Rehg, CVPR13 Prabhaker, ECCV12 Prabhakar, CVPR12 Patron-Perez, BMVC10

Lan, CVPR12 Ding, ECCV10
Ramanathan, CVPR13 Choi, ECCV12, CVPR14
Antic, ECCV14 Direkoglu, ECCV12

Rodriguez, ICCV11a, ICCVb Mehran, CVPR09 Alahi, CVPR14

Yang, CVPR12 Hoai, CVPR14

Choi, ECCV14 Park, NIPS12, ICCV13

Cristani, BMVC11
Park, CVPR15
Arey, SIGGRAPH1

Wang, ECCV10 Gallagher, CVPR09

Dyadic interaction

Crowd interaction

Number of group members

Mehran, CVPR09

Dyadic interaction

Crowd interaction

Number of group members

Group Activities in Videos

[Choi VSWS09, CVPR I I, ECCV I 2, Lan WSGA09, NIPS I 0, Khamis CVPR I 2, ECCV I 2]

Input: video and box tracks
Output: group activity labels in time

Collective Activities

Definition:

Activities that are defined or reinforced by the existence of a coherent behavior of a group of individuals in time and space.

Waiting

Queuing

Talking

Individual Appearance

 Individual appearance/motion does not provide an important social signal to recognize collective activities.

Crowd Context

• Contextual relationship among people is the key signal to recognize collective activities.

Challenges

- Large intra-class variation.
 - View point variation.
 - Number of group participants.
- Multiple groups in the scene.
- Activities changes over time.

Key Modules

- Crowd Context and the Representation.
 - Individual posture representation.
 - Encoding the context with posture representation.

- Exploit spatial-temporal correlations.
 - Utilize the structure in group activities.

Key Modules

- Crowd Context and the Representation.
 - Individual posture representation.
 - Encoding the context with posture representation.

- Exploit spatial-temporal correlations.
 - Utilize the structure in group activities.

Crowd Context: How-to

- Given trajectories (boxes over time) of people.
- Represent each individual box with a posture description:
 - Combination of view point and velocity.
 - Finite set of activity labels.
 - A bag of mid-level discriminative parts.
- Encode the context using a spatio-temporal descriptor.

Individual Posture Representation

- Extract a feature (e.g. HoG) in a bounding box.
- Represent the box in a posture space (e.g. SVM).

Dalal and Triggs, CVPR 2005

Simple and well-studied.

Require the definition and annotation of the posture space.

Encoding the Context

- Given a person of interest (anchor), aggregate the posture information of the others around the anchor person.
- Common ideas:
 - Define spatio-temporal support regions.
 - Pull the features in the space.

Encoding Context: Action Context

$$C_i = \left[\max_{j \in \mathcal{N}_1(i)} S_{1j}, \dots, \max_{j \in \mathcal{N}_1(i)} S_{Kj}, \dots, \max_{j \in \mathcal{N}_M(i)} S_{1j}, \dots, \max_{j \in \mathcal{N}_M(i)} S_{Kj} \right]$$

Encoding Context: Spatio-Temporal Local (STL) Descriptor

Encoding Context: Learning the Contextual Model

Learning the Contextual Model

Red: Facing forward, Blue: Facing down, Green: Facing right

Collective Activity Dataset

- 44 videos with multiple people.
- Crossing, Waiting, Queuing, Walking, Talking.
- Leave-One-Video-Out.

Atomic Activity Feature v.s. Crowd Context

Classification Accuracy

■ STIP (Baseline)

Qualitative Examples

X: Crossing, S: Waiting, Q: Queuing, W: Walking, T: Talking

Key Modules

- Crowd Context and the Representation.
 - Individual posture representation.
 - Encoding the context with posture representation.

- Exploit spatial-temporal correlations.
 - Utilize the structure in group activities.

Hierarchical Activity Model

Input: video with tracklets

Hierarchical Activity Model

Hierarchical Activity Model

$$Ψ(C, I, A, O, f) =$$

$$Ψ(A, O) + Ψ(I, A, f) + Ψ(C, I) + Ψ(C, O) +$$

$$Ψ(C) + Ψ(I) + Ψ(A) - cTf, f ∈ S$$

Atomic-Observation Potential

$$\Psi(C, I, A, O, f) =
\Psi(A, O) + \Psi(I, A, f) + \Psi(C, I) + \Psi(C, O) +
\overline{\Psi(C) + \Psi(I) + \Psi(A) - c^{T}f}, f \in S$$

Atomic Activity Models

- Action: BoW with STIP
- Pose: HoG

Dollar et al, 06; Niebles et al, 07

Dalal and Triggs, 05

Interaction-Atomic Potential

$$\Psi(C, I, A, O, f) =
\Psi(A, O) + \Psi(I, A, f) + \Psi(C, I) + \Psi(C, O) +
\Psi(C) + \Psi(I) + \Psi(A) - c^{T}f, f \in S$$

I: Standing-in-a-line

Interaction-Atomic Potential

$$\Psi(C, I, A, O, f) =
\Psi(A, O) + \Psi(I, A, f) + \Psi(C, I) + \Psi(C, O) +
\Psi(C) + \Psi(I) + \Psi(A) - c^{T}f, f \in S$$

I: Standing-in-a-line

Collective-Interaction Potential

$$\Psi(C, I, A, O, f) =
\Psi(A, O) + \Psi(I, A, f) + \Psi(C, I) + \Psi(C, O) +
\Psi(C) + \Psi(I) + \Psi(A) - c^{T}f, f \in S$$

