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Abstract Virtual exploration tools for large indoor environ-
ments (e.g. museums) have so far been limited to either blueprint-
style 2D maps that lack photo-realistic views of scenes, or
ground-level image-to-image transitions, which are immer-
sive but ill-suited for navigation. On the other hand, photo-
realistic aerial maps would be a useful navigational guide
for large indoor environments, but it is impossible to di-
rectly acquire photographs covering a large indoor environ-
ment from aerial viewpoints. This paper presents a 3D re-
construction and visualization system for automatically pro-
ducing clean and well-regularized texture-mapped 3D mod-
els for large indoor scenes, from ground-level photographs
and 3D laser points. The key component is a new algorithm
called “Inverse CSG” for reconstructing a scene with a Con-
structive Solid Geometry (CSG) representation consisting of
volumetric primitives, which imposes powerful regulariza-
tion constraints. We also propose several novel techniques
to adjust the 3D model to make it suitable for rendering
the 3D maps from aerial viewpoints. The visualization sys-
tem enables users to easily browse a large-scale indoor en-
vironment from a bird’s-eye view, locate specific room in-
teriors, fly into a place of interest, view immersive ground-
level panorama views, and zoom out again, all with seamless
3D transitions. We demonstrate our system on various mu-
seums, including the Metropolitan Museum of Art in New
York City – one of the largest art galleries in the world.
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Fig. 1 Categorization of different map visualizations for indoor and
outdoor environments. While major efforts have been made in the past
for outdoor environments, there has not been much effort toward mak-
ing photo-realistic visualizations of indoor scenes. This paper enables
the photo-realistic visualization of indoor scenes from aerial view-
points, which can be easily integrated with the conventional ground-
based indoor navigation experiences.

1 Introduction

The abundance of photographic data combined with the grow-
ing interests in location-aware applications make 3D recon-
struction and visualization of architectural scenes an increas-
ingly important research problem with large-scale efforts
underway at a global scale. For example, Google Maps seam-
lessly integrates a variety of outdoor photographic content
ranging from satellite, aerial and street-side imagery to com-
munity photographs. Indoor environments have also been
active targets of photographic data capture with increasing
business demands. For instance, the Google Art Project al-
lows exploration of museums all over the world as well as
close examination of hundreds of artworks photographed at
high resolution. Google Maps and Bing Maps serve full-
view panorama images of indoor businesses such as grocery
stores and restaurants.
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The Metropolitan Museum of Art

Fig. 2 A texture-mapped 3D model of The Metropolitan Museum of Art reconstructed by our system, which directly recovers a constructive solid
geometry model from 3D laser points.

However, unlike outdoor environments offering imagery
from both aerial and ground-level viewpoints, indoor scene
visualization has so far been restricted to ground-level view-
points, simply because it is impossible to take pictures of in-
door environments from aerial viewpoints (See Fig. 1). The
lack of aerial views hampers effective navigation due to the
limited visibility from the ground level, especially for large-
scale environments, such as museums and shopping malls.
Without a photorealistic overview, users can easily get lost
or confused during navigation.

This paper presents a 3D reconstruction and visualiza-
tion system for large indoor environments. Our system takes
registered ground-level imagery and laser-scanned 3D points
as input and automatically produces a 3D model with high-
quality texture, under the assumption of piecewise planar
structure. Although we expect our method to generalize to
other large indoor structures as well, we demonstrate our ap-
proach on large museums (See Fig. 2), since there is a clear
need for a photorealistic navigation tool. Our system enables
users to easily browse a museum, locate specific pieces of
art, fly into a place of interest, view immersive ground-level
panorama views, and zoom out again, all with seamless 3D
transitions (demos and videos available at [21]). The tech-
nical contribution is the automated construction of a Con-
structive Solid Geometry (CSG) model of indoor environ-
ments, consisting of volumetric primitives. The proposed
“Inverse CSG” algorithm produces compact and regularized
3D models, enabling photorealistic aerial rendering of in-
door scenes. Our system is scalable and can cope with se-
vere registration errors in the input data, which is a common
problem for large-scale laser scanning (Fig. 3).

Fig. 3 A top-down view of input laser points, where two different col-
ors represent two vertical laser range sensors. A challenge is the pres-
ence of severe noise in the input laser points. Note that errors are highly
structured and “double walls” or even “triple walls” are prevalent.

1.1 Related Work

Laser range sensors have been popular tools for 3D recon-
struction, but the major focus of these approaches has been
limited to the reconstruction of small scale indoor environ-
ments, objects, and outdoor buildings [5,18], or the anal-
ysis of 3D structure such as the detection of symmetry or
moldings [20,22]. In [19,24], a human-operated backpack
system was proposed to produce 3D texture-mapped models
automatically, but their results usually have relatively simple
structures of the final models. As pointed out in [19], a major
challenge for data acquisition is the precise pose estimation
for both imagery and 3D sensor data, which is critical for
producing clean 3D models with high-quality texture images
requiring pixel-level accuracy. Although there exist scalable
and precise image-based pose estimation systems based on
Structure from Motion algorithms [1,2], our data collection
exposes further challenges. First, indoor scenes are full of
textureless walls and require complicated visibility analysis
because of narrow doorways. Furthermore, museums often
have rooms full of non-diffuse objects (e.g. glass and metal-
lic materials), which violates assumptions of vision-based
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Fig. 4 3D CSG construction happens step by step in a bottom-up man-
ner, from laser points, 2D lines, 2D rectangles, 3D cuboids to final 3D
CSG models.

