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Abstract—A first-person video delivers what the camera wearer (actor) experiences through physical interactions with surroundings. In
this paper, we focus on a problem of Force from Motion—estimating the active force and torque exerted by the actor to drive her/his
activity—from a first-person video. We use two physical cues inherited in the first-person video. (1) Ego-motion: the camera motion is
generated by a resultant of force interactions, which allows us to understand the effect of the active force using Newtonian mechanics.
(2) Visual semantics: the first-person visual scene is deployed to afford the actor’s activity, which is indicative of the physical context of
the activity. We estimate the active force and torque using a dynamical system that can describe the transition (dynamics) of the actor’s
physical state (position, orientation, and linear/angular momentum) where the latent physical state is indirectly observed by the
first-person video. We approximate the physical state with the 3D camera trajectory that is reconstructed up to scale and orientation.
The absolute scale factor and gravitation field are learned from the ego-motion and visual semantics of the first-person video. Inspired
by an optimal control theory, we solve the dynamical system by minimizing reprojection error. Our method shows quantitatively
equivalent reconstruction comparing to IMU measurements in terms of gravity and scale recovery and outperforms the methods based
on 2D optical flow for an active action recognition task. We apply our method to first-person videos of mountain biking, urban bike
racing, skiing, speedflying with parachute, and wingsuit flying where inertial measurements are not accessible.

Index Terms—First-person Vision, Physical Sensation, Optimal Control.
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1 INTRODUCTION

Understanding human activities encompasses not only know-
ing ‘what’ we are doing, such as jumping, running, and cooking,
but also ‘how’, i.e. recovering the underlying controls of actions
through muscle movements. Most computer vision systems have
been built on visual measurements from a camera looking at us
from a third-person perspective such as surveillance cameras. This
camera produces a view that often has a limited visual access to the
muscle movements due to self-occlusion or low spatial resolution.
Further, for many activities, such as wingsuit flying in Figure 1(a),
recording the muscle movements requires active camera motion
by following the actor, which is challenging in practice.

We tackle human activity understanding from a different
perspective: a first-person video mounted on an actor’s head or
body. Our conjecture is that the physical state and control of
the actor are encoded in her/his first-person video, which can be
estimated by leveraging its visual and motion semantics. Yet, it is
fundamentally challenging due to the inherent properties of first-
person videos. a) Visibility: ironically, a first-person video can
barely see the actor’s body due to its limited field of view, i.e., the
body kinematics cannot be measured; b) State observability: the
ego-motion of the first-person video is produced by a resultant of
multiple force/torque interactions where there exists an ambiguity
of decomposing them into active forces controlled by the actor; (c)
Geometric ambiguity: scenes are geometrically measured and re-
constructed up to scale and orientation where Newtonian dynamics
cannot be applied.

We address these challenges by studying Force from Motion—
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an algorithm that computes the active components of physical
force and torque exerted by the actor. Specifically, our algorithm
takes an input, a first-person sports video, and outputs the active
force and torque in a physical metric space (e.g., force in N)
aligned with the gravitational field. For instance, in a wingsuit
flying first-person video!, we compute not only where he trav-
eled but also how he controlled by applying force and torque,
e.g., momentum change along the roll axis to shift the heading
direction as shown in Figure 1(b) and 1(c). To recover the actor’s
active components, we focus on decoding three dominant physical
quantities from a first-person video: gravity, momentum, and
force/torque.

First, motion is strongly driven by the gravitational field which
can be estimated from two visual cues in a first-person video. (1)
Natural images encode the gravity direction because it affects how
physical environment is formed, i.e. trees and buildings are usually
vertical, water surface normal aligns with the gravity direction,
and horizon is perpendicular to it. We learn such visual semantics
of the gravity direction embedded in the first-person images. (2)
The camera ego-motion is influenced by the gravity as the actor’s
activity always is accelerated along the gravity direction. We
learn this relationship between camera trajectory and the gravity
direction from training data.

Second, how fast we are going (speed or momentum) in the
physical metric (m/s or kg-m/s) allows us to relate with how much
force is applied through Newtonian dynamics. The absolute scale
of our motion is revealed to us when the body is in a moment
equilibrium during a banked turn, i.e., the balance between the
gravity and centripetal force with respect to the leaning angle. We
exploit the moment equilibrium to precisely compute the physical
scale given the known gravitational constant, i.e., g =9.81 m/s2.

Third, we decompose the force and torque into semantically

1. https://www.youtube.com/watch?v=IM1vss7FXs8
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Fig. 1. (a) Extracting the control of actions from a third-person video is challenging due to limited visual accessibility to the muscle movements
(occlusion and low resolution). Instead, this paper presents Force from Motion from a first-person video—inferring active components of physical
force and torque to control the movement of the camera wearer (actor). (b) We recover the actor’s physical state and control using a rigid body
dynamics with an optimal control theory. (c) Our system produces the active force and torque in a gravitational field. As a by-product, the passive

force such as air drag and lifting force can be recovered.

meaningful components, i.e., active components exerted by the
actor (e.g., twisting body orientation in flying and pedaling in bik-
ing) and passive components exerted by the environment (e.g., air
drag). We describe the actor’s physical state (position, orientation,
and linear/angular momentum) using a dynamical system where
the latent state can be indirectly observed by the first-person video.
We solve the dynamical system to compute the active components
inspired by an optimal control thoery. As a by-product, we recover
the passive forces such as air drag, friction, and ground reac-
tion/lifting force. Our modeling is generic: different activities such
as mountain biking, skiing, and speed flying can be modeled with
a few minor modifications (e.g., mass and friction coefficient).

Why Egocentric Video? As a form factor of a video camera
facilitates seamless integration into body, hundreds of thousands
of egocentric videos are captured and shared via online video
repositories such as YouTube, Vimeo, and Facebook. For instance,
currently more than 6,000 GoPro videos are posted in YouTube
in a day. Many of these videos capture speed sport activities
such as downhill mountain biking (1-10 m/s), glade skiing (5-
12 m/s), skydiving (60-80 m/s) from first-person view. These
videos excite visual motion stimuli that are strongly dominated
by physical sensation. Decoding such physical sensation provides
a new computational representation of such videos that can be
not only applied to vision tasks such as activity recognition,
video indexing, content generation for virtual reality [54] but also
computational sport analytics [49], sensorimotor learning [66], and
sport product design [12].

A 6 DOF inertial sensor for body motion (IMU), strain gage
for muscle tension, and pitot tube for air flow speed can measure
the physical quantities associated with body dynamics. In spite of
high sensitivity and precision, such sensors are not often integrated
into a video recording activities, e.g., none of first-person videos
in online repositories provides extra sensory data. Our system can
predict such physical quantities without extra sensors that will
augment a new dimension for understanding activities from first-
person videos.

Contributions We build on an earlier version [41] of this paper,
and the core contributions of this paper include: (1) Force from
motion: we integrate rigid body dynamics into 3D reconstruction
pipeline to estimate active force and torque by exploiting optimal
control (i.e., an iterative formulation of linear quadratic regulator
for first-person videos); (2) Gravity direction estimation: we learn
visual gravity cues to predict 3D gravity direction using a sequence

of image; (3) physical scale recovery: we recover a scale factor
from the roll torque equilibrium relationship. We quantitatively
evaluate our method using a controlled experiment with iner-
tial measurement units (IMU). Our method shows quantitatively
equivalent reconstruction comparing to IMU measurements in
terms of gravity and scale recovery and outperforms the methods
based on 2D optical flow for an active action recognition task. We
apply our method to first-person videos of diverse activities such
as mountain biking, urban bike racing, skiing, speedflying with
parachute, and wingsuit flying.

2 RELATED WORK

Understanding an internal model of physical interactions from
visual data is key area of studies in psychology [4], neuroscience,
robotics, and computer vision, e.g., learning visual sensorimotor
skills [66]. This paper particularly focuses on decoding physical
sensation from a first-person video by leveraging Newton’s laws
of motion. Such work is mostly done in third person videos, and
in this section, we review most relevant work: modeling human
motion and internal physics from third person videos, and learning
visual semantics from first-person videos.

2.1 Human Behavior Modeling in 3rd Person View

Johansson’s experiment [26] has shown that human motion can
be perceived and predicted by a sparse representation with short
duration of visual observation. However, enabling such perception
for a machine is still challenging without prior knowledge due
to a large degree of freedom of an articulated body structure.
This requires a compact representation to describe human body
motion. Three main representations have been studied: data driven,
geometry based, and physics based representations.

