values are equal. This leads to the fol-
lowing important cubic constraints on the essential matrix,
adapted from [25, 5, 16, 21]:
Theorem 1 A real non-zero 3 × 3 matrix E is an essential
matrix if and only if it satisfies the equation

EE�E − 1
2

trace(EE�)E = 0. (5)

This property will help us recover the essential matrix.
Once the essential matrix is known,R, t and the camera
matrices can be recovered from it.

3. The Five-Point Algorithm
In this section the five-point algorithm is described, first in a
straightforward manner. Recommendations for an efficient
implementation are then given in Section 3.2. Each of the
five point correspondences gives rise to a constraint of the
form (4). This constraint can also be written as

q̃�Ẽ = 0, (6)
where

q̃≡[
q1q′1 q2q′1 q3q′1 q1q′2 q2q′2 q3q′2 q1q′3 q2q′3 q3q′3

]�(7)

Ẽ≡[
E11 E12 E13 E21 E22 E23 E31 E32 E33

]� (8)

By stacking the vectors̃q� for all five points, a5×9 matrix
is obtained. Four vectors̃X, Ỹ , Z̃, W̃ that span the right
nullspace of this matrix are now computed. The most com-
mon way to achieve this is by singular value decomposi-
tion [24], but QR-factorisation as described in Section 3.2
is much more efficient. The four vectors correspond directly
to four 3 × 3 matricesX, Y, Z, W and the essential matrix
must be of the form

E = xX + yY + zZ + wW (9)

for some scalarsx, y, z, w. The four scalars are only
defined up to a common scale factor and it is therefore
assumed thatw =1. Note here that the algorithm can
be extended to using more than 5 points in much the
same way as the uncalibrated 7 and 8-point methods.
In the overdetermined case, the four singular vectors
X, Y, Z, W that correspond to the four smallest singular
values are used. By inserting (9) into the nine cubic
constraints (5) and performing Gauss-Jordan elimina-
tion with partial pivoting we obtain the equation system

A x3 y3 x2y xy2 x2z y2z x2 y2 xyz xy xz2 xz x yz2 yz y 1

(a) 1 . . . . . . . . . . . . . . . [3]
(b) 1 . . . . . . . . . . . . . . [3]
(c) 1 . . . . . . . [3]
(d) 1 . . . . . . . [3]
(e) 1 . . . . . . . [3]
(f) 1 . . . . . . . [3]
(g) 1 L . . . M N O [3]
(h) 1 P Q R S . . . [3]
(i) 1 . . . . . . . [3]



where . and L, . . . , S denote some scalar values and
[n] denotes a polynomial of degreen in the variablez.
Note that the elimination can optionally be stopped two
rows early. Further, define the additional equations

(j)≡ (e) − z(g) (10)

(k)≡ (f) − z(h) (11)

(l)≡ (d) − x(h) + P (c) + zQ(e) + R(e) + S(g) (12)

(m)≡ (c) − y(g) + L(d) + zM(f) + N(f) + O(h). (13)

We now have the five equations

(i) = xy[1] + x[2] + y[2] + [3] = 0 (14)

(j) = xy[1] + x[3] + y[3] + [4] = 0 (15)

(k) = xy[1] + x[3] + y[3] + [4] = 0 (16)

(l) = xy[2] + x[3] + y[3] + [4] = 0 (17)

(m) = xy[2] + x[3] + y[3] + [4] = 0. (18)

These equations are arranged into two4 × 4 matrices
containing polynomials inz:

B xy x y 1
(i) [1] [2] [2] [3]
(j) [1] [3] [3] [4]
(k) [1] [3] [3] [4]
(l) [2] [3] [3] [4]

C xy x y 1
(i) [1] [2] [2] [3]
(j) [1] [3] [3] [4]
(k) [1] [3] [3] [4]
(m) [2] [3] [3] [4]

Since the vector[ xy x y 1 ]� is a nullvector to
both these matrices, their determinant polynomials must
both vanish. Let the two eleventh degree determinant
polynomials be denoted by(n) and(o) , respectively. The
eleventh degree term is cancelled between them to yield the
tenth degree polynomial

(p) ≡ (n)o11 − (o)n11. (19)

The real roots of(p) are now computed. There are various
standard methods to accomplish this. A highly efficient way
is to use Sturm-sequences to bracket the roots, followed by
a root-polishing scheme. This is described in Section 3.2.
Another method, which is easy to implement with most lin-
ear algebra packages, is to eigen-decompose a companion
matrix. After normalising(p) so thatp10 = 1, the roots are
found as the eigenvalues of the10 × 10 companion matrix


p9 p8 · · · p0

−1
. . .