systems. Active depth sensing usually yields more robust
and accurate pose estimation [13,16]. However, even with
high-quality laser scans, pose estimation is still very chal-
lenging [31], as museum floors are often uneven (e.g., floors
made of stones) causing laser range sensors to vibrate con-
stantly. Furthermore, simply the scale of the problem is un-
precedented in our experiments (more than 40,000 images
and a few hundred million 3D points for the largest collec-
tion), where robustness to registration errors becomes an in-
evitable challenge to overcome.

In image-based 3D modeling, surface reconstruction is
usually formulated as a volumetric segmentation problem
via Markov Random Field (MRF) defined over a voxel grid [9,
14]. However, an MRF imposes only local regularization
over pairs of neighboring voxels, which are susceptible to
highly structured noise in laser points. Also, these approaches
typically penalize the surface area which makes it difficult to
reconstruct thin structures such as walls, leading to missing
structures or reconstruction holes [9]. The requirement of
having a voxel grid limits the scalability of these approaches
due to memory limitation. Another popular approach is to
impose strong regularity [26,28,29] by fitting simple geo-
metric primitives to the point cloud data. However, most ap-
proaches have focused on modeling outdoor buildings where
the structures are much simpler than indoor scenes. Due to
these challenges, large-scale indoor scenes are usually mod-
eled by hand in CAD software [3]. An alternative option is
to extrude walls from floorplans (i.e. extend the 2D floor
plan vertically). However, it is not feasible in practice for
our targeted museums, as accurate floor plans do not ex-
ist for many museums. Even where they exist, floorplans
may come in different styles or formats, which makes it
difficult to automatically parse such images. Even if walls
are extracted, they need to be aligned with images for tex-
ture mapping, which involves a challenging image-to-model
matching problem at a massive scale. Single-view 3D recon-
struction techniques [11,32,12,30,17] are also popular for

All the runs Subset of runs
after point filtering

Subset of runs
(for visualization)

Fig. 5 Laser range sensors sometimes scan for a long distance, for ex-
ample through doorways, which unfortunately yields sparse and noisy
3D points. The point filtering step removes such unwanted noisy points
(highlighted in red).

architectural scenes, where priors and sophisticated regular-
ization techniques play an important role, which is common
in this paper. However, their focus is more on the analysis of
3D space, while our primary interest is scene visualization
that requires higher quality 3D models.

For indoor scene visualization, view-dependent texture
mapping is typically used to provide interactive scene ex-
ploration [9,27]. For example, Google Art Project, Google
Maps, and Bing Maps provide immersive panorama-based
viewing experiences for museums and indoor business loca-
tions. However, unlike in outdoor maps, in all these systems,
navigation is restricted to ground-level viewpoints, where
photographs can be directly acquired. As a result, there is
no effective scene navigation due to the lack of more global
overview from aerial viewpoints. Our goal in this work is
to produce 3D models that enable aerial rendering of indoor
environments using ground-level imagery.

2 Data Collection and Preprocessing

A hand trolley is used to capture input data in our system.
It is equipped with a rig of cameras and three linear laser
range sensors, two of which scan vertically at the left and
the right, while the other sensor scans horizontally. For op-
erational convenience, data collection for a large museum
is performed over multiple sessions. We use the term run
to refer to the data collected from a single session. We use
the horizontal laser scans to estimate sensor poses for all
runs together using [16], and handle each floor separately.
We use the vertical ones for 3D model reconstruction, since
they provide good coverage in general. We also estimate a
surface normal at each laser point by fitting a local plane to
nearby points.

Laser range sensors on our trolley can scan for long dis-
tances, for example, rooms next door through narrow door
ways (See Fig. 5). This causes a problem, because the same
room can be scanned from multiple runs, where laser points
from nearby runs are dense and accurate, while those from
far runs become sparse and possibly inaccurate. Therefore,
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Fig. 6 System pipeline. The first row shows the entire pipeline of our system, and the second row shows the detailed pipeline of “Inverse CSG”
reconstruction of a 2D horizontal slice.

we only keep laser points from nearby runs at overlapping
regions. More concretely, given laser points from all the runs,
we project them onto a horizontal plane, compute their bound-
ing box, and overlay a grid of cells inside the bounding box,
where the size of a cell is set to be 0.1 meters. At each cell,
we identify α(= 2) runs that have the most number of points
in the cell, and filter out all the points that belong to the
other runs. Note that this filtering procedure is not perfect
and may leave unwanted points. However, our reconstruc-
tion algorithm is robust, and the main purpose of this step is
to remove the majority of the unwanted point clouds.

