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| essons Learned

Ego-motion is important Hand detection is important Hand parts are important

l" X
[Kitani, Okabe, Sato CVPR 2011] [Li, Kitani CVPR 2013] [Asaran, Teney, Kitani IROS 2015]
[Ogaki, Kitani, Sato EGOV 2012] [Li, Kitani ICCV 2013] [Cai, Kitani, Sato ICRA 2015]
Hand motion is important Object appearance is important  Hand shape implies object region

"

[Ishihara, Kitani, Ma, Takagi, Asakawa ICIP 2015] [Kitani, Okabe, Sugimoto, Sato ECCVW 2008] [Huang, Ma, Ma Kitani CVPR 2015]
[Cai, Kitani, Sato RSS 2016] [Cai, Kitani, Sato RSS 2016] [Cai, Kitani, Sato RSS 2016]



Integrate lessons learned under one (deep) framework
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Minghuang Ma, Haogi Fan, Kris M. Kitani.
Going Deeper into First-Person Activity Recognition.
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
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Hands should be used to identify important objects...

Step 1: Learn a hand region detector
(use dataset of binary hand masks)

Fully Convolutional Network (FCN) [Long et al. 2014]

By learning hand appearance first, we were able to detect object regions better

Step 2: Re-train output layer of the
FCN to detect object region
(use Gaussian heatmap centered
on object)




Object Region Detection Results

GTEA dataset

GTEA+ dataset
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Late fusion with twin stream network,
fined-tuned for multi-task recognition
(object, action and activity)



Object Recognition GTEA(71) | Gaze(40) | Gaze+(44)
Fathi et al. ["] 61.36 N/A N/A
Object CNN 67.74 38.05 61.87
Joint training (Ours) 76.15 55.55 74.34

(a) Average object recognition accuracy.
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(b) Object recognition accuracy for each class (GTEA).



Method & dataset | GTEA(71) | Gaze(40) | Gaze+(44)
Fathi et al. 7] 47.70 N/A N/A
Motion CNN 75.85 33.65 62.62
Joint training 78.33 36.27 65.05

(a) Average action recognition accuracy.
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(o) Action recognition accuracy for each class (GTEA).



Methods

GTEA(61)* | GTEA(61) | GTEA(71)

Gaze(25)* | Gaze(40)* | Gaze+(44)
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a) Activity recognition results
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What is the ObjectNet learning”?

A neuron units in the conv-5 layer

(b) water bottle (c) round edge



(a) blue color neuron

k

(b) red Cup neuron
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When we observe a scene...

... we know how we can act in that environment
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When we observe a scene...

... we know how we can act in that environment



Can we teach a computer
{0
understand scene functionality”’

Nicholas Rhinehart, Kris M. Kitani.
Learning Action Maps of Large Environments via First-Person Vision.
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
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Activity Detections NesS

Scene 1 Scene 2
In one or more scenes

Scene 1 Detections

Regularized WNMF Modeling and Matrix Completion

m— = =y

| ocations

Action Maps

Scene 1’ 'Action Map Scene 2’ ' Action Map




sparse dense
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Binary mask Factorization error
(locations with actions) (non-negative)
argmax |[W o (R — UV |2
U,V

under-determined system
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Binary mask Factorization error Location similarity
(locations with actions) (non-negative) (scene, object, position)
Wo(R-UV' )) °k
arg max ||[W o ( )HF‘|‘ Ju; —uy|[“k(u;, uy)
U,V
o]
under-determined system use regularization across rows

(locations)



Places to
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Typical view from the first-person POV



It two interacting people are wearing cameras...

...there are two points-of-view

(for each person)

Ryo Yonetani, Kris M. Kitani, Yoichi Sato.
Recognizing micro-actions and reactions from paired egocentric videos.
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
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It two interacting people are wearing cameras...

first-person point-of-view
(what | see)

second-person point-of-view
(what you see)

...there are two points-of-view

(for each person)

Ryo Yonetani, Kris M. Kitani, Yoichi Sato.
Recognizing micro-actions and reactions from paired egocentric videos.
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.



Paired Egocentric Videos



Daily social interactions contain subtle micro-actions

Slight head motion is hard to detect from Unextended hand motion is hard to detect
second-person POV first-person POV

Micro-actions are hard to detect...
..but can be resolved with paired egocentric videos



Y,

second-person POY
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Slight head motion is hard to detect from

-
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Hand is clearly observed!

Both views are complementary and essential for micro-action recognition



Action-reaction pairs are correlated

pointing gesture (action) induces a slight shift in attention (reaction)

these correlation can be used to recognize micro-actions



What kinds of features can we use”

It two interacting people are wearing cameras...

1. ego-motion

of self 3. ego-motion of self

4. appearance of

2. appearance of
partner

partner

...there are four feature types



Input: egocentric video pair

r

First-person feature of A Second-person feature of B

LIy " First-person features

Egocentric + object features [Li+, CVPR15]

Cumulative displacement patterns [Poleg+,
CVPR14]

Pooled time-series encoding [Ryoo+, CVPR15]
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Second-person features

€ Dense trajectory [Wang+, ICCV13]
5 Two-steam CNN [Simonyan+, NIPS14]
% Trajectory-pooled convolutional descriptor
A - [Wang+, CVPR15]
¥Second—|oerson feature of A First-person feature of B

\ 4

Recognize micro-action
(point, shift in attention, positive gesture, etc. )




(1) Pointing and shift in attention

Person B’s points-of-view

Pointing Attention Positive Negative Passing Receiving Gesture | Average
E[15] 0.65 0.77 0.91 0.88 0.64 0.78 0.73 0.76
. E+O [ 1¥] 0.74 0.77 0.94 0.73 0.71 0.85 0.69 0.77
(1) First-person POV features of A CD[7] 0.64 0.62 0.58 056 071 0.71 0.56 | 0.63
PoTCD [, 0] 0.70 0.66 0.94 0.84 0.69 0.74 0.63 0.74
IDT [ Y] 0.74 0.71 0.67 0.59 0.81 0.93 0.78 0.75
(2) Second-person POV features of A TCNN [ 7] 0.59 0.58 0.55 0.58 0.54 0.67 0.60 0.59
TDD [10] 0.63 0.70 0.61 0.51 0.68 0.79 0.63 0.65
E+IDT 0.77 0.73 0.86 0.81 0.82 0.92 0.79 0.81
(3) Multiple POV features of A E+O+IDT 0.80 0.78 0.95 0.77 0.83 0.95 0.78 0.84
PoTCD+IDT 0.79 0.78 0.96 0.89 0.84 0.93 0.80 0.86
Degraded-A 0.82 0.76 0.96 0.86 0.56 0.95 0.69 0.84
(4) Multiple POV features of A and B Degraded-B 0.73 0.72 0.67 0.61 0.82 0.94 0.78 0.75
Proposed 0.85 0.83 0.96 0.91 0.89 0.97 0.82 0.89




Paired egocentric video dataset

of egocentric videos

* Recorded during 28 different two-persons interactions

¥ ¢ 7 different micro-actions and reactions




Understand interactions with
things

+144
VS TY

1. Recognizing activities
CVPR 2016

2. Learning scene functionality
CVPR 2016

Understand interactions with
people

T

3. Recognizing social interactions
CVPR 2016