Statistical models have shown strong discriminative power for
high dimensional data such as human body motion. Sidenbladh
et al. [55] maximized a poster distribution of joint angle by
combining a prior of a kinematic chain and its likelihood from
pixel intensity. Such Bayesian framework was extended by Choo
and Fleet [10] that introduced an efficient sampling to approximate
a posterior distribution of human pose in 3D. Urtasun et al. [61],
[62] learned a motion prior by exploiting a subspace analysis
which can cluster and track various motions. Howe et al. [21]
learned a kinematic prior to resolve projective ambiguity, i.e., two
3D solutions exist given a monocular 2D image measurement as



—

|

Scale prediction

: JA K .o \ 3
o Gravity predi |

3D camera trajectory

AN
Input: first person video

Time: 69.75sec
Sy

Optimal control

Fig. 2. Our system takes a first-person video of sporting activities and estimate the active force and torque that generates the camera ego-motion.
We recognize a physical metric space by estimating gravity and metric scale. Based on the coordinate, we compute the optimal force acting on the

actor’s body by minimizing reprojection error.

noted by Taylor [58]. Other representations such as deformable
part models [5] and a convolutional neural network [23] have
been shown higher discriminative power that can be applied for
real world scenes.

Bregler and Malik [8] modeled a kinematic constraint as a
function of Lie group that allowed them to represent motion with a
set of joint angles. Such parametrization is compact and therefore,
suitable for action recognition task [47]. A factorization based
approach [7], [60] was used by Yan and Pollefey [69] where they
discovered a joint location and its type in an articulated structure
using the fact that the joint space lies in an intersection between
two subspaces spanned by two rigid bodies. Akhter and Black [2]
exploited joint space limit conditioned by pose to reconstruct
3D human pose. The geometric approaches often combine with
temporal constraints: Valmadre [63] used a temporal filter, and
Akhter et al. [22] and Park et al. [43] used trajectory bases.

Metaxas and Terzopoulos [36] modeled motion and shape
deformation from a video using Lagrangian mechanics. They inte-
grated the equations of motion into a Kalman filtering framework
to identify internal and external forces. A notable characteristics
of their method is a capability to handle missing data due to
occlusion, which is a critical issue in particular for a computer
vision task. In a similar way, Wren and Pentland [67] proposed
a direct control system utilizing Hidden Markov Models. Physics
based approaches are often used for markerless motion capture:
Brubaker et al [9] explicitly modeled the ground reaction force
as an impulse function during bipedal walking. Wei and Chai [65]
have shown a keyframe based human motion reconstruction where
physics based simulation interpolates between keyframes. Vondrak
et al. [64] introduced a feedback control system based on multi-
body dynamics that provides a Bayesian prior to track human body
motion.

2.2 First-person Vision

A first-person camera sees what the camera wearer sees, which
differs from a third person system such as surveillance cameras,
i.e., direct visual experiencing vs. observing at distance. This
enables measuring subtle head movement, which has been a viable
solution for behavior science and quality of life technology [27],
[46], [48], and motivated many vision tasks such as understanding
fixation point [33], identifying eye contact [70], and localizing
joint attention [16], [42].

A first-person camera ego-motion is a highly discriminative
feature for activity recognition. Fathi et al. [15], [16] used gaze
and object segmentation cues to classify activities. 2D motion
features were exploited by Kitani et al. [28] to categorize and
segment a first-person sport video in a unsupervised manner.
Coarse-to-fine motion models [52] and a pretrained convolutional

neural network [53] provided a strong cue to recognize activities.
Yonetani et al. [71] utilized a motion correlation between first and
third person videos to recognize people’s identity. Kopf et al. [29]
stabilized first-person footage via 3D reconstruction of camera
ego-motion. In a social setting, joint attention was estimated via
triangulation of multiple camera optical rays [42], [44] and the
estimated joint attention was used to edit social video footage [3].

Another information that the first-person camera captures is
exomotion or scene motion. Pirsiavash and Ramanan [45] used an
object centric representation and temporal correlation to recognize
active/passive objects from a egocentric video, and Rogez et
al. [50] leveraged a prior distribution of body and hand coordi-
nation to estimate poses from a chest mounted RGBD camera.
Lee et al. [31] summarized a life-logging video by discovering
important people and objects based on temporal correlation, and
Xiong and Grauman [68] utilized a web image prior to select a
set of good images from egocentric videos. Fathi et al. [16] used
observed faces to identify social interactions and Pusiol et al. [46]
learned a feature that indicates joint attention in child-caregiver
interactions.

As the camera wearer interacts with surroundings, first-person

videos can encode affordance of the scene. For instance, semantic
meaning of scene 3D layout (e.g., building, road, and street signs)
tells us about motion affordance, allowing predicting future activ-
ities [40], [56] and objects to interact [6]. Gaze direction can be
precisely estimated from visual semantics and 3D motion of first-
person videos [33], important objects can be detected [31], [45],
visual transformation can be predicted through ego-motion [24],
and robust feature can be learned [1].
Our approach: To our best knowledge, this is the first paper that
provides a computational framework to understand a first-person
video based on physical body dynamics. As an egocentric video
has limited observation of body parts, estimating force and its
control significantly differs from previous problems of physics
based tracking and reconstruction.

3 OVERVIEW

Our algorithm takes an input, a first-person video of sporting
activities, and outputs the active force and torque that generate
the actor’s first-person video as illustrated in Figure 2. We use
a dynamical system (Section 4) to model the actor’s physical
state transition where its dynamics is described by an inverted
pendulum model (Section 5). Her/his physical state is mapped
to the first-person visual motion (Section 6) with the estimated
physical scale and gravity direction. We solve the dynamical sys-
tem using a linear quadratic regulator by minimizing reprojection
error (Section 7).
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Fig. 3. We model the actor’'s dynamics using an inverted pendulum
where the force and torque are decomposed into two components:
passive components (weight, mg; centripetal force, F; normal force,
Fy; sliding and rolling friction force, Rs and Rg; air drag, D; pitch
torque, Tp) and active components (thrust, Frr; roll torque, Tgr; yaw
torque, Tv).

4 DYNAMICAL SYSTEM FOR FIRST-PERSON VIDEO

We model the dynamics of the actor in a first-person video using
a discrete nonlinear dynamical system [57]:

Vi1 = fayn(¥e, ur) (D
I = fprj (Yt;8)7 2)

where f4yn maps a transition of the actor’s latent physical state y;
(e.g., position, orientation, velocity) given the actor’s control input
u; (i.e., active force and torque). fprj generates the actor’s first-
person image Z; by projecting a 3D visual scene S to the camera,
which links the actor’s physical state to his/her visual scene. The
goal of the paper is to estimate {u;} given the sequence of images
{Z:} from the first-person video.

Computing {u:} directly from Equation (1) and (2) is in-
tractable due to unknown fqyn, fprj, and S. In the subsequent
sections, we derive the dynamical system (fqyr in Section 5 and
fprj in Section 6) and present an algorithm to solve it in Section 7.

5 DYNAMICS OF ACTOR

We approximate the dynamics of the actor, fqyn in Equation (1)
using a 3D inverted pendulum model as shown in Figure 3.
The force and torque are represented in the first-person body
coordinate, {/3}. We define the actor’s physical state and active
force and torque (control input) as follows:

y=[CT P|q" L] eRr" 3)
u=[ Fr Ty Tg }T € R, )

where C € R? and q € $2 are the 3D location and orientation
(quaternion) of the actor’s center of mass, P is the linear momen-
tum along the instantaneous velocity, P = m||v , and L is the
angular momentum, L = RTJ 'Rw. v is the linear velocity,
J is moment of inertia, and w is angular velocity in the first-
person coordinate. R € SO(3) is a matrix representation of q.
The active force and torque (control input) u are composed of
three elements: Frp is the thrust force applied along the velocity
direction using pedaling and braking actions, 7% is the yaw torque
applied through steering wheel, and TR is the roll torque to
balance the posture.

4

Net force and torque act on the actor’s center of mass, which
affects the physical state through linear and angular acceleration.
The actor’s body is pivoted at the ground contact point (Figure 3),
which forms an inverted pendulum model. The equation of motion
can be written as:

C + R3PAt/m
P+ (Fr + Fr)At
+ (J'L)q/2
faly,wy= | ST Rz )
L+ v At
TR+ Tr

where m is mass, and

Fr = —Rgr — D +mgG'R?
mw = -mgLGTR' — FoLGTR2.

G € $? is the 3D gravitational field direction, g = 9.81 m/s? is
the gravitational constant. Along the Z direction, Rg = purmg is
the rolling/sliding friction along the Z axis of the first-person coor-
dinate, and pr is rolling friction coefficient. D = 0.5CppA||v|?
is the air drag force where Cp ~ 1.0, p = 1.23 kg/m?,
and A are air drag coefficient, air density, and cross sectional
area perpendicular to the velocity, respectively. Along the roll
direction, 7r is the roll torque, L is the length from the pivot
(i.e., ground contact point) to the actor’s center of mass, and F¢
is the centripetal force. R is the i*" row of R..