−1


 . (20)

For each rootz the variablesx andy can be found using
equation systemB. The last three coordinates of a nullvec-
tor to B are computed, for example by evaluating the three

3 × 3 determinants obtained from the first three rows ofB
by striking out the columns corresponding tox, y and1, re-
spectively. The essential matrix is then obtained from (9).
In Section 3.1 it is described how to recoverR andt from
the essential matrix.

3.1 Recovering R and t from E

Let

D =


 0 1 0

−1 0 0
0 0 1


 . (21)

R andt are recovered from the essential matrix on the basis
of the following theorem [30, 10]:

Theorem 2 Let the singular value decomposition of the es-
sential matrix be E ∼ Udiag(1, 1, 0)V �, where U and
V are chosen such that det(U) > 0 and det(V ) > 0.

Then t ∼ tu ≡ [
u13 u23 u33

]�
and R is equal to

Ra ≡ UDV � or Rb ≡ UD�V �.

Any combination ofR and t according to the above pre-
scription satisfies the epipolar constraint (4). To resolve the
inherent ambiguities, it is assumed that the first camera ma-
trix is [I | 0] and thatt is of unit length. There are then the
following four possible solutions for the second camera ma-
trix: PA ≡ [Ra | tu], PB ≡ [Ra | −tu], PC ≡ [Rb | tu],
PD ≡ [Rb | −tu] . One of the four choices corresponds
to the true configuration. Another one corresponds to the
twisted pair which is obtained by rotating one of the views
180 degrees around the baseline. The remaining two corre-
spond to reflections of the true configuration and the twisted
pair. For example,PA gives one configuration.PC corre-
sponds to its twisted pair, which is obtained by applying the
transformation

Ht ≡
[

I 0
−2v13 −2v23 −2v33 −1

]
. (22)

PB andPD correspond to the reflections obtained by apply-
ing Hr ≡ diag(1, 1, 1,−1). In order to determine which
choice corresponds to the true configuration, the cheirality
constraint1 is imposed. One point is sufficient to resolve
the ambiguity. The point is triangulated using the view pair
([I | 0] , PA) to yield the space pointQ and cheirality is
tested. Ifc1 ≡ Q3Q4 < 0, the point is behind the first
camera. Ifc2 ≡ (PAQ)3Q4 < 0, the point is behind the
second camera. Ifc1 > 0 andc2 > 0, PA andQ corre-
spond to the true configuration. Ifc1 < 0 andc2 < 0, the
reflectionHr is applied and we getPB. If on the other hand
c1c2 < 0, the twistHt is applied and we getPC and the
point HtQ. In this case, ifQ3(HtQ)4 > 0 we are done.
Otherwise, the reflectionHr is applied and we getPD.

1The constraint that the scene points should be in front of the cameras.



3.2 Efficiency Considerations

In summary, the main computational steps of the algorithm
outlined above are as follows:

1. Extraction of the nullspace of a5 × 9 matrix.

2. Expansion of the cubic constraints (5).

3. Gauss-Jordan elimination on the9 × 20 matrixA.

4. Expansion of the determinant polynomials of the two
4× 4 polynomial matricesB andC followed by elim-
ination to obtain the tenth degree polynomial (19).

5. Extraction of roots from the tenth degree polynomial.

6. Recovery ofR andt corresponding to each real root
and point triangulation for disambiguation.

We will discuss efficient implementation of Steps 1,5 and
6. Singular value decomposition is the gold standard for
the nullspace extraction in Step 1, but a specifically tailored
QR-factorisation is much more efficient. The five input vec-
tors are orthogonalised first, while pivoting, to form the or-
thogonal basis̃q1, . . . , q̃5. This basis is then amended with
the9 × 9 identity matrix to form the matrix

[
q̃1 · · · q̃5 | I

]�
(23)

The orthogonalisation with pivoting is now continued until
nine orthogonal vectors are obtained. The last four rows
constitute an orthogonal basis for the nullspace.