3 Inverse CSG for Large-scale Indoor Modeling

While many 3D reconstruction algorithms are designed to
recover a surface model, we aim at reconstructing a volumet-
ric representation of a scene from registered laser scan. In
particular, we model the visible free space (surface exterior
space), which is directly measured by laser range sensors, as
opposed to the invisible filled-in space, which is blocked by
walls, floors and ceilings. For simplicity, we assume that the
space outside buildings is filled-in, which makes the free-
space a well-bounded volume.

We reconstruct the free space volume as a Construc-
tive Solid Geometry (CSG) model, which is an expression
of simple geometric primitives with union and difference
operations. We choose cuboids as volumetric primitives, as
they are the most common shapes in architecture design, and
good approximations for others. We restrict cuboids to be
aligned with the vertical (gravity) direction but allow arbi-
trary horizontal orientations, which is more general than the
Manhattan-world assumption [8,9]. The use of volumetric
primitives and the CSG representation allows us to impose
powerful architectural regularization and recover compact
3D models, which is a key factor for large-scale reconstruc-
tion and visualization. Our strategy is to enumerate primitive

candidates, then construct a CSG model out of the gener-
ated primitives to best describe the input laser information.
Instead of directly solving for a CSG model with 3D volu-
metric primitives, where the number of primitive candidates
becomes prohibitively large, we (1) split the 3D space into a
set of horizontal slices, each of which shares the same hor-
izontal structure (i.e., a floor plan structure in the slice); (2)
extract line segments from the input point clouds in a hori-
zontal slide, which are used to form rectangle primitive can-
didates; (3) solve a 2D CSG model with rectangle primitives
in each slice; (4) generate 3D primitives based on the 2D re-
constructions, then solve for a 3D CSG model (See Fig. 4).
We now detail in these steps.

3.1 Slice Extraction and 2D Primitive Generation

A floor plan structure on a horizontal slice changes at the ex-
istence of horizontal surfaces. For example, in a room with
two different ceiling heights, the structure of the horizontal
floor plan changes at the two ceilings. We compute the his-
togram of the number of 3D points in the gravity direction,
and convolve it with a Gaussian smoothing operator with a
standard deviation equal to 0.5m. We identify peaks in the
histogram to identify dominant horizontal surfaces, which
divides the 3D space into 2D slices.

Illustrated in the bottom row of Fig. 6, for each slice,
we project laser points within the slice onto a 2D horizontal
plane, and extract line segments passing through them by
Hough transformation [15]. These line segments are used to
enumerate rectangle candidates in several ways (Fig. 8).

First, a rectangle is generated from every tuple of four
line segments forming appropriate angles, where 5◦ error is
allowed (also for the remaining cases). Second, every triple
of segments forming a “@” shape generates four rectangles,
where the position of the missing edge is at one of the four
endpoints of the two side line segments. Third, every pair
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Fig. 7 2D CSG reconstructions for the eleven horizontal slices for one run in Metropolitan Museum of Art in New York City (Met). For each slice,
the figure shows the 3D point cloud and extracted line segments (in red) at the left, and reconstructed 2D CSG model at the right, where green
(resp. red) rectangles are additive (resp. subtractive) primitives.

of parallel segments generates
(4

2

)
= 6 rectangles, where the

positions of the two missing edges are chosen out of the four
endpoints of the two line segments. Lastly, every pair of per-
pendicular line segments is used to generate

(3
2

)
×
(3

2

)
= 9

rectangles, where two horizontal (resp. vertical) positions
are determined out of the three possible positions (See bot-
tom of Fig. 8).

We generate an over-complete set of primitives, because
line segment extraction may not be perfect, and we do not
want to miss any important rectangles. In order to speed up
the following reconstruction step, we prune out primitive
candidates that are unlikely to be part of the final model,
based on the following three criteria. First, any small rect-
angle, whose width or height is less than 0.15 meters, is re-
moved. Second, identical rectangles are removed except for
one copy, where two rectangles are defined to be identical
if the distance between their centers is less than 0.3 meters,
and the difference of each dimension (width and height) is
less than 0.2 meters. Third, a rectangle without enough sup-
porting laser points is removed, that is, if the number of laser
points that are within 0.2 meters from the boundary of the
rectangle is less than 0.05 times the number of laser points
in the slice. For a typical run, the algorithm extracts about 50
to 100 line segments per slice, and generates nearly a mil-
lion primitives initially, which are reduced to a few hundred
thousand after pruning.

3.2 Reconstructing 2D CSG Models

We aim to construct a CSG model T that best describes
the laser information. The solution space is exponential in

From 4 segments From 3 segments

From 2 parallel segments

From 2 perpendicular segments

line segment

primitive

Fig. 8 Line segments are used to form rectangle primitives. Depending
on the number of available line segments, different number of rectangle
primitives are generated.

the number of hypotheses, and we propose a simple algo-
rithm that greedily adds or subtracts a primitive. Let E(T )
denote an objective function that measures how well T ex-
plains the laser information. We start from an empty model.
In each iteration, we try to add or subtract each primitive to
or from the existing model, evaluate E(T ) for each result,
and choose the best one to be the new model. The algorithm
iterates until E(T ) does not increase by more than a thresh-
old ε , which is set to 0.02. We now give the definition of
E(T ) in the rest of this section.