Using the action-reaction relationship, we can compute the
passive force and torque:

Fxy =mgsint, = mgGTR2
RS = ,usFN COSs Gp
Tp = —L'/At

where 6, = cos™! (GTRS) is the pitch angle, and L' is
the angular momentum along the pitch direction. Fy, Rg, and
Tp are normal or lifting force, sliding friction with g friction
coefficient, and passive torque along the pitch direction created by
an unbalance impact between two wheels in a bicycle as shown
in Figure 3. Note that the biking activity is used for an illustrative
purpose while this dynamics can generalize for various sporting
activities such as skiing, jetskiing, speedflying, and wingsuit flying
with a few minor modifications of coefficients such as body mass,
moment of inertia, and air lift instead of normal force for a flying
activities. See Appendix D for the activity dependent coefficients.

6 VISUAL MAP TO ACTOR’S PHYSICAL STATE

Equation (2) describes the relationship between the actor’s first-
person video and physical state. We model the relationship by
making two assumptions:

Assumption 1. The 3D trajectory of a first-person camera approx-
imates that of the actor’s center of mass.

This assumption allows linking the actor’s physical state to
the first-person video through its camera projection matrix, i.e.,
P(y:) = KR, [ I -C; ] € R3** where K is the intrinsic
parameter of the first-person camera encoding focal length and
principal points. We validate this assumption in Section 9.

Assumption 2. A set of 3D sparse feature points approximate the
3D geometry of the scene.
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Fig. 4. We show the likelihood given an image with the red heatmap. The dotted lines are the ground truth gravity direction. The per pixel
evidence [34] is encoded as transparency, i.e., the stronger evidence, the more transparent. The CNN correctly predicts gravity direction while

the last image produces 15 degree error due to the tilted bicycler.

This assumption allows utilizing structure from motion [19] to
model the actor’s 3D visual scene, ie., S & {Xp}f;:o where
X € R? is a reconstructed 3D point.

With these assumptions, Equation (2) can be rewritten as:

Xtp = forj(P(ye), Xp) x P(Yt)ipv (6)

where ~ is a homogeneous representation of -, and x € R? is the
2D projected point of the 3D point.

Structure from motion enables decomposing Equation (6) into
the 3D visual scene and the actor’s physical state y. However,
this geometric decomposition involves a fundamental ambiguity,
i.e., the 3D reconstruction is defined up to scale and orienta-
tion. There exists an arbitrary similarity transformation such that
PX « cP,T !'TX, where T € SE(3) is an Euclidean
transform and c is scalar. This ambiguity precludes us from
applying the actor’s dynamics (Equation (5)) on the reconstructed
y. because the physical quantities are not represented in metric
unit, e.g., distance in m, force in N, torque in Nm, and angle
with respect to the gravitational field (Figure 4). In the following
subsections, we leverage visual and motion semantics associated
with first-person videos to estimate the orientation (gravitational
field) and physical scale (metric units).

6.1 Gravitational Field Estimation

The gravitational field is a dominant physical quantity that drives
motion, i.e., potential energy is converted to kinetic energy. There
exist two gravity cues in first-person videos. (1) Visual semantics:
a natural image encodes the gravity direction because it affects
how physical environment is formed, i.e. trees and buildings are
usually vertical, the horizon is perpendicular to gravity direction,
and the water surface normal is aligned with it [18], [39]. It is
possible to learn such visual semantics from first-person images to
recognize the gravity direction. (2) Motion semantics: the actor’s
ego-motion is highly affected by the gravitational field, e.g., the
body is often oriented upright, the forward ego-motion is driven
by gravity, and the banked angle forms when centripetal force
applied (turning). Thus, the 3D reconstructed camera trajectory
can be used to recognize the gravity direction. We leverage these
two semantic cues to estimate the 3D gravitation field from a
sequence of first-person images.

We represent the gravitation field using a global unit vector in
3D, G(¢1,¢2) = [ singicosdy singsing, cosdy }T €
$2 where a point in a unit sphere parametrized by polar ¢;
and azimuthal ¢ angles in a spherical coordinate. Note that this
gravity vector is represented in a global (world) coordinate, which
applies to the entire images in the first-person video.

b‘

Prior Likelihood Posterior

Fig. 5. We compute a maximum a posteriori estimate of the 3D gravity
direction. We model the prior using a mixture of von Mises-Fisher
distributions and learn a likelihood using a convolutional neural network.

We estimate the 3D gravity direction from a sequence of
images using the maximum a posteriori (MAP) by fusing the
visual and motion cues:

G* = argmax p(G|Zy1, -+ ,Zr,R1, - ,Rr) @)
Ges?
T
= argmax pmot(G[R1 -+ Ry) [[ pvis (|G Ry),
Ge$s? =1

where Pmot (G|R1 - --Ry) is a gravity prior provided by the
3D reconstruction of the camera ego-motion, and p(Z;|G, Ry)
is a likelihood computed by the visual semantics. {Ry,Z;} is the
sequence of images and their rotation matrices.

Figure 5 illustrates an MAP estimate of the gravitational field.
The motion cue provides a prior distribution of the gravity where
high probability forms near at the bottom of the unit sphere (left).
Note that the visual semantic cue from a single image cannot
predict the 3D gravity direction due to the information loss of
2D projection. Each image produces a streak in a likelihood
distribution (middle)—any 3D gravity direction along the streak
results in equivalent 2D gravity direction. This ambiguity can
be further resolved by taking into account more images that
moves different heading directions. The integration of multiple
image predictions through Equation (7) collapses the streak into a
unimodal distribution (right).

6.1.1 Learning Gravity Likelihood from Visual Semantics

We model the gravity likelihood from a first-person image by
measuring how well the projected 3D gravity direction G agrees

with its visual semantics:
\T
1 (RY'G
s Wyig .

0y = tan R)TG’

Dvis (Lt |G, Ry) = Luis (It

where L, is a gravity probability distribution over the orientation
04, ie., 84 = 0 if the gravity is aligned with the Y axis of the
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Fig. 6. (a) We plot the centripetal acceleration computed by structure from motion with respect to the banked angle where its slope (blue line)
laq|/ tan 6y, is the scale factor. (b) We verify the moment balance at a banked turn, Ty + Tr = 0. (c) The recovered gravity direction and scale

allow us to compute the terrain elevation and speed in metric units.

image. R! and R? are the first and second rows of the rotation
matrix, R.

We learn the weights wyis of Ly via supervised learning
using a convolutional neural network (CNN). We cast this learning
gravity semantics as an image classification problem where the
class corresponds to the image orientation, i.e., we discretize
angle with 1 degree resolution across 0, € [—m/2,7/2]. We
use the probability computed by the softmax of the FC8 layer of
AlexNet [30] to compute the likelihood distribution. The network
weights are refined given the ImageNet [51] pre-trained model
where a resized image (320x180) is used as an input of the
network. The details of training, annotation process, and data can
be found in Appendix A.

Figure 4 illustrates the likelihood of the gravity direction
learned by CNN as shown in the red heatmap and dark red triangle
shows prediction 8,. We also encode the per pixel evidence of the
gravity prediction using a fully convolutional neural network [34]
using transparency, i.e., the stronger evidence, the more transpar-
ent. The CNN correctly predicts gravity direction while the last
image produces 15 degree error due to the tilted orientation of the
bicycler.

6.1.2 Learning Gravity Prior from Camera Motion

Therefore, a sequence of 3D body orientations provide a strong
motion cue to recover the gravitational field. We leverage the local
relative transform with respect to the tth image, R; to infer the
gravity:

G, = 9mot (qi—i_ly Tty q§+At; Wmot)v ¥

where /" is the relative rotation from the t** image to (t 4 7)*®

image, Rt+iRtT in quaternion representation. gp,ot encodes the
dynamics of first-person rotation over time to predict the gravity
direction, G parametrized by Wy.¢. We learn Wmot using a long
short-term memory (LSTM) [20] with loss: Lot (G, Ggt) = 1—
éTth where G is the ground truth gravity direction from
training data in Appendix A. .

Given a sequence of predictions {Gt}tT:_lAt, we model a prior
distribution of the 3D gravity direction in Equation (7) using a
mixture of von Mises-Fisher distributions:

pmot(G|Rla e 7RT)
M K
— 47 sinh K, SEP (H g ) ®)

where {g,, km } is a set of modes and concentration parameters,
and M is the number of modes. We learn {g,, Kk} from
{G} 2" using an Expectation-Maximization algorithm [14].