Sturm sequences are used to bracket the roots in Step 5.
The definition of a Sturm sequence, also called Sturm chain
is given in Appendix A. The tenth degree polynomial has an
associated Sturm sequence, which consists of eleven poly-
nomials of degree zero to ten. The number of real roots in an
interval can be determined by counting the number of sign
changes in the Sturm sequence at the two endpoints of the
interval. The Sturm sequence can be evaluated recursively
with 38 floating point operations. 10 additional operations
are required to count the number of sign changes. This is to
be put in relation to the 20 floating point operations required
to evaluate the polynomial itself. With this simple test for
number of roots in an interval, it is fairly straightforward
to hunt down a number of intervals, each containing one of
the real roots of the polynomial. Any root polishing scheme
[24] can then be used to determine the roots accurately. In
our experiments we simply use 30 iterations of bisection,
since this provides a guaranteed precision in fixed time and
requires almost no control overhead.

Step 6 requires a singular value decomposition of the
essential matrix and triangulation of one or more points.
When all the other steps of the algorithm have been effi-
ciently implemented, these operations can take a significant

portion of the computation time, since they have to be car-
ried out for each real root. A specifically tailored singular
value decomposition is given in Appendix B. Efficient tri-
angulation is discussed in Appendix C. Note that a triangu-
lation scheme that assumes ideal point correspondences can
be used since for true solutions the recovered essential ma-
trix is such that intersection is guaranteed for the five pairs
of rays.

4. Planar Structure Degeneracy
The planar structure degeneracy is an interesting example
of the differences between the calibrated and uncalibrated
frameworks. The degrees of ambiguity that arise from a
planar scene in the two frameworks are summarised in Ta-
ble 1. For pose estimation with known intrinsics there is a
unique solution provided that the plane is finite and that the
cheirality constraint is taken into account2. In theory, focal
length can also be determined if the principal direction does
not coincide with the plane normal. Without knowledge of
the intrinsics however, there is a three degree of freedom
ambiguity that can be thought of as parameterised by the
position of the camera centre. For any camera centre, ap-
propriate choices for the calibration matrixK and rotation
matrix R can together produce any homography between
the plane and the image. With known intrinsics and two
views of an unknown plane, there are two solutions for the
essential matrix [15, 17], unless the baseline is perpendic-
ular to the plane in which case there is a unique solution.
The cheirality constraint resolves the ambiguity unless all
visible points are closer to one viewpoint than the other
[15]. If all visible points are closer to one viewpoint, the
dual solution is obtained from the true one by reflecting that
view across the plane and then taking the twisted pair of
the resulting configuration. Any attempts to recover intrin-
sic parameters from two views of a planar surface are futile
according to the following theorem, adapted from [16]:

Theorem 3 For any choice of intrinsic parameters, any ho-
mography can be realised between two views by some posi-
tioning of the two views and a plane.

If the calibration matrices are completely unknown, there is
a two degree of freedom ambiguity, that can be thought of
as parameterised by the epipole in one of the images, i.e.
for any choice of epipole in the first image, there is a unique
valid solution. Once the epipole is specified in the first im-
age, the problem of solving for the remaining parameters of
the fundamental matrix is algebraically equivalent to solv-
ing for the projective pose of a one-dimensional camera in
a two-dimensional world, where the projection centre of the

2If the plane is the plane at infinity it is impossible to determine the
camera position and without the cheirality constraint the reflection across
the plane constitutes a second solution.



1 View Known
Structure

2 Views Un-
known Struc-
ture

n > 2 Views
Unknown
Structure

Known intrin-
sics

Unique Two-fold or
unique

Unique

Unknown fixed
focal length

Unique in gen-
eral

1 d.o.f. Unique in gen-
eral

Unknown vari-
able intrinsics

3 d.o.f. 2 d.o.f. 3n-4 d.o.f.