The laser scan provides not only a 3D point cloud, but
also the information that nothing exists between the laser
center and the scanned 3D point. This free-space score is
calculated on a grid of voxels in 3D. First, we compute the
axis-aligned bounding box of all the laser points, while ig-
noring the extremal 2% of points in each direction to avoid



6 Jianxiong Xiao, Yasutaka Furukawa

2D CSG

Side View

Oblique View Top View

Side View

Greedy Optimization
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Fig. 9 From 2D CSG to 3D CSG. The first row contains the oblique
and the top views of the 2D CSG model reconstructed in a horizontal
slice, which consists of 2D rectangles. In the second row, each 2D rect-
angle is inflated to generate 3D cuboid primitives, where the top and
the bottom faces are determined by using all possible pairs of horizon-
tal slice boundaries. The figure shows two such cuboid primitive ex-
amples, which are generated from the red rectangle. In the third row, a
pool of cuboid primitives are used to construct 3D CSG model, where
we allow subtraction operations as in the 2D case, and a subtractive
primitive is illustrated in orange.

noise. The voxel size is set to 0.4 meters1. For each voxel,
we count the number of laser lines passing through it (i.e.,
a line segment connecting the laser center and the scanned
3D point). A voxel with more counts is more likely to be
in the free space, and hence, the free-space score is set to
be the number of non-zero count voxels. We truncate the
score to be no more than fifteen to avoid bias towards the
voxels near the laser centers. Zero-count voxels, in turn, are
unlikely to be in the free-space, because laser range sensors
usually scan an entire free-space (the trolley operators are
instructed to do so). Therefore, we assign a negative free-
space score for zero-count voxels. More precisely, for each
voxel with zero count, a distance transform algorithm [7] is
used to compute the distance to the closest positive-count
voxel, and its negated distance (in voxel units) multiplied by
30 is set as the free-space score. The use of distance trans-
form is important as free-space scores tend to become noisy
at surface boundaries. To obtain free-space scores for each

1 Different from standard volumetric reconstruction algorithms [9,
14], voxel resolution is not critical for accuracy in our approach, as
precise surface positions are determined by primitives.
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Fig. 10 Reconstruction results for the Frick Collection. Top: Stacked
2D CSG models for individual runs. Middle: Corresponding 3D CSG
models. Bottom: The final merged 3D CSG model. The white model is
the example illustrated in Fig. 6. Note that there exist three more runs
for this museum, which are not visible here because of overlapping or
occlusion in rendering.

2D slice, we simply take the average score value inside the
slice vertically.

The objective function E(T ) consists of the following
three terms. The first term measures how much free space
information is explained by T :

E1(T )=
{Sum of free-space scores inside T}

{Total sum in the domain without negative scores}
.

Ideally, if the shape T explains the free space perfectly, it
would cover all positive scores and none of the negative
ones, then E1(T ) = 1. The second term measures the ratio
of laser points that are explained by T :

E2(T ) =
{# of points on the surface of T}

{total # of points}
.

However, this term encourages a complex model that ex-
plains all the 3D points. Therefore, the third term measures
the quality of T from laser points for regularization:

E3(T )=
{perimeter of T near laser points (within 0.2 meters)}

{total perimeter of T}
.

Note that these three energy terms are normalized by their
definition. The overall objective function E(T ) is defined to
be a weighted sum of the three terms:

E(T ) = w1E1(T )+w2E2(T )+w3E3(T ), (1)

where w1 = 1, w2 = 0.1 and w3 = 0.4. To decide the weights,
we tried various combinations on several datasets. We found
that our algorithm is not very sensitive to these parameters,
and a reasonable combination will produce similar results.

3.3 Reconstructing 3D CSG Model

Having reconstructed a 2D CSG model for each slice, one
possible way to generate a 3D CSG model is to extrude
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Fig. 11 Two examples of the 3D CSG optimization process. Our 3D CSG construction algorithm either adds or subtracts a cuboid primitive at each
step, while greedily optimizing the objective function. Example model progression is shown for a run in National Gallery and Met, respectively.

each 2D CSG model as thick as the corresponding horizontal
slice, and stack them up. However, this solution tends to cre-
ate jagged, misaligned models (e.g. the first row of Fig. 10),
as 2D CSG models are reconstructed independently in all the
slices, which may be roughly consistent but are not exactly.
To address this issue, we propose a 3D Inverse CSG algo-
rithm to generate a 3D model, as shown in Fig. 9. We follow
the same two-step InverseCSG algorithm for the 2D slice re-
construction, and extend it to handle 3D reconstruction: first
to generate a pool of primitives (3D cuboids), and then use
our greedy algorithm to choose a subset of primitives from
the pool to represent the final complete shape.

For the first step, for each 2D primitive in the 2D CSG
result, we generate multiple candidate 3D primitives: the
vertical positions of their top and bottom faces are chosen
from every pair of slice boundary positions (the top and bot-
tom faces have the same shape as the 2D primitive – only
their vertical positions vary). Therefore, let N denote the
number of the horizontal slice boundaries. Each 2D rect-
angle generates

(N
2

)
cuboid primitives. Then, we define the

same objective function as before in Eq. 1, which can be
naturally generalized to 3D, and use the same greedy algo-
rithm as in Sec. 3.2 to “redo” everything with 3D cuboids as
primitives. After reconstructing a 3D CSG model for each
run2, we simply take the union of all the models in the CSG
representation to create the final merged model, and convert
it into a mesh model by CGAL [4].