6.2 Physical Scale Recovery

The physical state y, decomposed by structure from motion has
an arbitrary scale, i.e., there exists an unknown scale factor, o
that upgrades the scale free linear acceleration a, to the physical
scale a = aa, in m/s2 unit. We exploit the gravitational constant,
g = 9.81 m/s2, that is revealed to us during a banked turn’.

At the banked turn, a moment equilibrium occurs between the
gravity and centripetal force with respect to the banked angle, 6},
as shown in Figure 3:

Lmgsin 6y, — LFc cosf, =0, (10)
where 6}, is the banked angle. The lateral force is induced by
centripetal acceleration, Fc = am||a,||. Since g is constant, «
can be solved as:

a = 9 tan 6y,.

2l

an

This moment equilibrium applies to not only the dynamics on the
ground (biking and skiing) but also the aerodynamics (wingsuit
flying) between the lifting force and centripetal force.

As shown in Figure 6(a), o can be computed when the moment
equilibrium occurs (banked turn). The red points illustrate the
centripetal acceleration, ||a,|| with respect to the banked angle,
tan 6y, where the point distribution form a line. The slope of the
line is the scale factor, 1/, and tan#, < 0 and tané, > 0
indicate right-turn and left-turn, respectively. Figure 6(b) shows
the torques produced by the scale factor, and two torques are
roughly canceled out, i.e., moment equilibrium, Ty + Ix = 0.
This allows us to reconstruct the terrain elevation and speed in
metric units as shown in Figure 6(c). Note that the speed profile is
physically meaningful, i.e., average speed of the mountain biking
ranges between 2-10 m/s?.

2. Previously, a reference physical quantity such as the height of an ob-
ject [11], the baseline of stereo cameras, or an additional IMU sensor [37]
have been used to estimate the true scale.
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7 SOLVING DYNAMICAL SYSTEM

We solve the dynamical system in Equation (1) and (2) inspired
by an optimal control theory [57]. From a first-person video, we
detect the 2D feature points such as SIFT [35], )Acm, € R?, and
compute the optimal sequence of active force and torque (control
input) {u;} that minimizes the reprojection error:

minimize Zzétpnxt,p forj(P(yt), Xp)||2
{ue} t=0 p=0
+Lreg(u17"' ;qul)
subject to  yiy1 = fayn(ye, up; G, @), (12)

where §; , is the Kronecker delta function that produces 1 if X,
is visible from the ¢*"" image, and 0 otherwise. Lycg is a regular-
ization of the control input to enforce physical plausibility, e.g.,
smooth force application’. As a byproduct of the optimization, the
scene 3D point and camera trajectory are reconstructed.

Solving Equation (12) involves with intractable optimization
due to nonlinearity of projection fyj and dynamics fayn. Tt
requires a good initialization of the physical state {y; } and control
input {u?} (Section 7.1), and a tractable algorithm (Section 7.2).

7.1 State Initialization via Structure from Motion

We initialize the physical state of the actor {y?} by decoupling
the reprojection from the dynamics. It is equivalent to structure
from motion [19] that decomposes Equation (6) into the camera
projection matrix and 3D point:

mlmmlze Z Z O pllXep — X%, 13)

ptOpO

fpl‘j (Pf )

where P; is parametrized by its rotation R; and optical center Cy.
Given the reconstructed camera trajectory, the actor’s state {y¥}
can be computed given the gravity direction G and scale .

3. Lyeg(uy, - -
regulator.

f1T7 1

Jur_1) = u dt is often used for a linear quadratic

The initialized physical state allows us to compute the corre-
sponding control input {u?} by solving Equation (5) for the linear
and angular momentum, P; and L;:

Py — P
="' _F 14
T At R (14)
LY, — LY
79 =~ 15
% Al 5)
L}, — L}
T =t ¢ 16
R Al TR (16)

where L} and LY are the yaw and roll elements of the angular
momentum. S1nce the initial control input {u?} do not take
into account the dynamics, it may not produce the corresponding
physical state {y?Y} that minimizes the reprojection error.

7.2 Camera Trajectory Following via Linearization

With the initialization, we compute the optimal active force and
torque in Equation (12). We cast the problem as a nonlinear
trajectory following that can be solved by an iterative linear
quadratic regulator (iLQR) [32], [59]. We present a new iterative
algorithm for the camera trajectory following designed to mini-
mize reprojection error, which eventually solves for Equation (12).
We iterate two processes: (1) compute the control policy by
linearizing dynamics near a nominal trajectory, {y:}; (2) update
the nominal trajectory based on the locally optimal control input,
{u;}. The details of the linearization and algorithm can be
found in Appendix B. A pseudo code is found in Algorithm 1
(Appendix B).

It is worth to highlight the main difference between Equa-
tion (12) and (13). Since both minimize the reprojection error, the
kinematics of the reconstructed states are comparable. Figure 7(b)
and 7(c) illustrated comparison of two reconstructed state (e.g., po-
sition, orientation, linear and angular velocity), i.e., {y;} ~ {y?}.
However, the optimal active force and torque (control input)
significantly differ from the initialization {u;} # {u?} due to
the decoupling of the dynamics in Equation (13) and physical
plausibility applied through the regularization in Equation (12).
Figure 7(a) shows the comparison between initial and optimized
control input for the real mountain biking data where the initializa-
tion produces an implausible profile (e.g., noisy and discontinuous
active force application).
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8 RESULT

We evaluate our approach in terms of three key physical quantities:
gravity, scale, and force/torque. Accuracy and error sensitivity
(algorithmic robustness) are used for the evaluation metrics.

8.1 Validation via Synthetic Data

Speed (gn/ s)

Camera trajectory 27
24

Curvature 2.1

18

15

12

0.9

0.6

03

Downhill slope

Fig. 10. We validate our method using synthetic data. The first-person
motion on the downhill slop is generated where the color on the trajec-
tory represents the speed and the yellow lines indicate direction and
magnitude of curvature.

We analyze the algorithmic robustness on measurement errors
using synthetic data, i.e., how much errors in scale, gravity,
and state initialization can be tolerated by the optimization in
Equation (12). We simulate an actor’s motion sliding down in

a downhill slope as shown in Figure 10. We generate random
1,200 3D points, X, and 10 seconds of motion (300 frames).
At least 40 random points per image in front of the camera are
chosen to be visible, dj, ; and the ground truth control input, {u, }
is designed to produce a natural S curve along the downhill. In
Figure 10, the color on the trajectory represents the speed, and
yellow lines indicate the direction and magnitude of its curvature
at each time instant. For a demonstration purpose, we simplify the
dynamics, i.e., restricting the motion to constant slope surface, Gp:
y=[X Y P 0 Ju] andu=[Fr Ty | where
Z = —Ytan6,, 0 and w are the yaw angle and its velocity.
Note that this simplification of state and control input is a special
instance of Equation (5).

Robustness to initialization error of control input We recover
the active thrust force and yaw torque (control input) and its
physical states (location, linear momentum and angular momen-
tum) from the erroneous initialization of {u?} and {y?}. We
add Gaussian noise on the ground truth trajectory to compute
the control input force, which is used for initialization. Figure 8
illustrates the estimated trajectory of state and control input. The
initialization of the control produces the noisy trajectory (blue
line). The optimization in Equation (12) finds the optimal trajec-
tory (red dotted line) converging to the ground truth trajectory
(black line). The noisy control (Figure 8(a)) is also optimized,
which produces plausible and smooth control profile aligned with
the ground truth. Figure 9(a) shows state reconstruction error
as varying the control error where we compare the trajectories
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IMU in terms of linear acceleration. Our method correctly estimate the scale (perfect recovery if 1; median 1.0287 with 0.6186 standard deviation).

of initialized and optimized states. The optimized state reduces
reconstruction error: 0.2 N std. produces less than 2 m error.
Robustness to reprojection error Our system relies on struc-
ture from motion to initialize the state and control input. The
reprojection error after bundle adjustment varies 0.5 to 3 pixels
in practice. In Figure 9(b), we show the robustness with respect
to reprojection error. Given ground truth 2D projection, we add
Gaussian noise that affects the Jacobian in Equation (20). Our
optimized control input produces accurate state prediction in the
presence of significant pixel noise (1 m reconstruction error at 10
mean pixel noise).

Robustness to gravity error Our control force and torque compu-
tation uses the gravity estimate as an input. The gravity prediction
could be erroneous when the visual semantics is consistently
confusing across time as shown in the right image of Figure 4.
In Figure 9(c), we illustrate the reconstruction error as varying the
gravity error. Our algorithm is resilient to the gravity offset, i.e.,
-50 degree with a few meters of reconstruction. The reconstruction
error is not symmetric because the sign of the slope 6, changes as
the gravity error increases.