Table 1:The degrees of ambiguity in the face of planar degener-
acy for pose estimation and structure and motion estimation. The
motion is assumed to be general and the structure is assumed to be
dense in the plane. See the text for further explanation.

1-D camera corresponds to the epipole in the second image,
the orientation corresponds to the epipolar line homogra-
phy and the points in the second image correspond to world
points in the 2-D space. The problem according to Chasles’
Theorem [10] has a unique solution unless all the points
and the epipole in the second image lie on a conic, which
is not the case since we are assuming that the structure is
dense in the plane. For three views with known intrinsics
there is a unique solution. If the views are in general posi-
tion a common unknown focal length can also be recovered,
but this requires rotation and suffers from additional critical
configurations. With unknown variable intrinsics there are
3 additional degrees of freedom for each view above two.

5. Applying the Algorithm Together
with Random Sample Consensus

We use the algorithm in conjunction with random sampling
consensus in two or three views. A number of random sam-
ples are taken, each containing five point-tracks. The five-
point algorithm is applied to each sample and thus a number
of hypotheses are generated. In the two-view case, the hy-
potheses are scored by a robust measure over all the point
pairs and the hypothesis with the best score is retained. Fi-
nally, the best hypothesis can be polished by iterative refine-
ment [29]. When three or more views are available, we pre-
fer to disambiguate and score the hypotheses utilising three
views. A unique solution can then be obtained from each
sample of five tracks and this continues to hold true even if
the scene points are all perfectly coplanar. For each sam-
ple of five point-tracks, the points in the first and last view
are used in the five-point algorithm to determine a number
of possible camera matrices for the first and last view. For
each case, the five points are triangulated3. The remaining
view can now be determined by any 3-point calibrated per-
spective pose algorithm, see [8] for a review and additional
references. Up to four solutions are obtained and disam-
biguated by the additional two points. The reprojection er-
rors of the five points in all of the views are now enough to
single out one hypothesis per sample. Finally, the solutions
from all samples are scored by a robust measure using all
available point tracks.

3See Appendix C.

6. Results

For a minimal solution such as the five-point method the
two main requirements are precision and speed. Observe
that the effects of noise will be the same for any five-point
solution method. The numerical precision of our fast imple-
mentation is investigated in Figure 1. Note that the typical
errors are insignificant in comparison to realistic noise lev-
els.

The computation time is partially dependent on the num-
ber of real solutions. The distribution of the number of so-
lutions is given in Table 2. We have also verified experi-
mentally that five points in three views in general yield a
unique solution, with or without planar structure and an un-
known focal length common to the three views. Timing in-
formation for our efficient implementation of the five-point
algorithm is given in Table 3.

The algorithm is used as a part of a system that recon-
structs structure and motion from video in real-time. Sys-
tem timing information is given in Table 4. Some results
from the reconstruction system are given in Figures 2-6. See
the figure captions for details.

Figure 1: Distribution of the numerical error in the computed
essential matrixÊ based on105 random tests with generic (left)
and planar (right) scenes. Since the matrix is up to scale and there
are multiple solutionŝEi, the minimum residual

min
i

min(‖ Êi

‖Êi‖
− E

‖E‖ ‖, ‖ E
‖E‖ + Êi

‖Êi‖
‖) from each problem

instance is used. The median error is1.39 · 10−10 for generic
scenes and1.76 · 10−10 for planar scenes. All computations were
performed in double precision.

7. Summary and Conclusions

An efficient algorithm for solving the five-point relative
pose problem was presented. The algorithm was used in
conjunction with random sampling consensus to solve for
unknown structure and motion over two, three or more
views. The efficiency of the algorithm is very impor-
tant since it will typically be applied within this kind of
hypothesise-and-test architecture, where the algorithm is
executed for hundreds of different five-point samples. Prac-
tical real-time reconstruction results were given and it was
shown that the calibrated framework can continue to oper-
ate correctly despite scene planarity.