Intermediate reconstruction results are shown in Fig. 7
and Fig. 11. Fig. 7 shows 2D CSG reconstruction results
for one run of Metropolitan Museum of Art in New York
City (Met), which consists of eleven horizontal slices. Note
that 2D CSG models are fairly consistent across different
slices but are not exactly, and hence, a 3D CSG construction

2 Runs are processed independently for computational and memory
efficiency. If needed, a long run can be split into shorter ones, where
resulting CSG models can be merged in constant time.

step is necessary to produce a clean and compact 3D model.
Fig. 11 shows how the 3D CSG construction algorithm iter-
atively improves the model for runs in National Gallery and
Met. Notice that a very small number of simple cuboids can
represent fairly complex building structure.

4 Indoor Scene Visualization

Our goal in visualization is to display an entire museum
from aerial viewpoints for effective navigation. However, a
reconstructed CSG model is not yet suitable for the task,
because ceilings and walls occlude interiors, and the walls
have no thickness (i.e., a paper-thin model), which look un-
realistic from an aerial view. In this section, we first explain
CSG manipulation techniques to remove ceilings and add
thickness to walls for the construction of view-independent
wall models. Second, we propose a technique to optimize
the visibility of wall models for a given viewing direction,
in particular, lower the back-facing walls to construct view-
dependent wall models optimized for the view. Third, we in-
troduce our scalable texture mapping algorithm, which can
handle a very large mesh with tens of thousands of input
images. Lastly, we explain our interactive indoor scene nav-
igation systems that make use of the wall models.

4.1 View-independent Wall Model Construction

Denote a reconstructed 3D CSG model from previous sec-
tion as T , which consists of additive and subtractive primi-
tives (cuboids). We expand T to generate an inflated model
T fat, then subtract the volume of T from T fat, which carves
out interior volume and leaves a thickened wall structure
outside (See Fig. 13).

In detail, let ∆ be a manually specified thickness of the
wall (∆ = 0.5m). We inflate (resp. shrink) each additive (resp.
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View-independent model View-dependent models (different height thresholds)

Fig. 12 View-dependent model construction can lower back-facing walls for increased visibility. Different height thresholds are used to generate
models at the right. This example shows the close-ups of the State Tretyakov Gallery.

H1

H2

H3

T = ((H1 + H2) - H3) T fat T up

(T fat - T ) - Rect(h) (T fat - T    ) - Rect(h)up

Rect(h) Rect(h)

∆

Additive primitive

∆

∆

modified
primitives

∆

∆

T fat
Primitive manipulation
for

CSG-model manipulation

∆

∆
Subtractive primitive

Wall model

Fig. 13 Given a CSG model T , we expand each additive primitive and shrink each subtractive primitive (left), to generate an inflated model
T fat. Subtracting T from this inflated model T fat gives us a wall model with thickness (right). To remove floating walls due to a complex ceiling
structure, we subtract T up that is constructed to have infinite height, instead of T .

subtractive) primitive horizontally, to move outwards (resp.
inwards) each vertical face by ∆ . The model is then trans-
lated downwards by ∆ , so that ceilings are removed when
subtracting T . This modified CSG model is denoted as T fat,
and (T fat − T ) produces a model with thickened walls and
without ceilings. We also limit the maximum height h of a
structure by further subtracting Rect(h): ((T fat−T )−Rect(h)),
where Rect(h) denotes a cuboid whose bottom side is at
height h and extends to infinity at the other five directions. h
is set to 6 meters. Illustrated in Fig. 13, this construction pro-
duces a solid geometry for every vertical facade in a model.
However, there may still be some unwanted fragments in the
air near complex ceiling structures. Therefore, we construct
((T fat −T up)−Rect(h)) instead as our wall model. The dif-
ference is to construct T up from T by extending the top face
of each additive primitive to infinite height, and subtract T up

instead of T .

4.2 View-dependent Wall Model Construction

When a viewing direction is fixed in an application, we can
further optimize the visibility of the model for the given
direction by lowering back-facing walls. Fig. 14 illustrates
how CSG model can be further manipulated to lower back-
facing wall. Let v be the viewing direction, for which the
model is to be optimized, and denote h f and hb as the maxi-
mum height of the structure to be reconstructed for the front-
facing and back-facing walls, respectively. For each primi-
tive cuboid, consider a local coordinate frame whose XYZ
axes are aligned with the cuboid. Then, we translate the
primitive along each of the XYZ axes along v direction by
∆(= 0.5m). Let us denote this translated model as T v, as
shown in the second column of Fig. 14, then (T v −T up)−
Rect(h f ) generates front-facing facades with the height lim-
ited at h f as in the third column of Fig. 14. Similarly, let v be
the inverted reflection vector of v against the ground plane,
then the back-facing facades are modeled by (T v −T up)−
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T = ((H1 - H2) + H3)

H1

H3

H2

v

R(h  )

(T - T) - Rect(h  )

v

R(h  )

(T - T) - Rect(h  )

f

b

f

b

T 

T

T 

v

v

View Dependent Wall Model

T 

v

T v

T 

v(T - T) - Rect(h  )  +f
v(T - T) - Rect(h  )b

Fig. 14 View dependent model optimization. For an application with a fixed viewpoint, we can further manipulate 3D CSG structure to lower
back facing walls. We construct front facing walls (top row in the middle columns) and back facing walls (bottom row in the middle columns)
independently, which are merged by simply taking the union operation in the CSG representation to construct a view dependent wall model.