C: Queuing

Collective-Interaction Potential

C: Queuing

Collective-Observation Potential

$$\Psi(C, I, A, O, f) =
\Psi(A, O) + \Psi(I, A, f) + \Psi(C, I) + \Psi(C, O) +
\Psi(C) + \Psi(I) + \Psi(A) - c^{T}f, f \in S$$

Collective Activity

STL of all targets

Choi et al, 09

Activity Transition Potential

$$Ψ(C, I, A, O, f) =$$

$$Ψ(A, O) + Ψ(I, A, f) + Ψ(C, I) + Ψ(C, O) +$$

$$Ψ(C) + Ψ(I) + Ψ(A) - cTf, f ∈ S$$

Smooth activity transition

Trajectory Estimation

$$\Psi(C, I, A, O, f) =$$

$$\Psi(A, O) + \Psi(I, A, f) + \Psi(C, I) + \Psi(C, O) +$$

$$\Psi(C) + \Psi(I) + \Psi(A) - c^{T}f, f \in S$$

Training the Graphical Model

 Model weights can be learned in a Max-Margin framework using Structural SVM.

$$\begin{aligned} & \min_{\mathbf{w}, \boldsymbol{\xi}} & \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i, \text{ s.t. } \forall i, \xi_i \geq 0 \\ & \forall i, \ \forall \mathbf{y} \in \mathcal{Y} \setminus \mathbf{y}_i : \ \langle \mathbf{w}, \delta \Psi_i(\mathbf{y}) \rangle \geq \triangle(\mathbf{y}_i, \mathbf{y}) - \xi_i \end{aligned}$$
Tsochantaridis et al, 2004

Interaction labels

AP: approaching

FE: facing-each-other

SR: standing-in-a-row

••

Atomic Activities

Action:

W - walking

S – standing

Pose (8 directions)

L - left

LF- left/front

F – front

RF- right/front

etc.

Pair-Interactions

- AP: approaching
-
- FE: facing-each-other
- SS: standing-side-by-side
- SQ: standing-in-a-queue

Learning Latent Constituents for Group Activity Recognition (Antic ECCV14)

Input: video and box tracks

Output: group activity labels in time

Meaningful Parts of Group Behavior

Meaningful Parts of Group Behavior

Meaningful Parts of Group Behavior

Less Meaningful Parts

Learning Mid-level Constituents

Encoding Social Signal with Latent Constituents

Quantitative Evaluation

Holistic approach (full b-boxes):

70.4%

Latent constit's (functional grouping):

Social Role Discovery (Ramanathan CVPR 13)

Input: videos with event labels, box tracks
Output: groups with activity label

b'day person parents friends guests

WEDDING

Humans in Social Setting

Slide from Ramanathan et al, 2013

Goal: Identify social roles

Problem setup

- lacktriangle

Person-specific features

- Role specific actions
 - **HOG3D** from person tube
 - Trajectory of person
- Color and Gender features
- Object interaction features

Person-specific features

Inter-role features

- Spatio-temporal features
- Proxemic features

Person-specific features
Inter-role features

Reference role

only interactions with reference considered for tractable inference

Person-specific features
Inter-role features

Reference role

Model parameters

 α is the person-specific feature weight

(eta) is the inter-role feature weight

Person-specific features
Inter-role features
Reference role

Model parameters

 (α) is the person-specific feature weight

 β is the inter-role feature weight

Gaussian priors for regularization

Variational Inference

Jointly Learn model parameters.
Assign social roles.

Dataset

- Youtube Social Role Dataset
 - Available at http://vision.stanford.edu/vigneshr release data/
 youtube CVPRI3 social.tar.gz
 - Only the event type is provided.
 - Social roles are discovered in unsupervised fashion.

Results: role clusters

Results: role clusters

Results: role clusters

Spatial Relations

Spatial Relations

Results – Role clusters

bride groom grooms men brides maid

b'day person parent guest

presenter recipient distributor

instructor presenter

Social Role Discovery (Lan CVPR12)

Input: a video with box tracks

Output: social role and activity labels

Semantic Description of Videos

actions

walk run jog bend shoot dribble social roles

attacker first defender man-marking defend-space Teammate event

corner-hit free-hit attack play

Social roles

Mid-Level semantics that describe individual/group behaviors in the context of social interactions.

Hierarchical Model

Data-driven Crowd Analysis (Rodriguez ICCVII)

Input: a crowd video

Output: individual tracking

Crowd video

Challenges

- I. Noisy measurement due to occlusion, small target size, clutter, etc.
- 2. Complex motion of people due to frequent interaction between people.

Solution

I. See larger are to encode collective signal.

Challenges

- I. Noisy measurement due to occlusion, small target size, clutter, etc.
- 2. Complex motion of people due to frequent interaction between people.

Solution

- I. See larger are to encode collective signal.
- 2. Transfer the motion prior of data with similar collective signal.

Mixture of Other Videos

Framework

Tracking in Crowd Videos

Tracking in Crowd Videos

Tracking in Rare Event

Application: Crowd Simulation [Curtis LCII]

Input: scene type

Output: video of a crowd

Model: Social force + FSM

Real Video from Kaaba during Hajj

Simulation Results

Simulation Result - Zoomed

Density of People

Speed of People