Nr Hyp 0 1 2 3 4 5 6 7 8 9 10
Step 5 0 . 0.12 . 0.50 . 0.36 . 0.15 . 4.9e

−4
Step 6 4.2e

−6
0.17 0.28 0.29 0.17 5.8e

−2
2.5e
−2

1.5e
−3

6.6e
−4

1.5e
−6

2e
−7

Table 2:The distribution of the number of hypotheses that result
from computational steps 5 and 6 (as numbered in Section 3.2).
The second row shows the distribution of the number of real roots
of the tenth degree polynomial(p) in Equation (19), based on105

random point and view configurations. The average is 4.55 roots.
The third row shows the distribution of the number of hypothe-
ses once the cheirality constraint has been enforced, based on107

random point and view configurations. The average number of hy-
potheses is 2.74. Both rows show fractions of the total number of
trials. Our current randomization leads to two cases in107 with
ten distinct physically valid solutions. We have verified that there
are such cases with ten well separated solutions that are not caused
by numerical inaccuracies.

Step 1 2 3 4 5 6 Three-
Point
Pose

Mean
Two
Views

Mean
Three
Views

µs 8 12 23 14 6/root 8/root 5/root 121 134

Table 3: Approximate timings for the algorithm steps (as num-
bered in Section 3.2) on a modest 550MHz machine with highly
optimised but platform-independent code. Including all overhead,
the two and three view functions typically take 110-140µs and
120-180µs, respectively. For RANSAC processes with 500 sam-
ples the total hypothesis generation times are around 60ms and
67ms, respectively.

Appendixes

A Definition of Sturm Chain

Let p(z) be a general polynomial of degreen >= 2. Here,
the significance of general is that we ignore special cases for
the sake of brevity. For example,p(z) is assumed to have no
multiple roots. Moreover, the polynomial divisions carried
out below are assumed to have a non-zero remainder. Under
these assumptions, the Sturm chain is a sequence of poly-
nomialsf0, . . . , fn of degrees0, . . . , n, respectively.fn is
the polynomial itself andfn−1 is its derivative:

fn(z) ≡ p(z) (24)

fn−1(z) ≡ p ′(z). (25)

For i = n, . . . , 2 we carry out the polynomial division
fi/fi−1. Let the quotient of this division beqi(z) =
kiz + mi and let the remainder beri(z), i.e. fi(z) =
qi(z)fi−1(z) + ri(z). Then definefi−2(z) ≡ −ri(z). Fi-
nally, define the coefficientsm0, m1 andk1 such that

f0(z)= m0 (26)

f1(z)= k1z + m1. (27)

Once the scalar coefficientsk1, . . . , kn and m0, . . . , mn

have been derived, the Sturm chain can be evaluated at any

Feature Detection
30ms

Matching with Disparity Range
3% 5% 10%

34ms 45ms 160ms

SaM
50ms

Table 4: Approximate average timings per 720x240 frame of
video for the system components on a modest 550MHz machine.
MMX code was used for the crucial parts of the feature detection
and feature matching. Disparity range for the matching is given
in percent of the image dimensions. In the structure and motion
component (SaM), one-view and three-view estimations are com-
bined to incrementally build the reconstruction with low latency.
The whole system including all overhead currently operates at 26
frames per second on average on a 2.4GHz machine when using
a 3% disparity range. The latency is also small, since there is no
self-calibration and only very local iterative refinements.

Figure 2: Reconstruction from the turntable sequence ’Stone’.
No prior knowledge about the motion or the fact that it closes on
itself was used in the estimation. The circular shape of the es-
timated trajectory is a verification of the correctness of the result.
This result was obtainedwithout any global bundle adjustment and
exhibits a regularity and accuracy that is typically not obtained
with an uncalibrated method until the calibration constraints have
been enforced through bundle adjustment.

pointz through Equations (26, 27) and the recursion

fi(z)= (kiz + mi)fi−1(z) − fi−2(z) i = 2, . . . , n (28)

Let the number of sign changes in the chain bes(z). The
number of real roots in an interval[a, b] is thens(a)− s(b).
Unbounded intervals such as for example[0,∞) can be
treated by looking atm0 andk0, . . . , kn in order to calculate
limz→∞ s(z). For more details, see for example [7, 12].