Rect(hb). The finally view-dependent 3D model is obtained
by taking their union:

((T v −T up)−Rect(h f ))+((T v −T up)−Rect(hb)).

h f and hb are set to 6 and 2 meters, respectively, in our exper-
iments. Effects of the view-dependent construction on real
examples are shown in Fig. 12.

4.3 Texture Mapping

The last step of our pipeline is to texture-map a wall model
from registered photographs. Modern techniques minimize
texture stitching artifacts over multiple faces simultaneously
[25,29]. We take a similar approach but with modifications,
as our system needs to be scalable to an entire building with
tens of thousands of input images. It needs to be also ro-
bust against reconstruction errors in a 3D model as well as
large registration errors among cameras and a 3D model,
which is a common problem for laser scanning of a large-
scale environment. Our approach is to extract piecewise pla-
nar structures in a model as face groups, which ideally cor-
respond to walls, floors, and ceilings, then solve a stitching
problem in each face group independently3. Note that stitch-
ing artifacts are expected to be present at face group bound-
aries, but this is not an issue in practice, because face group
boundaries typically correspond to room and floor bound-
aries, where textures are not very important. While our CSG
representation inherently contains such face group informa-
tion, the library we used in our implementation – CGAL [4]

3 We did consider a large-scale graph-cut algorithm [6], but it is still
expensive. Our scheme exploits our compact 3D model, and allows
easy implementation that works well in practice.

– does not keep this information when triangulating a mesh
model. Also, a single wall is not reconstructed as planar at
times, mainly due to the noise in the input laser scan. There-
fore, we design a simple region-growing algorithm to iden-
tify face groups from a triangulated mesh model: We first
pick a face f with the largest area from the mesh to create
a new group, and keep adding a neighboring face f ′ to the
group if f and f ′ are nearly coplanar, until no more faces
can be added. Then, we remove all the faces of the group
from the mesh and start again from the beginning. For each
face group, we use [25] to stitch a texture image with blend-
ing. At times, even a single face group becomes large, yield-
ing expensive graph-cuts optimization. Therefore, we solve
a stitching problem at a coarse level (roughly one node per
20×20cm2), then up-sample the resulting stitching informa-
tion to generate higher resolution texture images (one pixel
per 1cm2). Lastly, we observed in our experiments that floor
textures suffer from very strong artifacts and become mere
distractions, mainly because all the cameras are positioned
either parallel to the ground or upwards. We identify floor
by taking face groups whose vertices are all within 0.05m
from the ground, and fill in with a solid gray color. We also
assign a gray color to face groups that are not visible from
any input camera.

4.4 Ground View and Aerial View Navigation

A global texture-mapped mesh model enables visualization
of large indoor scenes from aerial viewpoints, which is more
effective for navigation and exploration than traditional ground-
only (e.g., panorama-based) visualization. Our model can be
rendered from arbitrary viewpoints, but is not effective for
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Ground-level Image

Fig. 15 Transition from bird’s eye view to ground-level view. This en-
ables an intuitive transition between two modes of visualization, and
gives the map users a better sense of their current location.

close-range ground viewpoints, because the model only cap-
tures dominant facade geometry and lacks in small objects
or any non-rigid structure such as water from fountain. For
a ground viewpoint, a nearby input image is much more im-
mersive, free from any artifacts, and can visualize even non-
rigid objects and view-dependent effects such as non-diffuse
reflections. However, ground level visualization alone is in-
effective for navigation due to the limited visibility and mo-
bility.

To integrate the merits from both modes and overcome
their disadvantages, we propose to employ traditional panorama
based navigation for ground viewpoints, while allowing users
to switch between ground and aerial viewpoints at any time.
In our implementation, we geo-register our 3D mesh models
and load them to the Google Earth to control the camera path
as in Fig. 15. Our visualization system enables users to eas-
ily browse a large-scale indoor environment from a bird’s-
eye view, locate specific room interiors, fly into a place of
interest, view immersive ground-level panorama views, and
zoom out again, all with seamless 3D transitions. See our
project website for the videos [21].

Another popular digital mapping implementation is tile-
based visualization (See Fig. 16), where pre-rendered tile
images are displayed to users in multiple resolutions, which
allow intuitive panning and zooming operations. Standard
top-down views are not effective for indoor scenes, where
vertical facades contain important information but are not
visible. Therefore, we pre-render our texture mapped model
from four oblique viewing directions, corresponding to north,
east, west, and south-headings, then load the rendered im-
ages as a set of tiles to Google Maps through Google Maps
API. Note that this is a perfect example to make use of view-
dependent wall models, where for each heading, a view-
dependent model, optimized for the corresponding viewing
direction, is used to render tiles. See our project website to
try this demo [21].