8.2 Quantitative Evaluation

We quantitatively evaluate
our algorithm with a con-
trolled experiment conducted
by an experienced mountain
biker. The biker wore head-
mounted camera and inertial
measurement unit (IMU) as
shown in Figure 12. Addi-
tionally, two IMUs are at-
tached on his torso near the
center of his body mass to
measure disparity between
head and body motion. Two more cameras are also attached on
the bike to monitor his control input, i.e., pedaling and braking
activity. Our evaluations are performed to verify our method in
three criteria: gravity prediction, scale recovery, and active force
and torque estimation.

Gravity prediction We train a CNN model for each activity using
approximately 50,000 images with gravity annotations (nearly 5
hour long sequence)*. We compare our prediction using CNN and

Fig. 12. Controlled experiments with
an experienced mountain biker.

4. The pre-trained model is publicly available: http://www-users.cs.umn.
edu/~hspark/ffm.html

reconstructed camera orientation with three baseline methods: a) Y
axis: prediction by the image Y axis as a camera is often oriented
upright; b) Y axis MLE: prediction by a) consolidated by the
reconstructed camera orientation; c¢) ground plane normal. The
ground plane is estimated by fitting a plane with RANSAC on the
sparse point cloud. Figure 11(a) shows a comparison with baseline
algorithms where our method produces median error 2.7 degree
with 3.64 standard deviation (mean: 4.40 degree). Note that we
do not compare our final MAP estimate for fair comparison. We
also test our method on manually annotated data in Figure 11(b)
where our method consistently outperforms others significantly
(X2 ~ x10). Note that only biking sequences are used for the
training data while Bike 1, 2, and 3 were not included in the
training dataset. Table 2 (Appendix A) summarizes the gravity
prediction for various activities, e.g., Moutain biking, skiing, urban
biking (Taxco).

Scale recovery We recover the scale factor and compare the
magnitude of linear acceleration with IMU, i.e., ||a||/||am || where
a and a;y,, are acceleration of ours and IMU, respectively. Note
that IMU data is noisier than our estimation but the ratio remains
approximately 1 (head: 1.0278 median, 1.1626 mean, 0.6186 std.;
body: 0.9999 median, 1.1600 mean, 0.7739 std.). We recover scale
factors for 11 different sequences each ranges between 1 mins to
15 mins as shown in Figure 11(c). This results in overall 1.0188
median, 1.1613 mean, and 0.7003 std.

Active force estimation We identify the moment that thrust
force (pedaling and braking) is applied®. We use a thresholding
binary classifier, £ (¢) and £ (¢) to detect pedaling and braking,
respectively: £1(t) = 1 if ftt—l Fr(t)dt > e, and O other-
wise; £ (t) = 1 if f:fl Fr(t)dt < —er, and 0 otherwise®.
Figure 13(a) shows active force profile and ground truth manually
annotated from the videos of behavior monitoring cameras as
shown in Figure 12. Our active force profile accords with the
ground truth, i.e., pedaling when Fr > 0 and braking when
Fr < 0. We compare it with the active thrust force estimation
using structure from motion which is not indicative of pedaling
and braking actions. In Figure 13(b) and 13(c), we compare our
method with net acceleration measured by IMU and structure
from motion. We also compare against optical flow to measure
acceleration that is often use for egocentric activity recognition

5. Active force and torque cannot be measured by IMU because the
measured acceleration is due to net force and torque not input. This requires
force/torque sensors attached human bodies that measures muscle tension.

6. A sophisticated classifier such as recurrent neural networks can be a
complementary approach when supervision is available.



10

—— ~—
5 .
.,
= .
= .
=z 0.8 /!
- .
- Q ’,
- =1
7 = y
7 —~ ,
.
o
vt = 0.6 /
=1 ‘
@
g a
© 0.4 A )
—— Optimal input e l ) |— Optimal input
- - - Statics input = y ) /|- - - Statics input
—— IMU deleration 0.2 v —— IMU acceleration
- - - SfM deleration X °, - = - SfM acceleration
—— Deleration via optical flow —— Acceleration via optical flow
— Pooled motion feature [31] — Pooled motion feature [31]

800 3 . - 1
600 | — Optimal control input
Acceleration 0.8
400 Deceleration Q
<
—~ 200 ‘ ;
0.6
Z ‘h‘.L | ||;‘m~\” M ‘ |||A|nH ”: 2
T B
=200 /'| i S fl
-400 ‘ E |
0.2+,
-600
800 —— — — 0
0 10 20 30 40 50 60 0
Time (s)

(a) Accel/decel detection

0.2 04 06 08 1 0 0.2 04 06 0.8 1
False positive rate False positive rate

(b) Acceleration (¢) Deceleration

Fig. 13. (a) We compare active forces computed by optimal control input (ours) and structure from motion with the ground truth braking and pedaling
actions. The positive thrust force Fr from our approach is highly correlated with pedaling and negative thrust force with braking. (b) and (c) Our
method outperforms optical flow based representation including [53] with a large margin.

tasks [28], [52]. Also we compare with Pooled Motion Feature
representation [53], which requires a pre-trained model. Our active
force identification outperforms other baseline methods that do not
take into account active force decomposition. This verifies that a
trivial extension by attaching IMU on camera is not sufficient
enough to estimate the active force applied by the actor—the
measured acceleration needs to be decomposed.

Active torque estimation We compare the estimated angular
velocity with measurements from gyroscope in Figure 14(a). Note
that the velocity computation by differentiating the reconstructed
camera trajectory does not directly apply as different framerate
between IMU and camera and noisy reconstruction. The optimally
estimated active force and torque generate plausible angular veloc-
ity profile. Table 1 summarizes error of angular velocity measured
by 11 different scenes. The correlation is also measured, which
produces 0.87 mean correlation.

1 2 (3145|6789 10|11
0.25]0.31{0.27]0.31]0.27{0.26|0.41{0.29|0.30|0.30|0.40
0.18]0.30{0.17]0.27]0.26|0.22|0.36|0.23|0.22|0.24|0.36
0.24]0.20{0.26|0.23|0.19{0.19]0.32]0.23|0.27|0.26 |0.31
0.91]0.94{0.90{0.88]0.88|0.61|0.82{0.83]|0.90|0.86|0.86

TABLE 1
Angular velocity comparison with gyroscope. Med.: median, Std.:
standard deviation, Corr: correlation (perfect if 1)

Mean(rad/sec)
Med. (rad/sec)
Std. (rad/sec)
Corr.

8.3 Qualitative Evaluation

We apply our method on real world data downloaded from
YouTube. 5 different types of scenes are processed: 1) mountain
biking (1-10 m/s); 2) Flying: wingsuit jump (25-50 m/s) and
speedflying with parachute (9-40 m/s); 3) jetskiing at Canyon
(4-20 m/s); 4) glade skiing (5-12 m/s); 5) Taxco urban downhill
biking (5-15 m/s). Figure 15 illustrate estimated gravity direction,
physical scale of force and velocity, and active force and torque.
Also passive components such as air drag, pitch torque, and
normal force are shown. Thrust force is applied when climbing
up the hill in Biking or when accelerating in Jetskiing. For Skiing,
periodic lateral forces and roll moments are observed as the actor

was banking frequently. For flying case’, strong air drag force
and lifting forces are observed. Also unstable angular momentum
along the roll axis comparing to other axes is observed, which
requires skillful body control to balance left and right wings.
We assume that all videos have the same intrinsic parameter
(fisheye distortion [13], w=0.001619; focal length, f,=547.55,
fy=535.48; principal coordinates, p,=640, p,=360) and image
resolution (1280 x 720), which we pre-calibrate with GoPro Hero
3 Black edition at the 1280 %720 resolution.

9 LIMITATIONS

We make a few assumptions that enable us to map the first-
person visual scene to the actor’s physical state. Albeit valid in
many practical cases, the assumptions do not always hold, which
produces a degenerate solution. In this section, we discuss the
limitations of the model.

Physical scale recovery There exists a degenerate case of the
physical scale recovery in Equation (11). The scale factor « = 0
if 8, = 0, i.e., zero centripedal acceleration. This occurs when
the camera wearer never changes a direction (i.e., making a
banked turn) in the course of the entire first-person video. This is
unlikely for sport activities®. A potential solution for such videos
is to leverage the gravitational acceleration along the forward
motion, i.e., projectile motion of jumping and dominant forward
acceleration along the downhill slope.

Camera placement In Assumption 1, we approximate the center
of mass and its orientation with the 3D camera pose. While it
allows a key simplification of the projection model in Equation (6),
it can produce an estimation bias. Angular bias: We found that
the angular approximation using the camera is valid when the
actor undergoes rapid movement where the head and body ori-
entation becomes highly correlated. We empirically validate this
approximation by measuring the correlation between body and
head orientation. Strong correlation is observed at high speed
(corr.: 0.96; std.: 9 degree at 10 m/s) as shown in Figure 14(b).
Also a similar correlation is observed when the camera wearer
undergoes high centrifugal acceleration as shown in Figure 14(c),

7. Unfortunately, the gravity direction cannot properly estimated as it was
even challenging to a human annotator. Instead, we manually find frames that
contain the horizon to estimate the gravity direction.

