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Lessons Learned
Hand detection is importantEgo-motion is important

[Kitani, Okabe, Sato CVPR 2011] [Li, Kitani CVPR 2013]
[Ogaki, Kitani, Sato EGOV 2012] [Li, Kitani ICCV 2013]

Hand parts are important

[Asaran, Teney, Kitani IROS 2015]
[Cai, Kitani, Sato ICRA 2015]

Hand motion is important

[Ishihara, Kitani, Ma, Takagi, Asakawa ICIP 2015]
[Cai, Kitani, Sato RSS 2016]

Object appearance is important Hand shape implies object region

[Cai, Kitani, Sato RSS 2016]
[Kitani, Okabe, Sugimoto, Sato ECCVW 2008] [Huang, Ma, Ma Kitani CVPR 2015]

[Cai, Kitani, Sato RSS 2016]
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Integrate lessons learned under one (deep) framework

Minghuang Ma, Haoqi Fan, Kris M. Kitani.   
Going Deeper into First-Person Activity Recognition.     

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
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Hands should be used to identify important objects…

Fully Convolutional Network (FCN) [Long et al. 2014]

Step 1: Learn a hand region detector  
(use dataset of binary hand masks)

Step 2: Re-train output layer of the 
FCN to detect object region  

(use Gaussian heatmap centered 
on object)

By learning hand appearance first, we were able to detect object regions better



Object Region Detection Results

GTEA dataset

GTEA+ dataset
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Input video clip

Segmentation CNN

Localization CNN

Object of Interest

Object CNN

Motion CNN

Optical flow

Object

Activity

Action

(milk container)

(take milk container)

(take)

Late fusion with twin stream network,  
fined-tuned for multi-task recognition  

(object, action and activity)



(a) Average object recognition accuracy.
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(b) Object recognition accuracy for each class (GTEA).



(a) Average action recognition accuracy.

fold spread open scoop put close stir pour take shake
0.0

0.2

0.4

0.6

0.8

1.0

(b) Action recognition accuracy for each class (GTEA).



(a) Activity recognition results
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A neuron units in the conv-5 layer

(a) blue (b) water bottle (c) round edge (d) red cup

What is the ObjectNet learning?



(a) blue color neuron

(b) red cup neuron
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When we observe a scene…

… we know how we can act in that environment
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When we observe a scene…

… we know how we can act in that environment

open open
open



Can we teach a computer  
to  

understand scene functionality?

Nicholas Rhinehart, Kris M. Kitani.   
Learning Action Maps of Large Environments via First-Person Vision. 

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.



Input: Captured visual experience



Places to ‘Open Door’

Point Cloud Localization



Scenes

Regularized WNMF Modeling and Matrix Completion

Action Maps

Scene 1 Scene 2

Scene 1 ‘Sit’ Action Map Scene 2 ‘Sit’ Action Map

Cross-location similarities

Locations
Actions

Matrix Completion

Activity Detections
In one or more scenes 

Scene 1 Detections

Appearance Info
Object Detection Features

Scene Classification Features

Matrix Completion
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Places to ‘Sit’

Point Cloud
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Typical view from the first-person POV



If two interacting people are wearing cameras…

…there are two points-of-view  
(for each person)

Ryo Yonetani, Kris M. Kitani, Yoichi Sato.    
Recognizing micro-actions and reactions from paired egocentric videos. 
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.  
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If two interacting people are wearing cameras…

…there are two points-of-view  
(for each person)

first-person point-of-view 
(what I see)

second-person point-of-view 
(what you see)

Ryo Yonetani, Kris M. Kitani, Yoichi Sato.    
Recognizing micro-actions and reactions from paired egocentric videos. 
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.  



A’s POV

B

B’s POV

A

Alice Bob
Paired Egocentric Videos



Slight head motion is hard to detect from  
second-person POV

Unextended hand motion is hard to detect 
first-person POV

…but can be resolved with paired egocentric videos
Micro-actions are hard to detect…

Daily social interactions contain subtle micro-actions



Slight head motion is hard to detect from Unextended hand motion is hard to detect

Both views are complementary and essential for micro-action recognition

Induces large global motion! Hand is clearly observed!

second-person POV

first-person POV

first-person POV

second-person POV



Action-reaction pairs are correlated

pointing gesture (action) induces a slight shift in attention (reaction)

these correlation can be used to recognize micro-actions



If two interacting people are wearing cameras…

…there are four feature types

1. ego-motion 
of self

2. appearance of 
partner

3. ego-motion of self

4. appearance of 
partner

What kinds of features can we use?



TimeDi
sp

lac
em

en
t

First-person feature of A Second-person feature of B

TimeDi
sp

lac
em

en
t

First-person feature of BSecond-person feature of A

Input: egocentric video pair

A

B

First-person features
• Egocentric + object features [Li+, CVPR15] 
• Cumulative displacement patterns [Poleg+, 

CVPR14] 
• Pooled time-series encoding [Ryoo+, CVPR15] 

Second-person features
• Dense trajectory [Wang+, ICCV13] 
• Two-steam CNN [Simonyan+, NIPS14] 
• Trajectory-pooled convolutional descriptor 

[Wang+, CVPR15]

Recognize micro-action 
(point, shift in attention, positive gesture, etc. )





Paired egocentric video dataset

• > 1,000 pairs of egocentric videos 
• Recorded during 28 different two-persons interactions 
• 7 different micro-actions and reactions

• > 1,000 pairs of egocentric videos 
• Recorded during 28 different two-persons interactions 
• 7 different micro-actions and reactions
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