Fig. 16 A global texture-mapped mesh model allows indoor scene vi-
sualization based on pre-rendered tiles, which has been a popular tech-
nique for online digital mapping products. We generate tiles for four
different headings (i.e., north, south, east and west) in multiple reso-
lution levels by using the view-dependent wall models, where back-
facing walls are lowered to improve visibility for each direction. This
figure shows the Uffizi Gallery from the two different headings.

5 Results and Discussions

We have evaluated our system on a variety of museums in
the world. Our smallest data set is National Gallery in Lon-
don consisting of a single run and 2,670 images, while the
largest one is The Metropolitan Museum of Art (Met) in New
York City with 32 runs, 42,474 images, and more than two
hundred million laser points (See Table 1). The major com-
putation time is on the 3D reconstruction, where the running
times for the 2D CSG and the 3D CSG modeling are listed
in Table 1. Since computation over multiple runs can be exe-
cuted in parallel, we list running time for both the serial and
the parallel executions. The parallel execution is simulated
with a single process, with the maximum running time over
all the processes recorded.

Fig. 10 shows reconstruction results of The Frick Collec-
tion, illustrating the stacked 2D CSG models at the top row,
which are further simplified by the 3D CSG model construc-
tion. As listed in Table 1, the entire museum is represented
by only 75 volumetric primitives (66 additive and 9 subtrac-
tive), where the merged mesh model only contains 4,962 tri-
angles. The figure shows that there is a fair amount of over-
lap between runs, which has been successfully merged by
simply taking the union of their CSG models. A door is usu-
ally reconstructed by a box covering the pathway between
two rooms (e.g. the second row of Fig. 6).
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Table 1 Statistics on input and output data, as well as running time.

National
Gallery Frick Tretyakov Hermitage Uffizi Met

in
pu

t # of runs 1 8 19 20 48 32
# of images 2,670 8,466 3,274 21,174 11,622 42,474

# of laser points [million] 12.3 39.0 15.2 75.7 43.8 201.8

ou
tp

ut

# of layers (run-average) 9 7.9 5 8.8 7.3 9.8

# of primitives additive 14 66 73 137 302 330
subtractive 2 9 6 23 60 38

# of triangles 1,050 4,962 3,830 6,902 18,882 22,610
# of face groups 108 342 282 485 1,123 2,123

ru
n

tim
e sequential [hour] 2D CSG 3.2 4.8 1.9 6.1 19.2 20.1

3D CSG 4.4 3.2 0.4 13.8 24.4 25.2

parallel [hour] 2D CSG 3.2 1.0 0.2 0.7 3.9 3.9
3D CSG 4.4 2.5 0.07 3.0 4.2 2.9
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The State Tretyakov GalleryThe Frick Collection Uffizi Gallery

Fig. 17 Shaded renderings of the view-dependent models and the cor-
responding face-groups. A random color is assigned to each group ex-
cept for the white faces that are not visible from any input camera and
do not require texture stitching, and gray faces that are identified as
floors.

Figure 17 shows shaded renderings of the view-independent
wall models and the extracted face groups, which illustrates
that the algorithm successfully identifies major floor and
wall structures as face groups. Figure 19 shows final texture-
mapped models with some close-ups. The models in these
two figures are obtained by the view-dependent CSG con-
struction for better visibility. Figure 20 also shows final texture-
mapped mesh model of Met with close-ups, which is the
largest reconstruction in our experiments. The model is con-
structed by the view-independent method. These examples
illustrate that the stitched textures are of high quality with
very few artifacts. Note that our model focuses on domi-
nant facades and does not capture small-scale details or ob-
jects. Nonetheless, we can often see and even recognize such
missing structure and objects in texture-mapped imagery.
Thanks to our regularized mesh model, an image usually
goes through a simple affine transformation (assuming weak
perspective) during texture mapping without much stitch-
ing. Our eyes are surprisingly good at correcting such low
frequency distortions and understanding image contents. On
the other hand, texture stitching, which is more necessary to
fill-in texture for complicated meshes, causes annoying arti-
facts to our eyes. Our approach pushes stitching artifacts to
facade boundaries and succeeds in producing high quality

[ Furukawa et al. ] Proposed method
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Fig. 18 Comparison with two state-of-the-art 3D reconstruction algo-
rithms [9,14].

textures in the middle of each facade even where geome-
try is inaccurate. In an extreme case, at the bottom right in
Fig. 20, our model misses an entire room, but the room can
be recognized through texture-mapped imagery on a planar
wall without major artifacts.

The effects of the view-dependent construction are il-
lustrated in Fig. 12, where different thresholds are used to
control the height of back-facing walls. Paintings are com-
pletely occluded with the view-independent model, but be-
come visible when back facing walls are lowered.