8. No such instance was found in our collection of YouTube first-person
videos (156 sequences of more than 10 hours of videos).
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acceleration (smaller curvature and faster instantaneous velocity).

which validates physical scale recovery from a banked turn in
Section 6.2. Nonetheless, it is possible that the estimation could
be inaccurate due to the actor’s head movements independent to
the egomotion (e.g., distraction). Positional bias: According to
D’Alembert’s principle of inertial forces, the angular momentum
is independent of the location of center of mass, i.e., the active
torques, Ty and TR, remain constant. However, the torques
induced by forces such as centripedal force change due to the
length of levers, which can produce inaccurate angular momentum
computation. This limitation may be addressed by a two-link
inverted pendulum model.

Model expressibility We simplify the dynamics by limiting the
active force an torque along thrust, yaw, and roll directions,
which are the dominant active components. Such force and torque
decomposition may not be valid for all activities. For instance, an
active pitch torque 7p may play a roll for an acrobatic motion of
biking and an intended stall motion of a wingsuit flying activity.

10 DiscussioN

In this paper, we present a method to reconstruct physical sensa-
tion of a first person video. We recover three ingredients for the
physical sensations: gravity direction, physical scale, and active
force and torque. The gravity direction is computed by leveraging
a convolutional neural network integrated with the reconstructed
3D camera orientations. We recover the physical scale by using a
torque equilibrium relationship along the roll axis at a bank turn.
Active and passive components are modeled using rigid body dy-
namics which is integrated into the 3D reconstruction pipeline. We
quantitatively evaluate our method with controlled experiments
where our method outperforms other baseline algorithms with a
large margin (X2 ~ x10) and apply our method on real world
data of various activities such as biking, skiing, flying, jetskiing,
and urban bike racing.

The main computational bottle neck of our system is the ini-
tialization by structure from motion. In our experiments, 1 minutes
of video (1,800 images) took more than 5 hours accelerated by
multicore CPUs (64 x Intel Xeon 7500). The rest of computations
(gravity with nVidia TitanX, scale, active force) took less than 5
minutes.

This paper opens up a new opportunity to understand and
analyze human activities using a first-person video in terms of
controls. While sporting activities are of main interest of this
paper, enabling this approach for daily activities such as cooking,
exercising, and social interactions will bring out new compelling
applications towards computational wearable technology.
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Fig. 15. We compute gravity direction, physical scale factor, and active force and torque from a first person video. For each sequence, the top row
shows image superimposed with speed, gravity, forces, and torque. Full trajectories of such physcial quantities are illustrated in the next row.
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APPENDIX A
GRAVITY TRAINING DATA

We learn motion and visual cues of the gravitational field, which
requires a gravity annotated training data. We employ two methods
to annotate a large scale first-person video data.
Controlled data with IMU measurements We rigidly attach a
6 DOF inertial measurement unit (IMU) sensor to a first person
camera and extracted synchronized IMU and images after visual-
inertial calibration [17]. The gravity vector is computed using
acceleration and gyroscope measurements where we associate it
with image and its spatial rotation, i.e., G > {Z, R}. This gravity
annotation scheme is fully automatic, which is scalable.
Uncontrolled data without IMU measurements We augment the
gravity annotation data by using the images extracted from first-
person videos in Internet. Unlike the controlled data, the ground
truth gravity vector is not available for these images. Training a
CNN model requires a large amount of manual efforts. Instead of
labeling each image, we develop a new efficient annotation scheme
that can geometrically propagate a few manual annotations across
the entire images using 3D reconstruction of the camera poses. A
key idea is that there exists a global 3D gravity vector G(¢1, ¢2)
that is consistent across the entire video, i.e., the estimated 3D
gravity vector from the annotations of a few images can be
projected to the rest images for the propagation of the gravity
annotation.

Given a set of a few manual annotations in 2D, (I, Hg), we
reconstruct the global gravity direction in 3D by minimizing
reprojection error of image orientation:

K 2
. L (®’RHTG
G(¢7, ¢5) = argmin E <9k —tan~! k.= (17)
b G(¢1,¢2) p— I (RIZ)TG

where 0% € [—m/2,7/2], R}, and R} are the k™ annotated
2D orientation, first and second rows of the reconstructed rotation
matrix, Rx. Equation (17) is the maximum likelihood estimate of
the 3D gravity given annotated images. We solve this by finding
global minimum via enumerating discretized ¢1 € [ 0 7 ]
and ¢ € [ 0 27 ] and refine the solution using a gradient
decent optimization. Note that G can be ambiguous if {Ry}
undergoes zero yaw angular displacement (rotation about Y axis
of the camera) as shown in Figure 5.

Current fiaf Display multiple frames

Gravity direction

135/139 . . .
! Playback for annotation verification

Fig. 16. We annotate a gravity direction using our tool that allows us to
annotate 100 frames at once.

To facilitate the manual annotations, we develop an interactive
gravity annotation software that can align the global gravity with
multiple images as shown in Figure 16. A user control (¢1, ¢2),
which changes the orientations of multiple images, simultane-
ously, computed by structure from motion. We visualize the lines
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passing a vertical vanishing point to align with a vertical scene
structure such as trees. This allows precise gravity annotation
(< 5° in 3D) for an entire video at once. In practice, we annotate
a few images (10-30) with sufficient yaw angular displacement
where G can be uniquely computed, and then, propagate it to the
rest of images (2,000-5,000). This annotation method allows us
to label more than 300,000 frames with less than 2,000 image
labeling, i.e., a 5 min video (9,000 frames) in 3 mins.

Details of Training We augment the training data by rotating the
image about the principal point, 7% = Z(KMj, K~!x) where
My, € SO(3) is in-plane rotation (rotation about z axis) with
0, angle. This data augmentation allows handling large roll angle
displacement of first person video and balance the distribution
of the gravity labels. We also augment the data by flipping
horizontally. We implement the gravity model (AlexNet [30]) in
Caffe [25] on a single GPU (nVidia GTX) for 50K iterations. The
Table 2 summarizes the results of gravity prediction. The pre-
trained model is publicly available: http://www-users.cs.umn.edu/
~hspark/ffm.html

APPENDIX B
ILQR FOR SOLVING DYNAMICAL SYSTEM

We formulate the estimation of the active force and torque from
first-person images using iLQR, i.e., camera trajectory following.
We linearize the dynamics in Equation (1) and projection in
Equation (2) to compute the control policy gradient.

Linearization of dynamics Let dy; and du; be the deviation

from the nominal state and control input, respectively, i.e., yi""l =

yi+dy; and ui‘H = u}-+6u, where the superscript represents the
iteration number. We linearize the state dynamics in Equation (5)
using the first order Taylor expansion:

i+1

Yiz1 — Vi1 = 0yit1 = Ay + Biouy, (18)

where the analytic form of A; =

O fayn
ou

8gdyn e R 4nd B, =
Yo lyi

€ R'3 can be found in the Appendix C.
ui

t . . .
Linearization of projection We approximate the 2D projection,
X, near nominal state trajectory as follow:

fprj(P(y + 5}’)’ X) ~ fprj(P(Y)’X) +

where 2/t is the Jacobian of the projection where its analytic
form can be found in the Appendix C.
This allows linearizing the reprojection error in Equation (12):

T P
PIPIL

85"” Sy,  (19)
Yy

T
[Xtp — X% = Z le; — Dby, (20

t=0 p=0 t=1
where
~ Ox¢.1
01 (Xe1 — Xe1) Ot1 5y
e = : ) Dt = )
e o
0¢,p(Xe,p — X¢4,P) 6t,p’5—‘);’°

where x¢,p = fprj (P (y1), Xp).
Recursive cost function By combining Equation (12) and (20),
we can derive a recursive cost-to-go function:

