Group Behavior Analysis and Its Applications

CVPR 2015 Tutorial

Lecturers:

Hyun Soo Park (University of Pennsylvania)
Wongun Choi (NEC America Laboratory)

Schedule

08:30am-08:50am Introduction

08:50am-09:50am Social statics

Gaze/Head signals

Body signals

09:50am-10:10am Invited talk

Action Localization

Ivan Laptev (INRIA)

10:10am-10:45am Coffee break

10:45am-11:15am Invited talk

Capturing Subtle Social Behaviors in the Panoptic Studio

Yaser Sheikh (CMU)

11:15am-12:20pm Social dynamics

Model based approach

Data driven approach

12:20pm-12:30pm Summary and open problems

Granger Causality

[Granger Econometrica69]

A time series X could be considered to causally influence a time series Y if predictions of future values of Y based on the joint history of X and Y were more accurate than predictions based on Y alone.

Prediction based on history of Y

Prediction based on history of Y and X

Mathematical Definition of Group Behaviors

Behaviors of X and Y are a **group behavior** if spatial/temporal predictions of Y based on X and Y jointly are more accurate than predictions based on Y alone.

$$\left\| Y(t + \Delta t) - \hat{Y}(t + \Delta t \mid Y(0), \dots, Y(t)) \right\| \ge \left\| Y(t + \Delta t) - \hat{Y}(t + \Delta t \mid Y(0), \dots, Y(t), X(0), \dots, X(t)) \right\|$$

Mathematical Definition of Group Behaviors

Behaviors of X and Y are a **group behavior** if spatial/temporal predictions of Y based on X and Y jointly are more accurate than predictions based on Y alone.

Mathematical Definition of Group Behaviors

Behaviors of X and Y are a **group behavior** if spatial/temporal predictions of Y based on X and Y jointly are more accurate than predictions based on Y alone.

Social Signals: A Realization of Group Behaviors

Signal Processing

Social Signal Processing

Social Signal Processing

Challenges In Social Signal Processing

Challenge I: Micro Social Signals

Challenge II: Signal Interdependency

Challenge III: Ambiguity

Challenge IV: Scene Variability

Broad Impact: Why Social Interactions?

Multimodal Dyadic Behavior Dataset

Collaborative Behavior Monitoring

Crowd Behavior Analysis

Large Scale Simulation and Flow Analysis

Real footage

Hajj, Mecca (Saudi Arabia) Hundreds of thousands of pilgrims

Our Simulation

http://gamma.cs.unc.edu/REACH/CrowdT/

Social Space Design

Main Tasks

Social Interaction Detection / Joint Attention Localization

Input: image and bounding boxes

Output: groups with activity label

Input: images from first person cameras

Output: to localize joint attention in 3D

Space / Time Relationship

Input: a video of social interactions

Output: to find a causal relationship

Input: image
Output: proxemics label

and skeletons

Group Activity Detection/Recognition

Input: video and box tracks

Output: group activity labels in time

Group Behavior Prediction / Anomaly Detection

Input: a crowd video

Output: individual tracking

Input: pedestrian tracks

Output: to detect abnormal behaviors

Social Role Discovery

Input: videos with event labels, box tracks

Output: groups with activity label

Measurement Tool

Li et al., ICCV 2013 Ryoo et al., CVPR 2013 Pusiol et al., CogSci 2014

Arev et al., SIGGRAPH 2014

Park et al., NIPS 2012

Noninvasiveness

Measurement accuracy

Dynamic scene Scene dynamism

Static scene

Rehg, CVPRI3 Prabhaker, ECCV12 Prabhakar, CVPR12 Patron-Perez, BMVC10

Lan, CVPR12 Ding, ECCV10 Ramanathan, CVPR13 Choi, ECCV12, CVPR14 Antic, ECCV14 Direkoglu, ECCV12

Rodriguez, ICCVIIa, ICCVb Mehran, CVPR09 Alahi, CVPR14

Yang, CVPR12 Hoai, CVPR14

Fathi, CVPR12 Choi, ECCV14 Park, NIPS12, ICCV13

Cristani, BMVCII Park, CVPRI5 Arev, SIGGRAPH14

Wang, ECCVIO Gallagher, CVPR09

Dyadic interaction

Crowd interaction

Number of group members