Unlike traditional surface reconstruction from laser scan,
it is not our goal to make models as physically accurate
as possible, but to reconstruct a global, compact, and well-
regularized mesh for high-quality aerial view visualization.
It is a totally different challenge, where it makes more sense
to compare with vision algorithms designed to handle noise
using strong regularization. In Fig. 18, we compare our al-
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The State Tretyakov Gallery

Uffizi Gallery

The State Hermitage Museum

The Frick Collection National Gallery

Fig. 19 Final view-dependent texture-mapped 3D models with some close-ups. More results are available in the project website [21].
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Close-ups

Met

Further close-ups

Fig. 20 The texture-mapped 3D model for The Metropolitan Museum of Art. In the close-up at the bottom right, the texture of an entire room is
mapped to a plane due to the lack of precise geometry. The stitched texture is free from major artifacts, except for an inconsistent perspective.
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Fig. 21 Left: Manually overlaying our model with a floor plan image of The Frick Collection. For our model, floor is colored in green and walls
are in pink. Right: This overlaying enables hybrid visualization where the texture-mapped model is rendered over the floor plan image and a
(darkened) satellite imagery.

gorithm with two state-of-the-art techniques – Hernández
et al. [14] and Furukawa et al. [9], both of which can usu-
ally tolerate noise better than a technique used by the Com-
puter Graphics community [5]. However, because neither
approach is scalable due to the need of a high resolution
voxel grid, the smallest dataset National gallery is used for
comparison. Since both algorithms merge depth maps into
a mesh model, each laser point is treated as a single depth
map pixel. The output of Hernández’s algorithm [14] is a
very dense model, where face-grouping and texture map-
ping fail completely due to pose errors. Therefore, we use
a mesh simplification software QSlim [10] to reduce the
number of triangles to 2000, which is still twice as many
as our 3D model. After reconstruction, we clip their mod-
els above a certain height to remove ceilings, then apply
our face-grouping and the texture-mapping algorithm. Noisy
surfaces and severe stitching artifacts are noticeable for both
approaches in Fig. 18, where significant noise in the laser
points cannot be regulated well by their Markov Random
Field (MRF) formulation. At macro scale, several rooms
suffer from space distortions due to the pose error, which
breaks the Manhattan-world assumption for [9]. Our algo-
rithm, in turn, succeeds in producing clean texture-mapped
3D models, illustrating the effectiveness of the texture map-
ping algorithm leveraging our highly regularized 3D mod-
els. Although Furukawa et al. produces more rooms, a care-
ful look at the textured models would reveal severe artifacts
in texture for the extra rooms. This is simply because the
data capturing device did not enter those rooms, and they are
partially scanned by cameras and lasers seeing through win-
dows/doorways. Existing methods only enforce local weak
regularization and cannot suppress reconstructions of such
rooms. We enforce strong regularization to avoid these rooms
where the laser scanner does not reach well.

The lack of ground-truth data prevents us from conduct-
ing quantitative evaluations. To qualitatively assess recon-
struction accuracy, in Fig. 21, we manually overlay our wall
model onto a floor plan image of The Frick Collection. Our
model aligns fairly well, which enables interesting hybrid
visualization at the right of Fig. 21: The texture-mapped
model is rendered on top of the floor plan image, without
face-groups identified as floors.

Lastly, our system is not free from errors as in any other
large-scale systems. Small structures such as doorways tend
to be missed (e.g., National Gallery in Fig. 19), mostly due
to line detection errors. Although our system handles non-
Manhattan structures, it is still limited to rectangular struc-
tures, and cannot properly model the oval room in the Frick
Collection (Fig. 21), or the hexagonal shaped room in Na-
tional Gallery (Fig. 19). Texture mapping suffers from se-
vere artifacts at such places as shown in the left of Figure 22.
Input pose errors in cameras and laser points also yield se-
vere artifacts as in the right of Fig. 22, where the geometry
reconstruction completely fails.

6 Conclusion

We have presented a novel indoor modeling and visualiza-
tion system that directly solves for a CSG model from laser
points. Our system has produced high-quality texture-mapped
3D models that are effective for rendering from aerial view-
points, and enables an intuitive transition between bird’s eye
view and ground-level view, which we believe opens up new
possibilities for indoor scene navigation and mapping. More
results and demo can be found in our project website [21].

Our future work includes extension of geometric primi-
tive types to more shapes, such as cylinders or spheres. Our
major failure modes are due to severe errors in the input
pose information, and we need to explorer better pose es-
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The Frick Collection The State Tretyakov Gallery

Fig. 22 Limitations of current approach. Left: Our structure assump-
tion is more general than Manhattan-world, but cannot handle curved
surfaces such as an oval room. Right: When input pose errors are sig-
nificant, our geometry reconstruction completely fails.

timation algorithm. It is also interesting to model objects in
a scene, such as sculptures, glass cabinets and tables that are
currently missing in our models. Furthermore, although we
restrict our demonstration on museums, it would be interest-
ing to adapt our approach to other large indoor structures as
well, given that high-quality RGB-D dataset for big spaces
recently became available [31]. Another challenge would be
to go beyond the notion of face-groups, and identify objects
of interests (e.g. paintings), and associate semantic informa-
tion to enrich the model [23].
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