Jt = 5?2—Qt55;t -+ 5ﬁ:w5ﬁt -+ Iglln Jt—‘,—la (21)
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Bike 1 Bike 2 Bike 3 Bike IMU Ski 1
Mean | Med. Std. Mean | Med. Std. | Mean | Med. Std. Mean | Med. Std. Mean | Med. Std.
Y axis 5.62 4.44 4.72 8.10 6.18 9.06 | 10.15 | 9.29 6.34 16.02 | 13.11 | 10.88 8.31 7.24 5.80
Y axis MLE 5.92 4.57 4.66 6.08 5.31 5.91 10.68 8.97 9.11 15.83 | 12.28 | 11.21 10.09 | 6.72 8.72
Ground plane 7.45 6.28 5.14 12.69 | 10.20 | 8.99 | 11.31 8.16 11.01 | 11.98 | 10.24 9.03 8.27 5.50 8.36
CNN MLE (ours) 0.76 0.61 0.60 2.53 1.00 4.38 4.40 2.70 3.64 11.21 9.11 8.18 517 4.37 4.08
Ski 2 Ski 3 Taxco 1 Taxco 2 Taxco 3
Mean | Med. Std. Mean | Med. Std. | Mean | Med. Std. Mean | Med. Std. Mean | Med. Std.
Y axis 8.11 7.37 6.94 6.86 5.93 4.79 8.00 4.62 13.10 5.77 4.66 4.92 9.66 7.00 8.84
Y axis MLE 7.80 6.54 6.28 7.00 6.37 4.75 6.90 4.06 12.73 5.94 4.01 5.97 10.41 6.83 10.85
Ground plane 7.36 6.90 5.17 7.87 6.86 5.84 | 1044 | 8.13 13.04 8.07 6.79 7.44 7.09 5.67 5.44
CNN MLE (ours) 4.97 2.59 11.17 4.53 3.05 4.88 3.37 2.68 3.02 4.60 2.89 5.06 5.86 4.26 6.80
TABLE 2

Gravity prediction error (degree). Med.: median, Std.: standard deviation

where J; is accumulated cost at the ¢*" time instance and ¥ and
are the homogeneous representation of y and u, respectively. The
first two terms in Equation (21) measures the reprojection error
and regularization loss where

D/D; -D/e; L, —d
Q=1 _eTp, o'e |* Wi | _ar dldq, |’
where d; = u} — ul. The regularization via W, prevents u:

deviates too much from the nominal control input u%.

The accumulated cost, J; in Equation (21) can be rewritten in
a closed form based on the current nominal state, y;, i.e., J; =
5y 7 S:dy; where

S: =Q; + H/WH, + <;xt + Eth)T St+1 (Af + ]~3th>

o~ A~ 1 g g
H, = — (W + BtTStHBt) B/Si+1A, (22)

where = represents the transition matrix for the homogeneous
representation, ¥y, i.e., 0y¢11 = A0y + Biouy.

Algorithm 1 Camera trajectory following

Input: X; > x;; and {Cy, R¢}14
T
ty1=[Cl P|q L]
2: 5y1 =07
fort=1:T—1do
4: Compute initialization u, using Equations (14)-(16).

Vit1 = fayn (¥, ur)
: end for

> Iterate until convergence

fort=T:-1:1do

5

6

7: while max{|dy;|}7_, > e do
8 > Policy update
9

Compute Q;.
10: if t =="T then
11: St = Qt
12: continue
13: end if
14: Update S; from S, ; using Equation (22).

15: end for

16: fort=1:7—1do > Forward rollout

17: Compute the optimal gain, H; given S;.
18: ou; = Héy

19: u; = uy + ouy

20: Vi1 = fayn(¥e, )

21: 5Yt+1 = At5Yt + B5ut

22: end for

23: end while

H, is the optimal control gain given the control policy, S;11:

(Sllt = Htésft. (23)

We iterate linearization (Equation (18)) and policy update (Equa-
tion (22)) until the trajectory converges. The algorithm is summa-
rized in Algorithm 1.

APPENDIX C
ANALYTIC FORM OF JACOBIAN

We derive the analytic form of Jacobian of the dynamics and
projection to formulate the iterative trajectory following. The
Jacobian for the dynamics can be written as follows:

— af yn 8f yn af yn af(yn
A= { a¢ op adq oL }
O3x3
[ At 0 0]
— 04><3
B = 0 0 0
0 At 0
0 0 At
where
afdyn _ [ I3
oC Ogx3
[ R,At
afdyn _ 1 /m
aP 07><5
[ A —2qy 2q: —2qQw 29y | ]
mt 20 2qw 2q. 2qy
0 —4q, —4q, 0
Ofayn = O1x11
aq I+ 0 (j—lL/2)T
T TL2 [TL)/2)
_ Iy @ (7' Re) 52 _
afdyn —1
OL 3
[0 0 —4q, —4q, |
—2q. 2qy 29;  —2qu
2q, 2q. 2qu 2q,
2. 29 2q:  2qu
OR Y
q _2qw _2(1111 2qz qu
_2qy 2qz _2qw 2qL
2,  2qw 29 2qy
| 0 —4q, —4qy 0 |




where ¢ = [ Qqw @ gy 4. ] and ® is the Kronecker

product. [ Sequence | Frame #] Time
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9 U Bike 19 | 6594 |04:32
— | v | =KI3®X-C)"). Bike 20 | 6594 | 04:01
OR w Bike 21 | 8100 |04:58
L J Bike 22 | 6594 |04:27

Bike 23 | 7793 |05:21

Bike 24 | 8992 [10:42

APPENDIX D Bike 25 | 10236 |10:42
FIRST-PERSON SPORTING ACTIVITY DATA Bike 26 | 7793 ]06:18

Bike 27 | 13787 |08:10

We collect 6 categories of sport activities from YouTube: mountain Bike 28 | 1795 |01:22
biking (MB), wingsuit flying (WF), skiing (SK), jetskiing at Lake Bike 29 | 5452 |03:01

. . Bike 30 | 47100 |26:30

Powell on the Coloardo River (JS), speedflying (SF), and urban Bike 31 | 14776 10335

bike racing in Taxco, Mexico (TX). The data and their source is Bike 32 | 14986 [08:44

summarized in Table EE ; :;gg 8‘:;2
Inertial coefficient We approximate the inertial coefficients, e.g., SK3 5395 1207

mass, moment of inertia, and pivot length, based on biomechanical Skid | 6294 07:09
o . . ki 1 4

data [38]. Each class of activity may have different coefficient. :k;E 76090703 83 42
For instance, we take into account the bike mass for mountain Ski 7 5646 |03:13

biking and urban biking. The inertial coefficients are summarized Ski8 | 2905 |01:40

. Ski9 | 14349 [08:16

in Table 3. SKi10 | 3383 [02:14
_ SKi 11 | 2938|3423

11.89 2.13 0 Ski 12 900 |34:23

Ji=1| —213 3.37 0 , Ski13 | 2098 |34:23

0 0 11.89 Ski14 | 1199 |34:23

- Ski 15 1049 | 34:23

Jo =72/80 x Ji, SKi16 | 4796 [03:33

- Ski 17 2338 | 06:55

3.75 0 0 Ski 18 | 7473 |06:55

T3 = 0 657 0 , SkKi19 | 6714 |07:28

Taxco 1 4652 |03:47

L 0 0 3.75 Taxco 2 500 {00:29

Taxco 3 7770 | 04:27

Taxco 4 5500 [03:50

. MB | SK| WE | JS | SF | TX Taxco5 | 4600 [03:25

Pivot length, { (m) 1211001 |1.0[1.0]1.2 Taxco 6 | 6654 |03:49
Mass, m (kg) 80 | 72 | 72 | 72 | 72 | 80 Taxco 7 | 6354 [03:55
Moment of inertia, 7 (kgm) || J1 | T2 | T3 | T1 | T2 | T Taxco8 | 5185 |03:21
Taxco 9 6474 | 04:08