B Efficient Singular Value Decompo-
sition of the Essential Matrix

An efficient singular value decomposition according to the
conditions of Theorem 2 is given. Let the essential matrix

be E =
[

ea eb ec

]�
, whereea, eb, ec are column-

vectors. It is assumed that it is a true essential matrix, i.e.
that it has rank two and two equal non-zero singular values.
First, all the vector productsea×eb, ea×ec andeb×ec are
computed and the one with the largest magnitude chosen.



Figure 3: Reconstructions obtained from the ’Stone’ sequence
by setting the focal length to incorrect values. The focal lengths
used were 0.05, 0.3, 0.5, 0.7, 1.3, 1.5, 2.0 and 3.0 times the value
obtained from calibration. For too small focal lengths, the recon-
struction ’unfolds’ and vice versa.

Figure 4:Reconstruction from the sequence ’Farmhouse’, which
contains long portions where a single plane fills the field of view.
The successful reconstruction is a strong practical proof of the fact
that the calibrated framework can overcome planar structure de-
generacy without relying on the degeneracy or trying to detect it.
This is especially important for near-planar scenes, where neither
the planar nor the uncalibrated model applies well. Only approx-
imate intrinsic parameters were used and no global bundle adjust-
ment was performed.

Assume without loss of generality thatea×eb has the largest
magnitude. Definevc ≡ (ea × eb)/|ea × eb|, va ≡ ea/|ea|,
vb ≡ vc × va, ua ≡ Eva/|Eva|, ub ≡ Evb/|Evb| and
uc ≡ ua × ub. Then the singular value decomposition is
given byV =

[
va vb vc

]
andU =

[
ua ub uc

]
.

C Efficient Triangulation of an Ideal
Point Correspondence

In the situation encountered in the five-point algorithm
where triangulation is needed, a hypothesis for the essen-
tial matrix E has been recovered and along with it the two
camera matrices[I | 0] andP . No error metric has to be
minimised, since for the true solution the rays backpro-
jected from the image correspondenceq↔ q ′ are guaran-
teed to meet. For non-ideal point correspondences, prior
correction to guarantee ray-intersection while minimising a
good error metric is recommended. Global minimisation
of ‖.‖2-norm in two views requires solving a sixth degree

Figure 5: Reconstruction from the sequence ’Girlsstatue’ that
was acquired with a handheld camera. Only approximate intrin-
sic parameters were used and no global bundle adjustment was
performed.

Figure 6:Reconstruction from vehicle sequences ’Road’, ’Park-
ing Lot’ and ’Turn’, with 360, 330 and 130 frames, respectively.
Only approximate intrinsic parameters were used and no global
bundle adjustment was performed.

polynomial, see [10]. Minimisation of‖.‖∞-norm [19],
or directional error [20], also yields good results in prac-
tice and can be achieved in closed form an order of mag-
nitude faster. In the ideal situation, triangulation can be
accomplished very efficiently by intersecting three planes
that are back-projected from image lines. The image lines
chosen to generate the three planes are the epipolar line
a corresponding toq ′, the line b through q that is per-
pendicular toa and the linec throughq ′ that is perpen-
dicular to Eq. For non-ideal point correspondences, this
scheme finds the world point on the ray backprojected from
q′ that minimises the reprojection error in the first image.
It triangulates world points at infinity correctly and is in-
variant to projective transformations of the world space.
Observe thata = E�q′, b = q × (diag(1, 1, 0)a) and
c = q′ × (diag(1, 1, 0)Eq). Moreover,A ≡ [ a� 0 ]�



is the plane backprojected froma, B ≡ [ b� 0 ]� is the
plane backprojected fromb andC ≡ P �c is the plane back-
projected fromc. The intersection between the three planes
A, B andC is now sought. Formally, the intersection is the
contractionQl ≡ εijklA

iBjCk between the epsilon tensor
εijkl

4 and the three planes. More concretely,d ≡ a × b
is the direction of the ray backprojected from the intersec-
tion betweena andb. The space point is the intersection
between this ray and the planeC:

Q ∼ [
d�C4 −(d1C1 + d2C2 + d3C3)

]�
. (29)

Finally, it is observed that in the particular case of an ideal
point correspondence we haved = q, so that computinga, b
andA, B can be avoided altogether.
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