TABLE 3 Taxco 10| 750 [00:26

Inertial coefficient Taxco 11| 8782 |06:39

Taxco 12| 5065 |03:31

Taxco 13| 5310 |03:38

Taxco 14 | 6240 |03:40

Taxco 15| 3447 |03:05

Taxco 16 | 5815 |03:52

Taxco 17 | 4856 |02:58

Taxco 18 | 5635 |03:37

Taxco 19 | 4826 |02:46

Taxco 20 | 5905 |03:37

Taxco 21 | 5065 |03:11

Taxco 22 | 4946 |03:20

Taxco 23| 4796 |03:08

https://www.youtube.com/watch?v=JXYSQ6nSqM8

TABLE 4

Mountain biking, skiing, and urban biking sequences.
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Sequence | Frame #[ Time | YouTube Link
Jetski 1 2698 | 02:03 | hups://www.youtube.com/watch?v=mQg3hlilEDO
Jetski 2 7372 05:01 https://www.youtube.com/watch?v=_vcXsInDIPO
Jetski 3 5068 03:22 https://www.youtube.com/watch?v=77g7Nc4wS_0
Jetski 4 9681 09:35 https://www.youtube.com/watch?v=n94gBr2sal8
Jetski 5 4646 03:42 https://www.youtube.com/watch?v=hJzaVRyv2Ys
Jetski 6 5305 13:19 https://www.youtube.com/watch?v=H7L8QcxI4WA
Jetski 7 2548 01:50 https://www.youtube.com/watch?v=e8140yfP-Vs
Jetski 8 4659 02:45 https://www.youtube.com/watch?v=z2gWUZI15VF0
Jetski 9 4496 03:03 https://www.youtube.com/watch?v=iWUkuo8znoc
Jetski 10 9531 | 05:19 | hups://www.youtube.com/watch?v=CilHsYGT9dO
Jetski 11 20500 11:33 https://www.youtube.com/watch?v=xEZoacWzmn4
Jetski 12 2398 01:23 https://www.youtube.com/watch?v=J7-XzvzFtfw
Jetski 13 1499 01:48 https://www.youtube.com/watch?v=XXe5fGgyB_w
Jetski 14 5491 04:21 https://www.youtube.com/watch?v=f33kpivo-Vc
Jetski 15 17267 | 09:59 | https://www.youtube.com/watch?v=BUdkSeC12J8
Jetski 16 2758 | 02:22 | hitps://www.youtube.com/watch?v=ZHiBFYRpAO4
Jetski 17 6204 | 04:47 | hutps://www.youtube.com/watch?v=0aFrWsyHPK8
Jetski 18 5305 |03:16 | N/A
Jetski 19 5485 | 03:25|N/A
Jetski 20 13607 | 08:28 | hitps://www.youtube.com/watch?v=3Dri6i60vUI
Jetski 21 6984 | 05:25 | hitps://www.youtube.com/watch?v=QWDFz1_p2T4
Jetski 22 11359 | 06:22 | hitps://www.youtube.com/watch?v=rw0JB4Y6E60
Jetski 23 10490 | 06:52 | hitps://www.youtube.com/watch?v=M_52IerSEI0
Wingsuit fly 1 1199 | 02:43 | hitps://www.youtube.com/watch?v=-C_jPcUkVrM
Wingsuit fly 2 1199 | 02:04 | hitps://www.youtube.com/watch?v=IM 1 vss7TFXs8
Wingsuit fly 3 1199 | 11:01 | https://www.youtube.com/watch?v=2fAvbgQWRWo
Wingsuit fly 4 1499 | 11:01 | https://www.youtube.com/watch?v=2fAvbgQWRWo
Wingsuit fly 5 1619 | 11:01 | https://www.youtube.com/watch?v=2fAvbgQWRWo
Wingsuit fly 6 2500 | 04:50 | https://www.youtube.com/watch?v=RsV3bGPMTXo
Wingsuit fly 7 2000 | 04:50 | https://www.youtube.com/watch?v=RsV3bGPMTXo
Wingsuit fly 8 2098 [ 01:55 | hitps://www.youtube.com/watch?v=bwMagqfwIER8
Wingsuit fly 9 2098 | 02:37 | hitps://www.youtube.com/watch?v=_melvneqZNE
Wingsuit fly 10 420 14:35 | https://www.youtube.com/watch?v=rnvvsjstveM
Wingsuit fly 11 1440 | 14:35 | hups://www.youtube.com/watch?v=rnvvsjstveM
Wingsuit fly 12 570 14:35 | htps://www.youtube.com/watch?v=rnvvsjstveM
Wingsuit fly 13 900 14:35 | https://www.youtube.com/watch?v=rnvvsjstveM
Wingsuit fly 14 1050 | 14:35 | hitps://www.youtube.com/watch?v=rnvvsjstveM
Wingsuit fly 15 810 14:35 | https://www.youtube.com/watch?v=rnvvsjstveM
Wingsuit fly 16 | 5695 | 04:10 | hups://www.youtube.com/watch?v=ul PUgWLRUSE
Wingsuit fly 17 | 4886 | 16:24 | hups://www.youtube.com/watch?v=GASFa7rkLtM
Wingsuit fly 18 270 16:24 | https://www.youtube.com/watch?v=GASFa7rkLtM
Wingsuit fly 19 3987 | 16:24 | hitps://www.youtube.com/watch?v=GASFa7rkLtM
Wingsuit fly 20 720 16:24 | htps://www.youtube.com/watch?v=GASFa7rkLtM
Wingsuit fly 21 720 16:24 | https://www.youtube.com/watch?v=GASFa7rkLtM
Wingsuit fly 22 | 2338 | 16:24 | hups://www.youtube.com/watch?v=GASFa7rkLtM
Wingsuit fly 23 960 | 02:37 | hitps://www.youtube.com/watch?v=b7qwBJHIQNO
Wingsuit fly 24 | 2175 | 01:59 | https://www.youtube.com/watch?v=UmdihGIl 1 FE
Wingsuit fly 25 | 5485 | 03:25 | hups://www.youtube.com/watch?v=Zf4MztOiDdc
Wingsuit fly 26 925 01:44 | https://www.youtube.com/watch?v=tNpvxVjSNro
Wingsuit fly 27 1409 | 05:17 | https://www.youtube.com/watch?v=-W06y AufpNQ
Wingsuit fly 28 | 6744 | 04:22 | hups://www.youtube.com/watch?v=vNgx8XZIWnl
Wingsuit fly 29 | 2500 | 06:21 | hups://www.youtube.com/watch?v=-GOLm_f36bE
Speed Flying 1 | 5695 | 03:35 | hups://www.youtube.com/watch?v=UwWLnaMEOCL
Speed Flying 2 2398 | 01:31 | hitps://www.youtube.com/watch?v=Dg55JlyBcRU
Speed Flying 3 2880 [ 02:24 | hitps://www.youtube.com/watch?v=226js2nxmNE
Speed Flying 4 | 3300 | 03:25 | hups://www.youtube.com/watch?v=oDvhIEQewhY
Speed Flying 5 | 7553 | 04:47 | hups://www.youtube.com/watch?v=EKFV3nNU370
Speed Flying 6 4106 | 02:34 | hitps://www.youtube.com/watch?v=aOVYdwbv-5g
Speed Flying 7 570 | 01:30 | hetps://www.youtube.com/watch?v=UZfdAzwZX5E
Speed Flying 8 1709 | 01:20 | https://www.youtube.com/watch?v=RZiY 2i]qIXA
Speed Flying 9 7343 | 04:50 | https://www.youtube.com/watch?v=GeSqEZjIMuo
Speed Flying 10| 5625 | 04:31 | https://www.youtube.com/watch?v=8bVo8vGSaSg
Speed Flying 11| 3327 | 02:54 | https://www.youtube.com/watch?v=h13iKGd4Yqo
Speed Flying 12| 2050 | 04:39 | https://www.youtube.com/watch?v=RIyO72_E8ok
Speed Flying 13| 6234 | 03:50 | https://www.youtube.com/watch?v=_3ehKn9jsaA
Speed Flying 14| 7425 | 04:58 | https://www.youtube.com/watch?v=GKdMWEY 62ZA
Speed Flying 15| 6354 | 04:37 | https://www.youtube.com/watch?v=tt0Q1 BPTE7k
Speed Flying 16| 3627 | 02:49 | hups:/www.youtube.com/watch?v=nnfFTjiz6MM
Speed Flying 17| 2368 | 01:31 | hups://www.youtube.com/watch?v=Sfoal Tb7KES
Speed Flying 18| 8302 | 04:57 | https://www.youtube.com/watch?v=UGKmp5thh24
Speed Flying 19| 4256 | 04:33 | hups:/www.youtube.com/watch?v=W-VGIIEY IqY
Speed Flying 20| 1199 | 03:13 | hups:/www.youtube.com/watch?v=0Y K4DWcFIJ8
Speed Flying 21| 6264 | 03:43 | hutps:/www.youtube.com/watch?v=1f0rZx5SIfGY
Speed Flying 22| 550 | 06:21 | https://www.youtube.com/watch?v=-GOLm_{36bE
Speed Flying 23| 2925 | 01:37 | hutps:/www.youtube.com/watch?v=ZzVITi8JdrY
Speed Flying 24| 2278 | 01:32 | hutps://www.youtube.com/watch?v=VLcPPDe-3x4
Speed Flying 25| 4586 | 05:00 | https:/www.youtube.com/watch?v=WpUxLA2pw6A
Speed Flying 26 | 12438 | 07:32 | https://www.youtube.com/watch?v=sazQB7G0gck
Speed Flying 27| 8602 | 05:06 | https://www.youtube.com/watch?v=857g2xz_3jc
Speed Flying 28| 5150 | 03:34 | https://www.youtube.com/watch?v=IwOoqz2c4UA
Speed Flying 29| 2098 | 01:26 | https://www.youtube.com/watch?v=pCJpUfbhbe8
Speed Flying 30| 2908 | 01:46 | https://www.youtube.com/watch?v=aOyg_Kn1BmU
TABLE 5

Jetskiing, wingsuit flying, and speed flying sequences.
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